
http://www.aimspress.com/journal/Math

AIMS Mathematics, 7(3): 4376–4385.
DOI: 10.3934/math.2022243
Received: 19 July 2021
Revised: 01 December 2021
Accepted: 12 December 2021
Published: 21 December 2021

Research article

Construction of random pooling designs based on singular linear space over
finite fields

Xuemei Liu* and Yazhuo Yu

College of Science, Civil Aviation University of China, Tianjin, 300300, China

* Correspondence: Email: xm-liu771216@163.com; Tel: +8613820548321.

Abstract: Faced with a large number of samples to be tested, if there are requiring to be tested one
by one and complete in a short time, it is difficult to save time and save costs at the same time. The
random pooling designs can deal with it to some degree. In this paper, a family of random pooling
designs based on the singular linear spaces and related counting theorems are constructed. Furtherly,
based on it we construct an α-almost de-disjunct matrix and an α-almost (d, r, z]-disjunct matrix, and
all the parameters and properties of these random pooling designs are given. At last, by comparing to
Li’s construction, we find that our design is better under certain condition.
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1. Introduction

Pooling designs have a wide range of applications in biomolecular fields such as DNA library
screening. Given some items with defects, divide the items into several subsets, and each subset is
called a pool. The ultimate goal of pooling designs is to identify all defectives with the least number of
tests. There are two possibilities for the test-outcome: One is negative if there are no defects contained
in the pool, otherwise positive. As for group testing, if all pool tests are carried out simultaneously and
the test-outcome of each pool will not affect each other, such group testing is called nonadaptive. This
kind of test algorithm is suitable for the case of more experimental objects, which can greatly reduce
the time required for testing (see Macula [1]).

Generally, dz-disjunct matrix is the mathematical model of nonadaptive group testing, also called
pooling designs. We typically use a {0, 1} matrix M = (ai j) to present pooling design, whose columns
are in association to items and rows are in association to pools. Cell ai j = 1 exhibits that the i th pool
contains the j th item, otherwise ai j = 0. A (0, 1) matrix M is regarded as dz-disjunct matrix if for any
column C0 and any d other columns C1, · · · ,Cd, there exist at least z rows with a 1 in C0 and 0 in all
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the other d columns.
The random group testing theory is a new branch of combinatorial group testing theory. Similar to

pooling designs, the random pooling designs are used to screen the defect items in a large number of
samples to be tested with the minimum number of tests. A range of possible performance measures is
considered in the random pooling designs, including the expected numbers of unresolved positive and
negative items, and the probability of a one-pass solution (i.e., the probability that the samples to be
tested does not contain defective items). Thus, the random pooling designs optimizes the experiment
to a certain extent.

Macula et al. firstly proposed the random group testing model in 2004. The random pooling designs
for k-complexes and k1-complexes are further constructed by using the α-almost k-disjunct matrices
(see [2, 3]). In 2009, Lang et al. propose the definition of α-almost ke-disjunct matrix, which is an
error-tolerant design (see [4]). In 2018, Shi and et al. construct random pooling designs based on the
finite related structures, and propose the definition of α-almost (d, r, z]-disjunct matrix in [5]. In 2019,
Li et al. randomized the binary superposition code Mq(n, k, d) and obtain new random pooling designs
in [6]. Inspired by [5] and [6], we construct random pooling designs based on singular linear spaces.

We introduce some concepts and notations of random pooling designs for our following
constructions in Section 2. In Section 3, based on the pooling design constructed by Theorem 3.1,
we obtain three random pooling designs by means of the non-containment relationship of
subspaces in singular linear space over finite fields. All the parameters and properties are given in
Theorems 3.5–3.8. In Section 4, by comparing our α to Li’s [6] parameters, we draw the conclusion
that our design is superior to Li’s under certain condition.

2. Preliminaries

In this section, we will introduce some propositions about random pooling designs and singular
linear space.

Definition 2.1. [2] Let M be n × t {0, 1} matrix and let {av(i)}, where 1 ≤ i ≤ n and 1 ≤ v ≤ t, be

the column vectors of M. Let E be the event that a d-set of columns {avs(i)}
d
s=1 has av(i) ≤

d∨
s=1
{avs(i)}

with av(i) < {avs(i)}
d
s=1. Let 0 < α ≤ 1 be a real number. Given the uniform distribution on the d-set of

columns of M, we say that M is α-almost d-disjunct if Prob(E) ≤ 1-α.

Definition 2.2. [4] Let M be n × t {0, 1} matrix and let {Cv(i)}, where 1 ≤ i ≤ n and 1 ≤ v ≤ t, be the
column vectors of M. Let E be the event that a d-set of columns {Cv j(i)}

d
j=1(i ∈ {1, 2, · · · , n}) has at least

e + 1 rows that are 1 in Cv(i) and 0 in
d∨

j=1
C j(i), with Cv(i) < {Cv j(i)}

d
j=1. Let 0 < α ≤ 1 be a real number.

Given the uniform distribution on the d-set of columns of M, we say that M is α-almost de-disjunct if
Prob(E) ≥ α.

Definition 2.3. [5] Let M be n × t {0, 1} matrix and let {Cv(i)}, where 1 ≤ i ≤ n and 1 ≤ v ≤ t, be the
column vectors of M. Let E be the event that an (d + r)-set of columns {Cv j(i)}

d+r
j=1 (i ∈ {1, 2, · · · , n}) has

at least z rows that are 1 in
r∧

j=1
Cv j(i) and 0 in

r+d∨
j=r+1

C j(i). Let 0 < α ≤ 1 be a real number. Given the

uniform distribution on the (d + r)-set of columns of M, we say that M is α-almost (d, r, z]-disjunct if
Prob(E) ≥ α.
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Next, we will introduce some concepts and notations of the singular linear space for our following
construction (see [7, 8]).
Fq is a finite field with q elements, where q is a prime power.
Let F(n+l)

q denote the (n + l)-dimensional row vector space over Fq, where n, l are two non-negative
integers. The set of all (n + l) × (n + l) nonsingular matrices over Fq have the form(

T11 T12

0 T22

)
,

forms a group under matrix multiplication, where T11 and T22 are nonsingular n × n and l × l matrices
respectively. This kind of group is called the singular general linear group of degree n + l over Fq and
denoted as GLn+l,n(Fq).

Suppose P is an m-dimensional subspace of F(n+l)
q , and use the same letter P to represent the matrix

representation of the subspace P. The following is the definition of the action of GLn+l,n(Fq) on F(n+l)
q :

F(n+l)
q ×GLn+l,n(Fq)→ F(n+l)

q

((x1, · · · , xn, xn+1, · · · , xn+l),T ) 7→ (x1, · · · , xn, xn+1, · · · , xn+l)T.

The above action is transitive on the set of all the subspaces with the same dimension. The vector
space F(n+l)

q together with the above group action, is called the (n + l)-dimensional singular linear space
over Fq (see Wang et al. [7]).

Definition 2.4. [7] Let E be the l-dimensional subspace of F(n+l)
q generated by en+1, en+2, · · · , en+l and

P be an m-dimensional subspace of F(n+l)
q . Then P is type (m, k) if dim(P ∩ E) = k.

Next we introduce some counting theorems of singular linear spaces F(n+l)
q .

LetM(m, k; n + l, n) denote the set of all subspaces of type (m, k) in F(n+l)
q , and let N(m, k; n + l, n)

denote the size ofM(m, k; n + l, n).

Proposition 2.5. (Wan [8], Corollary 1.9) Let 0 ≤ k ≤ m ≤ n, then the number of m-dimensional

vector subspaces containing a given k-dimensional vector subspace Fn
q is equal to

[
n − k
m − k

]
q

.

Proposition 2.6. (Wan [8], Lemma 2.1) M(m, k; n + l, n) is non-empty if and only if 0 ≤ k ≤ l and
0 ≤ m − k ≤ n. Moreover, ifM(m, k; n + l, n) is non-empty, then if forms an orbit of subspaces under
GLn+l,n(Fq) and

N(m, k; n + l, n) = q(m−k)(l−k)
[

n
m − k

]
q

[
l
k

]
q

.

For a fixed subspace P of type (m, k) in Fn
q, let M(m1, k1; m, k; n + l, n) denote the set of all the

subspaces of type (m1, k1) contained in P, and let N(m1, k1; m, k; n + l, n) = |M(m1, k1; m, k; n + l, n)|.
By the transitivity of GLn+l,n(Fq) on the set of subspaces of the same type, N(m1, k1; m, k; n + l, n) is
independent of the particular choice of the subspace P of type (m, k).

Proposition 2.7. (Wan [8], Lemma 2.2)M(m1, k1; m, k; n + l, n) is non-empty if and only if 0 ≤ k1 ≤

k ≤ l and 0 ≤ m1 − k1 ≤ m − k ≤ n. Moreover, ifM(m1, k1; m, k; n + l, n) is non-empty, then

N(m1, k1; m, k; n + l, n) = q(m1−k1)(k−k1)
[

m − k
m1 − k1

]
q

[
k
k1

]
q

.
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3. The construction of random pooling designs

In this section, we will propose some random pooling designs. Firstly, the construction of the binary
matrix is given as follows.

Theorem 3.1. [9] For max{0, r + m − n} ≤ j ≤ r and m ≤ n, let P0 be a given m-dimensional
subspace of Fn

q and let Q0 be a given j-dimensional subspace of Fn
q with Q0 ⊆ P0. Then the number of

r-dimensional subspaces of Fn
q intersecting P0 at Q0 is f ( j, r, n; m) = q(r− j)(m− j)

[
n − m
r − j

]
q

. Moreover, for

the integer 0 ≤ α ≤ n + j − m − r, the function f ( j, r, n; m) about α is decreasing.

Definition 3.2. Given integers i, r,m, k, n, l with 0 ≤ k ≤ l, 0 ≤ m−k ≤ n and 0 ≤ i ≤ r ≤ m−k−2. Let
Mq(i; r, 0; m, k; n + l, n) be the binary matrix whose rows are indexed byM(r, 0; n + l, n) and columns
are indexed byM(m, k; n + l, n). Mq(i; r, 0; m, k; n + l, n) has a 1 in row h and column j if and only if
dim(A ∩ B) = i, where A is the h-th subspace and B is the j-th subspace, otherwise 0.

Theorem 3.3. Let R = M(r, 0; n + l, n), S = M(m, k; n + l, n) are the sample spaces composed of all
rows and all columns of the binary matrix Mq(i; r, 0; m, k; n+ l, n) respectively. Now we randomly select
any N rows from R and any t columns from S to form a sub-matrix Ms

q(i; r, 0; m, k; n + l, n). Let E1 be
a random event that the sub-matrix Ms

q(i; r, 0; m, k; n + l, n) has a 1 in row h and column j. And let E0

be an random event that the sub-matrix Ms
q(i; r, 0; m, k; n + l, n) has a 0 in row h and column j.

According to the above definitions, we have

P(E1) =

q(m−i)(r−i)

[
n + l − r

m − i

]
q

× q(m−i)(r−i)

[
n + l − m

r − i

]
q

N(r, 0; n + l, n) × N(m, k; n + l, n)
,

P(E0) = 1 − P(E1).

Proof. By the above Theorem 3.1 and Definition 3.2, we can know that the binary matrix

Mq(i; r, 0; m, k; n+l, n) is an N(r, 0; n+l, n)×N(m, k; n+l, n) matrix with row weight q(m−i)(r−i)

[
n + l − r

m − i

]
q

,

and with column weight q(m−i)(r−i)

[
n + l − m

r − i

]
q

. Hence there are a total of N(r, 0; n+l, n)×N(m, k; n+l, n)

elements in the matrix Mq(i; r, 0; m, k; n + l, n), of which the number of 1 is q(m−i)(r−i)

[
n + l − r

m − i

]
q

×

q(m−i)(r−i)

[
n + l − m

r − i

]
q

.

Then we have

P(E1) =

q(m−i)(r−i)

[
n + l − r

m − i

]
q

× q(m−i)(r−i)

[
n + l − m

r − i

]
q

N(r, 0; n + l, n) × N(m, k; n + l, n)
,

Obviously, E0 is the opposite event of E1. Hence, P(E0) = 1 − P(E1).
Next we will simplify P(E1).

P(E1)
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=

q(m−i)(r−i)

[
n + l − r

m − i

]
q

× q(m−i)(r−i)

[
n + l − m

r − i

]
q

N(r, 0; n + l, n) × N(m, k; n + l, n)

=

q(m−i)(r−i)

[
n + l − r

m − i

]
q

× q(m−i)(r−i)

[
n + l − m

r − i

]
q

qrl

[
n
r

]
q

× q(m−k)(l−k)

[
n

m − k

]
q

[
l
k

]
q

=

q(m−i)(r−i)

n+l−r∏
j=(n+l−r)−(m−i)+1

(q j−1)

m−i∏
j=1

(q j−1)
× q(m−i)(r−i)

n+l−m∏
j=(n+l−m)−(r−i)+1

(q j−1)

r−i∏
j=1

(q j−1)

qrl

n∏
j=n−r+1

(q j−1)

r∏
j=1

(q j−1)
× q(m−k)(l−k)

n∏
j=n−(m−k)+1

(q j−1)

m−k∏
j=1

(q j−1)
×

l∏
j=l−k+1

(q j−1)

k∏
j=1

(q j−1)

=

n+l−r∏
j=(n+l−r)−(m−i)+1

(qr+ j−i−qr−i)

m−i∏
j=1

(q j−1)
×

n+l−m∏
j=(n+l−m)−(r−i)+1

(qm+ j−i−qm−i)

r−i∏
j=1

(q j−1)

n∏
j=n−r+1

(ql+ j−ql)

r∏
j=1

(q j−1)
×

n∏
j=n−(m−k)+1

(ql+ j−k−ql−k)

m−k∏
j=1

(q j−1)
×

l∏
j=l−k+1

(q j−1)

k∏
j=1

(q j−1)

< (
qn+l−m+1 − qr−i

q − 1
)m−i · (

qn+l−r+1 − qm−i

q − 1
)r−i · (

qr

qn+l − ql )
r · (

qm−k

qn+l−k − ql−k )m−k · (
qk

ql − 1
)k

< q(m+r−2n−2l)i+(n−m+k)k+1.

For the sake of convenience, we let P(E1) < qδ, with δ = (m + r − 2n − 2l)i + (n − m + k)k + 1 and
δ < 0. Based on Theorem 3.3, a family of random pooling design is given as follows.

Theorem 3.4. Given δ = (m + r − 2n − 2l)i + (n −m + k)k + 1 and δ < 0. The probability that an N × t
random sub-matrix Ms

q(i; r, 0; m, k; n + l, n) is a d-disjunct matrix is at least

(d + 1)
(

t
d + 1

)
[1 − qδ(1 − qδ)d]N .

Proof. Select d + 1 columns {avs(i)}
d
s=1 from t columns of matrix Ms

q(i; r, 0; m, k; n + l, n) randomly. Let
E be a random event that the matrix Ms

q(i; r, 0; m, k; n + l, n) has a row ri(i = 1, 2, · · · ,N) that are 1 in

av0(i) and 0 in
d∨

j=1
av j(i). Then the probability of event E is

P(E) = P(E1)Pd(E0).

There are a total of (d + 1)
(

t
d + 1

)
ways to select d + 1 columns randomly from Ms

q(i; r, 0; m, k; n +

l, n). Hence, the probability of random event E′ that the above row does not exist in Ms
q(i; r, 0; m, k; n +

l, n) is

P(E′) = (d + 1)
(

t
d + 1

)
[1 − P(E1)Pd(E0)]N .
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Since

P(E1) =

q(m−i)(r−i)

[
n + l − r

m − i

]
q

× q(m−i)(r−i)

[
n + l − m

r − i

]
q

N(r, 0; n + l, n) × N(m, k; n + l, n)
,

There we have

P(E′) = (d + 1)
(

t
d + 1

)
[1 − P(E1)Pd(E0)]N

< (d + 1)
(

t
d + 1

)
[1 − qδ(1 − qδ)d]N

Let K = [1 − qδ(1 − qδ)d]. Obviously, 0 < K < 1. According to [8] we have

N ≥ −logK[(d + 1)
(

t
d + 1

)
] ≥ dlogK(d + 1) − (d + 1)logKt.

In other words, there is a d-disjunct matrix in the sub-matrix Ms
q(i; r, 0; m, k; n+ l, n) when satisfying

N ≥ −logK[(d + 1)
(

t
d + 1

)
] ≥ dlogK(d + 1) − (d + 1)logKt. Hence, the probability that the matrix

Ms
q(i; r, 0; m, k; n + l, n) is a d-disjunct matrix is at least

(d + 1)
(

t
d + 1

)
[1 − qδ(1 − qδ)d]N .

For convenience, the following δ all satisfying δ = (m + r − 2n − 2l)i + (n − m + k)k + 1 and δ < 0.

Theorem 3.5. The random matrix Ms
q(i; r, 0; m, k; n + l, n) is an α-almost d-disjunct matrix when N ≥

dlogK(d + 1) − (d + 1)logKt, where

α = (d + 1)
(

t
d + 1

)
[1 − qδ(1 − qδ)d]N .

Proof. It can be directly obtained by Theorem 3.3 and Definition 2.2.

Next, based on Theorem 3.3, we will give two family of random pooling designs with error-
tolerance.

Theorem 3.6. The random matrix Ms
q(i; r, 0; m, k; n + l, n) is an α-almost de-disjunct matrix, where

α = (d + 1)
(

t
d + 1

)
[qδ(1 − qδ)d]e+1.

Proof. Select d columns {av j(i)}
d
j=1 from t columns of the matrix Ms

q(i; r, 0; m, k; n + l, n) randomly. Let
E be the event that the matrix Ms

q(i; r, 0; m, k; n + l, n) has at least e + 1 rows that are 1 in av0(i) and 0

in
d∨

j=1
av j(i), with av0(i) < {av j(i)}

d
j=1. According to Theorem 3.5, we have

P(E′) = P{av0(i) = 1 and C1(i) = · · · = Cd(i) = 0, ∃ i ∈ [N]} = P(E1)Pd(E0).
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Hence, the probability that there are at least e + 1 rows so that av0(i) >
d∨

j=1
av j(i) in d columns is

[P(E1)Pd(E0)]e+1.
There we have

P(E) ≥ (d + 1)
(

t
d + 1

)
[qδ(1 − qδ)d]e+1,

i.e.,

α = (d + 1)
(

t
d + 1

)
[qδ(1 − qδ)d]e+1.

Theorem 3.7. The random matrix Ms
q(i; r, 0; m, k; n+l, n) is an α-almost (d, r, z]-disjunct matrix, where

α =

(
d + r

r

) (
t

d + r

)
[qrδ(1 − qδ)d]z.

Proof. Select d + r columns {Cv j(i)}
d+r
j=1 from t columns of matrix Ms

q(i; r, 0; m, k; n + l, n) randomly. Let

E be the event that Ms
q(i; r, 0; m, k; n+ l, n) has at least z rows that are 1 in

r∧
j=1

Cv j(i) and 0 in
r+d∨

j=r+1
Cv j(i).

Let E′ be a random event that there are one row i such that
r∧

j=1
Cv j(i) >

r+d∨
j=r+1

Cv j(i) for the d + r

columns {Cv j(i)}
d+r
j=1(i = 1, 2, · · · ,N). Therefore, we have

P(E′) = P{C1(i) = · · · = Cd(i) = 0 and Cr+1(i) = · · · = Cr+d(i) = 1, i ∈ [N]}
= P(E1)rPd(E0)
= P(E1)r(1 − P(E1))d.

P(E) ≥
(

d + r
r

) (
t

d + r

)
[qrδ(1 − qδ)d]z.

Hence,

α =

(
d + r

r

) (
t

d + r

)
[qrδ(1 − qδ)d]z.

According to the Theorems 3.6 and 3.7, the random matrix Ms
q(i; r, 0; m, k; n + l, n) has properties as

follows.

Theorem 3.8. Let {av j(i)|i = 1, 2, · · · ,N; j = 1, 2, · · · , t} be the columns of Ms
q(i; r, 0; m, k; n + l, n).

1) Select a d-set {av j(i)}
d
j=1 from Ms

q(i; r, 0; m, k; n + l, n) randomly, then

P{dH(av(i),
d∨

j=1
av(i)) ≥ 2e + 1} ≥ (d + 1)

(
t

d + 1

)
[1 − qδ(1 − qδ)d]e+1;

2) Select a d-set {avk(i)}
d+r
k=1 from Ms

q(i; r, 0; m, k; n + l, n) randomly, then

P{dH(
r∧

k=1
avk(i),

r+d∨
k=r+1

av jm
(i)) ≥ z} ≥

(
d + r

r

) (
t

d + r

)
[qrδ(1 − qδ)d]z.

Proof. It can be directly obtained by Definitions 2.2, 2.3 and Theorems 3.6, 3.7.
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4. Analyzing parameter

In the random pool design, the parameter α represents the probability that a binary matrix is a
disjunctive matrix. And the larger the parameter α is, the better the design is. Next, we use α as a
standard to measure the pros and cons of the random pooling design.

For the parameter of α-almost de-disjunct matrix, we can know from Theorem 3.6 that the α is

α = (d + 1)
(

t
d + 1

)
[qδ(1 − qδ)d]e+1.

Li et al. constructed random pooling designs based on the binary superposition code Mq(n, k, d)
(see [6]). They constructed an α-almost de-disjunct matrix, where α1 is

α1 = (d + 1)
(

t
d + 1

)
[q2(k−n)d(1 − q2(k−n)d)d]e+1.

Theorem 4.1. Let x < −logq(d + 1), then the function f (x) = qx(1 − qx)d is monotonically increasing.

Proof. Taking the derivative of the function f (x), we have that

f ′(x) = qx · lnq · (1 − qx)d + qx · d · (1 − qx)d−1 · (−qx) · lnq

= qx · lnq · (1 − qx)d−1 · [1 − (d + 1)qx].

If x < −logq(d + 1), the function f (x) = qx(1 − qx)d is monotonically increasing.

Theorem 4.2. Let 2(k − n)d < δ < −logq(d + 1), then α > α1.

Proof.

α

α1
=

(d + 1)
(

t
d + 1

)
[qδ(1 − qδ)d]e+1

(d + 1)
(

t
d + 1

)
[q2(k−n)d(1 − q2(k−n)d)d]e+1

=
[qδ(1 − qδ)d]e+1

[q2(k−n)d(1 − q2(k−n)d)d]e+1

= (
qδ(1 − qδ)d

q2(k−n)d(1 − q2(k−n)d)d )e+1.

From Theorem 4.1 we can know that if 2(k−n)d < δ < −logq(d+1), qδ(1−qδ)d > q2(k−n)d(1−q2(k−n)d)d.
Furtherly, we have α > α1.

We have similar results for α-almost (d, r, z]-disjunct matrix. For the parameter of the α-almost de-
disjunct matrix, we can know from Theorem 3.6 that the α′ is

α′ =

(
d + r

r

) (
t

d + r

)
[qrδ(1 − qδ)d]z.

In [6], the parameter of α-almost (d, r, z]-disjunct matrix is α2

α2 =

(
d + r

r

) (
t

d + r

)
[q2(k−n)rd(1 − q2(k−n)d)d]z.

Then we have the results as follow.
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Theorem 4.3. Let x < logq
r

r+d , then the function g(x) = qrx(1 − qx)d is monotonically increasing.

Proof. Taking the derivative of the function g(x), we have that

g′(x) = r · qrx · lnq · (1 − qx)d − d · qrx · qx · lnq · (1 − qx)d−1

= qrx · lnq · (1 − qx)d−1 · [r − (r + d)qx].

If x < logq
r

r+d , the function g(x) = qrx(1 − qx)d is monotonically increasing.

Theorem 4.4. Let 2(k − n)d < δ < logq
r

r+d , then α′ > α2.

Proof.

α′

α2
=

(
d + r

r

) (
t

d + r

)
[qrδ(1 − qδ)d]z(

d + r
r

) (
t

d + r

)
[q2(k−n)rd(1 − q2(k−n)d)d]z

=
[qrδ(1 − qδ)d]z

[q2(k−n)rd(1 − q2(k−n)d)d]z

= (
qrδ(1 − qδ)d

q2(k−n)rd(1 − q2(k−n)d)d )z

From Theorem 4.3 we can know that if 2(k− n)d < δ < logq
r

r+d , qrδ(1− qδ)d > q2(k−n)rd(1− q2(k−n)d)d.
Furtherly, we have α′ > α2.

5. Conclusions

In this paper, we obtain a family of random pooling designs based on the singular linear spaces and
related counting theorems firstly. Besides, based on Theorem 3.3 we construct an α-almost de-disjunct
matrix and an α-almost (d, r, z]-disjunct matrix, which are random pooling designs with error-tolerant
property. Furtherly, all the parameters and properties of these random pooling designs are given in
Theorems 3.5–3.8, which indicate the characteristics of sample data to a certain extent. According to
this, the testor can choose the appropriate number of items to detect. It helps us saving time and costs
of the tests to some degree. At last, by comparing to Li’s construction, we find that our design is better
under certain condition.
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