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Abstract: In this paper, we establish a regularity criterion for the 3D nematic liquid crystal flows.
More precisely, we prove that the local smooth solution (u, d) is regular provided that velocity
component u3, vorticity component ω3 and the horizontal derivative components of the orientation
field ∇hd satisfy ∫ T
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2p
p−3

Lp + ||ω3||
2q

2q−3

Lq + ||∇hd||
2a

a−3
La dt < ∞,

with 3 < p ≤ ∞,
3
2
< q ≤ ∞, 3 < a ≤ ∞.
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1. Introduction

In this paper, we will consider the following three-dimensional (3D) nematic liquid crystal flows:
∂tu + u · ∇u − µ∆u + ∇p = −λ∇ · (∇d � ∇d),
∂td + u · ∇d = γ(∆d − f (d)),
∇ · u = 0,
u(x, 0) = u0(x), d(x, 0) = d0(x),

(1.1)

where u = (u1, u2, u3) ∈ R3 is the velocity field, d = (d1, d2, d3) ∈ R3 is the macroscopic average of
molecular orientation field and p represents the scalar pressure. The notation ∇d � ∇d represents the
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3 × 3 matrix of which the (i, j) entry can be denoted by

3∑
k=1

∂idk∂ jdk(1 ≤ i, j ≤ 3),

and
f (d) =

1
|η|2

(|d|2 − 1)d.

u0 is the initial velocity with ∇ · u0 = 0, d0 is initial orientation vector with |d0| ≤ 1. Here, µ, λ, γ, η are
all positive constants. And to simplify the presentation, we shall assume that µ = λ = γ = η = 1 in this
paper.

The hydrodynamic theory of liquid crystals was established by Ericksen and Leslie during 1960s
(see [4, 10]). And the system (1.1) is a simplified version of the Ericksen-Leslie model which still
retains most of the essential features of the hydrodynamic equations for nematic liquid crystal (see [8]).
One of the most significant studies in this area was made by Lin and Liu [9], where they established the
existence of global-in-time weak solutions and local-in-time classical solutions. When the orientation
field d equals a constant, the above equations reduce to the incompressible Navier-Stokes equations.
For well-known Prodi-Serrin type regularity criterion, people paid much focus on decomposing the
integral term about u · ∇u and got some improving results based on the components of velocity field u
and the gradient of the velocity field ∇u, readers can refer to [1–3,7,14,20,21,23,24]. Naturally, these
related results were extended to the liquid crystal flows, see [5, 6, 11, 12, 16–19, 22], and references
therein. Moreover, these Prodi-Serrin type regularity criteria based on velocity field indicate that the
velocity field u plays a more dominate role than the orientation field d does on the regularity of solutions
to the system (1.1).

In [13], Qian established the regularity criterion for system (1.1). That is, if∫ T

0
||u3||

q
Lp + ||ω3||

b
La + ||∂3uh||

b
Ladt < M, f or some M > 0

and
3
p

+
2
q

= 1,
3
a

+
2
b

= 2, 3 < p ≤ ∞,
3
2
< a ≤ ∞ (1.2)

where uh = (u1, u2), ω3 = ∂1u2 − ∂2u1, then the solution is regular. Later, Qian [15] proved the
following regularity criterion:∫ T

0
||u3||

q
Lp + ||∂3uh||

b
La + ||∇h∇d||bLadt < M, f or some M > 0

and
3
p

+
2
q

= 1,
3
a

+
2
b

= 2, 3 < p ≤ ∞,
3
2
< a ≤ ∞. (1.3)

Inspired by the above results, we establish the following regularity criterion:

Theorem 1.1. Suppose the initial data u0 ∈ H1(R3) with ∇ · u0 = 0, d0 ∈ H2(R3), and let (u, d) be
a smooth solution to the system (1.1) on [0,T ) for some 0 < T < ∞. If (u, d) satisfies the following
condition∫ T

0
||u3||

2p
p−3

Lp + ||ω3||
2q

2q−3

Lq + ||∇hd||
2a

a−3
La dt < ∞,with 3 < p ≤ ∞,

3
2
< q ≤ ∞, 3 < a ≤ ∞, (1.4)
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then (u, d) can be extended beyond T .

Remark 1.1. In [20], Zhang has decomposed the integral
∫
R3(u · ∇)u · ∆udx into the several integrals

containing u3 and ω3 for the Navier-Stokes equation, and the corresponding criterion is∫ T

0
||u3||

2p
p−3

Lp + ||ω3||
2q

2q−3

Lq dt < ∞, with 3 < p ≤ ∞,
3
2
< q ≤ ∞. (1.5)

So the condition on ∂3uh in (1.2) can be removed and the condition on ∂3uh in (1.3) can be replaced.
And, the regularity condition of orientation field d is needed to control the term ∇ · (∇d � ∇d) in view
of (1.3).

Remark 1.2. Compared with the corresponding results (1.2), we replace the conditions on ∂3uh with
∇hd because we can not control the 2-order higher derivatives term ∇ · (∇d � ∇d) by only u3 and ω3.
Compared with (1.3), we reduce 1-order derivative on orientation field d, which improves the result
of (1.3).

Throughout this paper, the letter C means a generic constant which may vary from line to line, and
the directional derivatives of a function ϕ are denoted by ∂iϕ =

∂ϕ

∂xi
(i = 1, 2, 3).

2. Proof of Theorem 1.1

According to the local well-posedness of smooth solution established by Lin and Liu [9] , we only
need to establish the priori estimates. And we have the following standard L2 estimate (for example,
see [17, p.2-3] )

(||u||2L2 + ||∇d||2L2) + 2
∫ T

0
(||∇u||2L2 + ||∆d||2L2 + ||d|∇d|||2L2 +

1
2
||∇|d|2||2L2)dt

≤ C(||u0||
2
L2 + ||∇d0||

2
L2). (2.1)

By an argument similar to [17, Eq (2.7)], we have

1
2

d
dt

(||∇u||2L2 + ||∆d||2L2) + ||∆u||2L2 + ||∇∆d||2L2

=

∫
R3

(u · ∇)u · ∆udx +

∫
R3
∇ · (∇d � ∇d) · ∆udx

−

∫
R3

∆(u · ∇d) · ∆ddx −
∫
R3

∆(|d|2d − d) · ∆ddx

:=I1 + I2 + I3 + I4. (2.2)

In the following part, we estimate the terms above one by one. For I1 referring to [20, (2.1)–(2.7)],
(or see [11]), I1 can be decomposed as follows:

I1 =

3∑
i, j,k,l=1

∫
R3
α11i jkl∂1u1∂iu j∂kul

+

3∑
i, j,k,l=1

∫
R3
α12i jkl∂1u2∂iu j∂kul
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+

3∑
i, j,k,l=1

∫
R3
α21i jkl∂2u1∂iu j∂k

+

3∑
i, j,k,l=1

∫
R3
α22i jkl∂2u2∂iu j∂k

=I11 + I12 + I13 + I14,

where αmni jkl, 1 ≤ m, n ≤ 2, 1 ≤ i, j, k, l ≤ 3, are suitable integers. And the purpose is to rewrite ∂mun

by u3 and ω3, 1 ≤ m, n ≤ 2.
Denoting by ∆h = ∂1∂1 + ∂2∂2 the horizontal Laplacian, and <m = ∂m√

−∆h
the two-dimension Riesz

transformation, it was shown in [20, (2.2)–(2.4)], that

∆hu1 = −∂2ω3 − ∂1∂3u3, ∆hu2 = ∂1ω3 − ∂2∂3u3.

∂mu1 =
∂2
√
−∆h

∂m
√
−∆h

ω3 +
∂1
√
−∆h

∂m
√
−∆h

∂3u3 = <2<mω3 +<1<m∂3u3, (2.3)

∂mu2 = <1<mω3 +<2<m∂3u3, 1 ≤ m, n ≤ 2. (2.4)

The term I11 can be expressed as

I11 =

3∑
i, j,k,l=1

∫
R3
α11i jkl∂1u1∂iu j∂kuldx

=

3∑
i, j,k,l=1

∫
R3
α11i jkl(<2<1ω3 +<1<1∂3u3)∂iu j∂kuldx

=

3∑
i, j,k,l=1

∫
R3
α11i jkl<2<1ω3∂iu j∂kuldx

−

3∑
i, j,k,l=1

∫
R3
α11i jkl<1<1u3(∂3∂iu j∂kul + ∂iu j∂3∂kul)dx,

by (2.3) and integration by parts. Because the Riesz transformation is bounded from Lp(R2) to Lp(R2)
for 1 < p < ∞, we have

I11 ≤C||u3||Lp ||∇u||
L

2p
p−2
||∇2u||L2 + C||ω3||Lq ||∇u||2

L
2q

q−1

≤C||u3||Lp ||∇u||
p−3

p

L2 ||∇
2u||

p+3
p

L2 + C||ω3||Lq ||∇u||
2q−3

q

L2 ||∇
2u||

3
q

L2

≤C(||u3||
2p
p−3

Lp + ||ω3||
2q

2q−3

Lq )||∇u||2L2 +
1

16
||∆u||2L2 ,

where p > 3, q > 3
2 .
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The similar argument as I11 can be used to terms I12, I13, I14, therefore it can be deduced that

I1 ≤ C(||u3||
2p
p−3

Lp + ||ω3||
2q

2q−3

Lq )||∇u||2L2 + 1
4 ||∆u||2L2 . (2.5)

For I2 and I3, by using the fact ∇ · u = 0 and integrating by parts several times, we can rewrite it
as follows

I2 + I3 =

∫
R3

3∑
i, j,k=1

[(∂i∂ jdk∂ jdk + ∂idk∂ j∂ jdk)∆ui

− (∆ui∂idk∆dk + 2∇ui∂i∇dk∆dk + ui∂i∆dk∆dk)]dx

=

∫
R3

3∑
i, j,k=1

−2∇ui∂i∇dk∆dkdx

=

∫
R3
−2

3∑
j,k=1

2∑
i=1

∂ jui∂i∂ jdk∆dkdx −
∫
R3

2
3∑

j,k=1

∂ ju3∂3∂ jdk∆dkdx

=I21 + I22.

I21 =

∫
R3

2
3∑

j,k=1

2∑
i=1

∂ jui∂idk∂ j∆dkdx +

∫
R3

2
3∑

j,k=1

2∑
i=1

∂ j∂ jui∂idk∆dkdx = I211 + I212.

Next, employing the Hölder inequality, interpolation inequality and Young’s inequality, we have

I211 ≤C‖∇hd‖La‖∇u‖
L

2a
a−2
‖∇∆d‖L2

≤C‖∇hd‖La‖∇u‖
a−3

a

L2 ‖∆u‖
3
a

L2‖∇∆d‖L2

≤C‖∇hd‖
2a

a−3
La ‖∇u‖2L2 +

1
8
‖∆u‖2L2 +

1
8
‖∇∆d‖2L2 , (2.6)

I212 ≤C‖∇hd‖La‖∆d‖
L

2a
a−2
‖∆u‖L2

≤C‖∇hd‖La‖∆d‖
a−3

a

L2 ‖∇∆d‖
3
a

L2‖∆u‖L2

≤C‖∇hd‖
2a

a−3
La ‖∆d‖2L2 +

1
8
‖∆u‖2L2 +

1
8
‖∇∆d‖2L2 . (2.7)

In the same way, the term I22 can be bounded as follows

I22 =

∫
R3

2
3∑

j,k=1

(u3∂3∂ j∂ jdk∆dk + u3∂3∂ jdk∂ j∆dkdx)dx

≤C‖u3‖Lp‖∆d‖
L

2p
p−2
‖∇∆d‖L2

≤C‖u3‖Lp‖∆d‖
p−3

p

L2 ‖∇∆d‖
3
p

L2‖∇∆d‖L2

≤C‖u3‖
2p
p−3

Lp ‖∆d‖2L2 +
1
8
‖∇∆d‖2L2 . (2.8)
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Adding the above inequalities (2.6)–(2.8) together, one obtains

I2 + I3 ≤C(‖u3‖
2p
p−3

Lp + ‖∇hd‖
2a

a−3
La )(‖∇u‖2L2 + ‖∆d‖2L2) +

1
4
‖∆u‖2L2 +

3
8
‖∇∆d‖2L2 . (2.9)

For I4, we have

I4 ≤

∫
R3
|∆d|2 + ∆(|d|2d) · ∆ddx

≤||∆d||2L2 + C(||∆|d|2||L2 ||d||L6 ||∆d||L3 + ||∆d||L3 ||d||2L6 ||∆d||L3)
≤||∆d||2L2 + C||∆d||L3 ||d||2L6 ||∆d||L3

≤||∆d||2L2 + C||∆d||L2 ||∇∆d||L2

≤C||∆d||2L2 +
1
8
||∇∆d||2L2 . (2.10)

Hence, inserting (2.5), (2.9) and (2.10) into (2.2) yields

d
dt

(||∇u||2L2 + ||∆d||2L2) + ||∆u||2L2 + ||∇∆d||2L2

≤C(1 + ‖u3‖
2p
p−3

Lp + ||ω3||
2q

2q−3

Lq + ‖∇hd‖
2a

a−3
La )(||∇u||2L2 + ||∆d||2L2),

and it could be derived by Gronwall inequality that

||∇u||2L2 + ||∆d||2L2 +

∫ T

0
(||∆u||2L2 + ||∇∆d||2L2)dt

≤(||∇u0||
2
L2 + ||∆d0||

2
L2) exp

{∫ T

0
C(1 + ‖u3‖

2p
p−3

Lp + ||ω3||
2q

2q−3

Lq + ‖∇hd‖
2a

a−3
La )dt

}
.

Then the proof of Theorem 1.1 is completed.

3. Conclusions

In this paper, we prove a regular criterion of solution for the 3D nematic liquid crystal flows via
velocity component u3, vorticity component ω3 and the horizontal derivative components of the
orientation field ∇hd, and we hope that the condition on ∇hd will be removed in future study.
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