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1. Introduction

In this paper, a digraph is a finite loopless directed graph without parallel arcs (arcs with the same
head and the same tail) and an undirected graph is also a finite and simple graph. A linear forest is
a forest in which every connected component is a path. The linear arboricity of a graph G, defined
by Harary [14], is the minimum number of linear forests that partition the edges of G and is denoted
by la(G). Later, Habib and Péroche [13] introduced the linear k-arboricity of a graph G, which is the
minimum number of k-linear forests (forests in which every connected component is a path of length
at most k) required to partition the edges of G and is denoted by lak(G). Moreover, Akiyama et al. [1]
proposed a conjecture about the value of linear arboricity and Habib and Péroche [13] proposed a
conjecture about the value of linear k-arboricity which subsumes Akiyama’s conjecture. Aimed at
these two conjectures, considerable works have been done over the years (see [2, 3, 6–12, 16, 19–22]).

It is natural to consider similar problems for digraphs. Let D = (V(D), A(D)) be a digraph. We
denote ∆+(D) = max{d+(v)| f or all v ∈ V}, ∆−(D) = max{d−(v)| f or all v ∈ V} and ∆(D) =
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max{∆+(D),∆−(D)}. The underlying graph S (D) of D is the undirected simple graph with the same
vertex set of D by replacing each arc by an edge with the same ends. A linear diforest is a directed
forest in which every connected component is a directed path. The linear arboricity of D, defined by
Nakayama and Péroche [17], is the minimum number of linear diforests that partition the arcs of D and
is denoted by

−→
la(D). Nakayama and Péroche [17] also conjectured that

−→
la(D) ≤ ∆(D) + 1. Since every

digraph can be a regular digraph by adding arcs, Nakayama-Péroche conjecture is equivalent to say that
the linear arboricity of a d-regular digraph D (i.e. every vertex in D has in-degree d and out-degree d)
is d + 1. In 2017, He et al. [15] found that the symmetric complete digraphs K∗3 and K∗5 have the linear
arboricity d + 2 (d = 2, 4 respectively), which is contrary to Nakayama-Péroche conjecture. Then they
conjectured that the linear arboricity of a d-regular digraph D is d + 1 except D is K∗3 or K∗5 .

In this paper, we study the linear k-arboricity for digraphs. The linear k-arboricity of a digraph D is
the minimum number of linear k-diforests (diforests in which every connected component is a directed
path of length at most k) that partition the arcs of D and is denoted by

−→
lak(D).

This paper is organized as follows: In Section 2, we introduce some notations and obtain the upper
bound and the lower bound of the linear k-arboricity for general digraphs. In Sections 3 and 4, we
study the linear 3-arboricity and linear 2-arboricity for symmetric complete digraphs respectively.
In Sections 5 and 6, we study the linear 3-arboricity and linear 2-arboricity for symmetric complete
bipartite digraphs respectively.

2. Preliminaries

For an undirected graph G with n vertices, Habib and Péroche [13] conjectured that lak(G) ≤
d

∆(G)n+1
2bkn/(k+1)ce when ∆(G) < n − 1 and lak(G) ≤ d ∆(G)n

2bkn/(k+1)ce when ∆(G) = n − 1. Based on the linear
arboricity conjecture for digraphs in [15] and Habib-Péroche conjecture, we propose the following
conjecture for the linear k-arboricity in digraphs.

Conjecture 2.1. For a digraph D with n vertices, if k = n − 1,

−→
lak(D) ≤


d

∆(D)n
bkn/(k + 1)c

e when ∆(D) = n − 1 and D is not K∗3 and K∗5 ,

d
∆(D)n + 1
bkn/(k + 1)c

e when ∆(D) < n − 1 or D is K∗3 or K∗5 .

If k < n − 1,

−→
lak(D) ≤


d

∆(D)n
bkn/(k + 1)c

e when ∆(D) = n − 1,

d
∆(D)n + 1
bkn/(k + 1)c

e when ∆(D) < n − 1.

It is easy to obtain the following lemmas.

Lemma 2.1. Let H be a subdigraph of a digraph D. Then
−→
lak(H) ≤

−→
lak(D).

Lemma 2.2. For a digraph D with n vertices,

−→
la1(D) ≥

−→
la2(D) ≥ ... ≥

−→
lan−1(D) =

−→
la(D).
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Lemma 2.3. For a digraph D = (V(D), A(D)) with n vertices,

−→
lak(D) ≥ max

∆(D),
 |A(D)|
b kn

k+1c


 .

If D is a symmetric digraph, we just give two opposite directions to the linear forests of the minimum
linear k-forests partition of S (D) and get the following trivial upper bound for

−→
lak(D).

Lemma 2.4. Let D be a symmetric digraph. Then
−→
lak(D) ≤ 2lak(S (D)).

In this paper, we mainly study the linear k-arboricity for symmetric complete digraphs and
symmetric complete bipartite digraphs. Fu et al. [11,12,22] studied linear 2-arboricity and 3-arboricity
of complete graphs Kn and complete bipartite graphs Kn,n.

Theorem 2.1. [12]

la3(Kn) =


⌈
2n − 2

3

⌉
when n ≡ 0, 4, 8, 11 (mod12),⌈

2n
3

⌉
when n ≡ 1, 2, 3, 5, 6, 7, 9, 10 (mod12).

Theorem 2.2. [12]

la3(Kn,n) =


⌈
2n
3

⌉
when n ≡ 0, 1, 2, 4, 5 (mod 6),⌈

2n + 2
3

⌉
when n ≡ 3 (mod 6).

Theorem 2.3. [6, 22]

la2(Kn) =


n(n − 1)

2b
2n
3
c

 .
Theorem 2.4. [11]

la2(Kn,n) =


n2

b
4n
3
c

 .
Let K∗n,n be a symmetric complete bipartite digraph with partite sets X = {x0, x1, ..., xn−1} and Y =

{y0, y1, ..., yn−1}. We define the bipartite difference of the undirected edge xpyq in S (K∗n,n) as the value
q−p(mod n). Those edges in S (K∗n,n) with the same value of the bipartite difference must be a matching.
In particular, we denote the set of edges of the bipartite difference i in S (K∗n,n) by Mi (i = 0, 1, ..., n−1).

In K∗n,n, for i = 0, 1, ..., n− 1, we define
−→
Mi = {xdyd+i(mod n)|d = 0, 1, ..., n− 1} and

←−
Mi = {yd+i(mod n)xd|d =

0, 1, ..., n − 1}. Thus, we can partition the arcs of K∗n,n into 2n pairwise arc-disjoint perfect matchings
−→
M0,
−→
M1,...,

−→
Mn−1,

←−
M0,
←−
M1,...,

←−
Mn−1. Similarly as in [12], we have the following two useful results.

AIMS Mathematics Volume 7, Issue 3, 4137–4152.



4140

Lemma 2.5. If n ≥ 4 is even and α ∈ {0, 1, ..., n−3}, then the arcs in the union {
−→
Mα,
←−
Mα+1,

−→
Mα+2} in K∗n,n

can form two arc-disjoint linear 3-diforests and {
←−
Mα,
−→
Mα+1,

←−
Mα+2} can form another two arc-disjoint

linear 3-diforests.

Lemma 2.6. If n ≥ 3 is odd, α ∈ {0, 1, ..., n−3} and e is an arc of
←−
Mα+1, then {

−→
Mα,
←−
Mα+1− {e},

−→
Mα+2} in

K∗n,n can form two arc-disjoint linear 3-diforests. And if e is an arc of
−→
Mα+1, then {

←−
Mα,
−→
Mα+1−{e},

←−
Mα+2}

can form another two arc-disjoint linear 3-diforests.

3. Linear 3-arboricity of symmetric complete digraphs

In this section, we determine the linear 3-arboricity of K∗n . Firstly, we propose an operation of
replacing arcs in K∗n,n. Let X = {x0, x1, ..., xn−1} and Y = {y0, y1, ..., yn−1} be partite sets of K∗n,n. Suppose
it exists the following directed 3-path yiyi+d xixi+d by adding arcs xixi+d and yiyi+d in K∗n,n as shown in

Figure 1. Then we replace the arc yi+d xi ∈
←−
Md by the arc xi+dyi ∈

−→
Mn−d and we get another directed

3-path xixi+dyiyi+d. We call this operation replacing arc operation. In this operation we can use the arcs
in a matching to replace the arcs in another matching contained in some directed paths.

xi yi

xi+d yi+d

xi yi

xi+d yi+d

Figure 1. The replacing arc operation.

We need to mention that some of the proof in the following propositions are similar as the proof for
the linear 3-arboricity of Kn [12], and we will omit some analogous and tedious proof in this section.

Proposition 3.1.
−→
la3(K∗n) ≤ 2d2n−2

3 e − 1 when n ≡ 0 (mod 12).

Proof. Let n = 12t, m = n
2 . In [12] it is proved that S (K∗n) can be decomposed into m−1 pairwise edge-

disjoint linear 3-forests and couple of matchings. Thus, by giving two opposite directions to edges of
those linear 3-forests and matchings of S (K∗n), in K∗n , we have
(1) 2(m − 1) pairwise arc-disjoint linear 3-diforests;
(2) m pairwise arc-disjoint perfect matchings

−→
Md = {xiyi+d(mod m)|i = 0, 1, ...,m−1} (d = 0, 1, 2, ...m2 −1),

←−
Md = {yi+d(mod m)xi|i = 0, 1, ...,m − 1} (d = 0, 1, 2, ...m2 − 1);

(3)
−→
M m

2
= {xiyi+ m

2 (mod m)|i = 0, 1, ..., m
2 − 1} and

←−
M m

2
= {yi+ m

2 (mod m)xi|i = 0, 1, ..., m
2 − 1}.

By Lemma 2.5, we can construct 2m
3 linear 3-diforests using these matchings in (2).

Then for the directed 3-paths yi+ m
2
yixi+ m

2
xi, i ∈ {0, 1, ..., m

2 − 1} from those 2(m − 1) linear 3-diforests

in (1), by using the arcs in
−→
M m

2
, we apply the replacing arc operation for yi+ m

2
yixi+ m

2
xi and get new

paths xi+ m
2
xiyi+ m

2
yi. Note that in the whole operation, the arcs in the matching

←−
M
′

m
2

= {yixi+ m
2 (mod m)|i =
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0, 1, ..., m
2 − 1} are removed from the paths. It is not hard to see that the arcs of

←−
M
′

m
2

and
←−
M m

2
can form

one linear 3-diforest.
Accordingly,

−→
la3(K∗n) ≤ 2(m − 1) + 2m

3 + 1 = 2d2n−2
3 e − 1. �

Proposition 3.2.
−→
la3(K∗n) ≤ 2d2n

3 e − 1 when n ≡ 2 (mod 12).

Proof. Let n = 12t + 2, m = n−2
2 , t ≥ 1 (when t = 0, it is trivial). In K∗n , we have

(1) 2(m + 1) pairwise arc-disjoint linear 3-diforests;
(2) m pairwise arc-disjoint perfect matchings

−→
Md = {xiyi+d(mod m)|i = 0, 1, ...,m−1} (d = 0, 1, 2, ...m2 −1),

←−
Md = {yi+d(mod m)xi|i = 0, 1, ...,m − 1} (d = 0, 1, 2, ...m2 − 1);

(3)
−→
M m

2
= {xiyi+ m

2 (mod m)|i = 0, 1, ..., m
2 − 1} and

←−
M m

2
= {yi+ m

2 (mod m)xi|i = 0, 1, ..., m
2 − 1}.

By Lemma 2.5, we can construct 2m
3 linear 3-diforests using these matchings in (2).

Then, by the similar replacing arc operation in Proposition 3.1, we have
−→
la3(K∗n) ≤ 2(m+1)+ 2m

3 +1 =

2d 2n
3 e − 1. �

Proposition 3.3.
−→
la3(K∗n) ≤ 2d2n

3 e − 1 when n ≡ 5 (mod 12).

Proof. Let n = 12t + 5, m = n−1
2 , t ≥ 0.

When t = 0, let V(K∗5) = {x0, x1, x2, x3, x4}. Then we can easily find 7 arc-disjoint linear 3-
diforests to partition the arcs of K∗5: {x1x2x0x4}, {x0x3x1, x4x2}, {x0x1, x4x3x2}, {x2x1x4x0}, {x1x3x0, x2x4},
{x1x0, x2x3x4}, {x0x2, x4x1}.

Now we assume that t ≥ 1. In K∗n , we have
(1) 2(m + 1) pairwise arc-disjoint linear 3-diforests;
(2) m

2 −1 pairwise arc-disjoint perfect matchings
−→
Md = {xiyi+d(mod m)|i = 0, 1, ...,m−1}, d = 0, 2, ...m2 −1;

(3) m
2 −1 pairwise arc-disjoint perfect matchings

←−
Md = {yi+d(mod m)xi|i = 0, 1, ...,m−1}, d = 0, 2, ...m2 −1;

(4)
−→
M m

2
= {xiyi+ m

2 (mod m)|i=0,1,...,m
2 −1} and

←−
M m

2
= {yi+ m

2 (mod m)xi|i = 0, 1, ..., m
2 − 1}.

By Lemma 2.5, we can construct 2
3 (m− 8) = 2m−16

3 linear 3-diforests by the matchings in (2) and (3)

except the matchings
−→
M0,
←−
M0,
−→
M m

2 −2,
←−
M m

2 −2,
−→
M m

2 −1,
←−
M m

2 −1.

When t is even and t ≥ 2,
−→
M0,
←−
M m

2 −2,
−→
M m

2 −1 can form two linear 3-diforests as

{x6t+1+i(mod 6t+2)y3t−1+i(mod 6t+2)xiyi|i = 0, 2, 4, ..., 6t}

and {x6t+1+i(mod 6t+2)y3t−1+i(mod 6t+2)xiyi|i = 1, 3, 5, ..., 6t + 1}.

Similarly,
←−
M0,
−→
M m

2 −2,
←−
M m

2 −1 can form another two arc-disjoint linear 3-diforests.

When t is odd,
←−
M0,
−→
M m

2 −1,
←−
M m

2 −2 can form two linear 3-diforests as

{yixiy3t+ix6t+3+i|i = 0, 2, 4, ..., 6t}

and {yixiy3t+ix6t+3+i|i = 1, 3, 5, ..., 6t + 1}.

Similarly,
−→
M0,
←−
M m

2 −1,
−→
M m

2 −2 can form another two arc-disjoint linear 3-diforests.

AIMS Mathematics Volume 7, Issue 3, 4137–4152.
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In addition, we apply the replacing arc operation for the arcs of the matching
−→
M m

2
in some linear

3-diforests of (1) and obtain a new matching
←−
M
′

m
2

= {yixi+ m
2 (mod m)|i = 0, 1, ..., m

2 − 1}. The arcs of
←−
M
′

m
2

and
←−
M m

2
also can form one linear 3-diforest.

Accordingly,
−→
la3(K∗n) ≤ 2(m + 1) + 2m−16

3 + 4 + 1 = 2d 2n
3 e − 1. �

Proposition 3.4.
−→
la3(K∗n) ≤ 2d2n

3 e − 1 when n ≡ 7 (mod 12).

Proof. Let n = 12t + 7, m = n−1
2 , t ≥ 0.

When t = 0, let V(K∗7) = {x0, x1, x2, x3, x4, x5, x6}. We can find 9 arc-disjoint linear 3-diforests to
partition the arcs of K∗7: {x4x1x0, x3x2x5x6}, {x5x0x3x1, x6x4x2}, {x0x6x1x2, x4x3x5}, {x0x1x4, x6x5x2x3},
{x1x3x0x5, x2x4x6}, {x2x1x6x0, x3x4x5}, {x3x6x2x0, x1x5x4}, {x0x4, x5x1, x2x6x3}, {x4x0x2, x5x3}.

In K∗n , we have
(1) 2m pairwise arc-disjoint linear 3-diforests;
(2) m−3

2 pairwise arc-disjoint perfect matchings
−→
Md = {xiyi+d(mod m)|i = 0, 1, ...,m − 1},d = 0, 1, 2, ...m−5

2 ;

(3) m−3
2 pairwise arc-disjoint perfect matchings

←−
Md = {yi+d(mod m)xi|i = 0, 1, ...,m − 1},d = 0, 1, 2, ...m−5

2 ;

(4)
−→
M m−3

2
= {xiyi+d(mod m)|i = 0, 1, ...,m − 1},

←−
M m−1

2
= {yi+d(mod m)xi|i = 0, 1, ...,m − 1}, and

←−
M m−3

2
=

{yi+d(mod m)xi|i = 0, 1, ...,m − 1},
−→
M m−1

2
= {xiyi+d(mod m)|i = 0, 1, ...,m − 1}.

Similarly to the proof of Proposition 3.7 in [12], we can construct 2m + 2
3 (m − 3) arc-disjoint linear

3-diforests using the linear 3-diforests in (1) and the matchings in (2) and (3).
Next, we apply the replacing arc operation for the arcs of

←−
M m−1

2
in some linear 3-diforests of (1)

and obtain a new matching
−→
M m+1

2
. Also, we obtain

←−
M m+3

2
by replacing the arcs of

−→
M m−3

2
in some linear

3-diforests of (1).
Now there are only four matchings left:

←−
M m−3

2
,
−→
M m−1

2
,
−→
M m+1

2
,
←−
M m+3

2
. In the following, we prove that

these four matchings can form three arc-disjoint linear 3-diforests. For convenience, we denote these
four matchings by

←−
M3t,

−→
M3t+1,

−→
M3t+2,

←−
M3t+3.

We partition
−→
M3t+1 into three pairwise arc-disjoint matchings

−→
W0 = {x4t+3yt+1},

−→
W1 =

{xiyi+3t+1(mod 6t+3)|i = 0, 2, 4, ..., 4t + 2, 4t + 5, 4t + 7, ..., 6t + 1} and
−→
W2 = {xiyi+3t+1(mod 6t+3)|i =

1, 3, 5, ..., 4t + 1, 4t + 4, 4t + 6, ..., 6t + 2}. Also, we partition
←−
M3t+3 into two arc-disjoint matchings

←−
W
′

1 = {yi+3t+3(mod 6t+3)xi|i = 0, 2, 4, ..., 4t + 2, 4t + 5, 4t + 7, ..., 6t + 1} and
←−
W
′

2 = {yi+3t+3(mod 6t+3)xi|i =

1, 3, 5, ..., 4t + 1, 4t + 3, 4t + 4, 4t + 6, ..., 6t + 2}. Then the arcs in
←−
M3t ∪

−→
W2,
−→
M3t+2 ∪

−→
W
′

1,
−→
W1 ∪

←−
W
′

2
can form three linear 3-diforests, which are denoted by L1, L2 and L3 respectively. We move the arc
yt+1x4t+4 of L1 into L3, add

−→
W0 into L1 and finally obtain three arc-disjoint linear 3-diforests by using

←−
M3t,

−→
M3t+1,

−→
M3t+2,

←−
M3t+3.

Accordingly,
−→
la3(K∗n) ≤ 2m + 2m−6

3 + 3 = 2d 2n
3 e − 1. �

Proposition 3.5.
−→
la3(K∗n) ≤ 2d2n

3 e − 1 when n ≡ 10 (mod 12).

Proof. Let n = 12t + 10, m = n
2 = 6t + 5, t ≥ 0. In K∗n , we have

(1) 2m pairwise arc-disjoint linear 3-diforests;

AIMS Mathematics Volume 7, Issue 3, 4137–4152.
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(2) m−1
2 pairwise arc-disjoint matchings

−→
Md = {xiyi+d(mod m)|i = 0, 1, ...,m − 1}, d = 1, 2, ...m−1

2 ;

(3) m−1
2 pairwise arc-disjoint matchings

←−
Md = {yi+d(mod m)xi|i = 0, 1, ...,m − 1}, d = 1, 2, ...m−1

2 .

We assume that t is even. We partition the matchings in (2) and (3) into two groups M1 =

{
−→
M1,
←−
M2,
−→
M3, ...,

−→
M3t+1,

←−
M3t+2} andM2 = {

←−
M1,
−→
M2,
←−
M3, ...,

←−
M3t+1,

−→
M3t+2}. Then we apply the replacing

arc operation for the arcs of the matchings ofM2 in some linear 3-diforests of (1) and obtain some new
matchings which are put in a new groupM3 = {

−→
M6t+4,

←−
M6t+3,

−→
M6t+2, ...,

−→
M3t+4,

←−
M3t+3}. Now the arcs not

covered by linear 3-diforests are either in the matchings ofM1 or in the matchings ofM3.
We claim that

−→
M1,
←−
M2,
←−
M6t+3,

−→
M6t+4 can form three pairwise arc-disjoint 3-diforests. First, we

partition
−→
M1 into two arc-disjoint matchings

−→
W1 = {xiyi+1|i = 0, 2, 4, ..., 6t + 4} and

−→
W2 = {xiyi+1|i =

1, 3, 5, ..., 6t+3}; we partition
←−
M6t+3 into two arc-disjoint matchings

←−
W
′

1 = {yi+6t+3xi|i = 0, 2, 4, ..., 6t+2}

and
←−
W
′

2 = {yi+6t+3xi ∪ y6t+2x6t+4|i = 1, 3, 5, ..., 6t + 3}. Then the arcs in
−→
W2 ∪

←−
M2,
←−
W
′

1 ∪
−→
M6t+4,

−→
W1 ∪

←−
W
′

2
can form three linear 3-diforests L1, L2 and L respectively, where L = {xiyi+1xi+3 ∪ x6t+2y6t+3 ∪ y6t+4x1 ∪

y6t+2x6t+4y0|i = 0, 2, 4, ..., 6t}. Thus, we have proved our claim and it is easy to observe that yi(i ∈
{2, 4, ..., 6t}) are not incident to any arcs in L.

Now we only need to construct linear 3-diforests to cover the remain matchings:
−→
M3,
←−
M4,...,

−→
M3t+1,

←−
M3t+2 and

←−
M3t+3,

−→
M3t+4,...,

←−
M6t+1,

−→
M6t+2. Lemma 2.6 states that we can take away one arc from

each
←−
M4+6i,

−→
M7+6i,

−→
M3t+4+6i,

←−
M3t+7+6i (i = 0, 1, ..., t

2 − 1) when t is even and the remaining arcs can form
4t linear 3-diforests. And those arcs that we took away are adjacent to some yi(i ∈ {2, 4, ..., 6t}), so they
can be moved into L to form a new linear 3-diforest.

Then we show how we select those arcs {e j, j = 0, 1, ..., 2t − 1} of each
←−
M4+6i,

−→
M7+6i,

−→
M3t+4+6i,

←−
M3t+7+6i (i = 0, 1, ..., t

2 − 1) when t is even.
Case 1.1. t , 10k + 2, 10k + 6 and 10k, k ≥ 0.

Let ei=yt+6+10ixt+2+4i ∈
←−
M4+6i, e t

2 +i=xt+3+4iyt+10+10i ∈
−→
M7+6i,

et+i=x3t+3+4iy2+10i ∈
−→
M3t+4+6i, e 3t

2 +i=y6+10ix3t+4+4i ∈
←−
M3t+7+6i, for all i ∈ {0, 1, 2, ..., t

2 − 1}.
Case 1.2. t = 10k + 2, k ≥ 0.

When k ≥ 1, let ei=yt+4+10ixt+4i ∈
←−
M4+6i, e t

2 +i=xt+1+4iyt+8+10i ∈
−→
M7+6i,

et+i=x3t+9+4iy8+10i ∈
−→
M3t+4+6i, e 3t

2 +i=y12+10ix3t+10+4i ∈
←−
M3t+7+6i, for all i ∈ {0, 1, 2, ..., t

2 − 1}.

When k = 0, let e0 = y8x4 ∈
←−
M4, e1 = x5y12 ∈

−→
M7, e2 = x9y2 ∈

−→
M10, e3 = y6x10 ∈

←−
M13.

Case 1.3. t = 10k, 10k + 6, k ≥ 0.
When t = 0,

−→
M1,
←−
M2,
−→
M3,
←−
M4 can form three arc-disjoint linear 3-diforests.

When t , 0, let ei=yt+4+10ixt+4i ∈
←−
M4+6i, e t

2 +i=xt+1+4iyt+8+10i ∈
−→
M7+6i,

et+i=x3t+3+4iy2+10i ∈
−→
M3t+4+6i, e 3t

2 +i=y6+10ix3t+4+4i ∈
←−
M3t+7+6i, for all i ∈ {0, 1, 2, ..., t

2 − 1}.
Now we assume that t is odd and partition the matchings in (2) and (3) into two groups M1 =

{
−→
M1,
←−
M2,
−→
M3, ...,

←−
M3t+1,

−→
M3t+2} andM2 = {

←−
M1,
−→
M2,
←−
M3, ...,

−→
M3t+1,

←−
M3t+2}. Similarly to the proof above,

we need to select one arc from each
←−
M4+6i,

−→
M7+6i,

←−
M3t+4+6i,

−→
M3t+7+6i, i ∈ {0, 1, 2, ..., t−1

2 − 1}.
Case 2.1. t , 10k + 1, 10k + 3 and 10k + 7, k ≥ 0.

Let ei = yt+5+10ixt+1+4i ∈
←−
M4+6i, e t−1

2 +i = xt+2+4iyt+9+10i ∈
−→
M7+6i,

et−1+i = y2+10ix3t+3+4i ∈
←−
M3t+4+6i, e 3(t−1)

2 +i = x3t+4+4iy6+10i ∈
−→
M3t+7+6i, for all i ∈ {0, 1, ..., t−1

2 − 1}.
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e2t−2 = y6tx3t−1 ∈
←−
M3t+1, e2t−1 = y6t−2x6t+2 ∈

←−
M6t+1.

Case 2.2. t = 10k + 3, 10k + 7, k ≥ 0.
Let ei = yt+1+10ixt−3+4i ∈

←−
M4+6i, e t−1

2 +i = xt−2+4iyt+5+10i ∈
−→
M7+6i,

et−1+i = y6+10ix3t+7+4i ∈
←−
M3t+4+6i, e 3(t−1)

2 +i = x3t+8+4iy10+10i ∈
−→
M3t+7+6i, for all i ∈ {0, 1, ..., t−1

2 − 1}.

e2t−2 = y6tx3t−1 ∈
←−
M3t+1, e2t−1 = y6t−2x6t+2 ∈

←−
M6t+1.

Case 2.3. t = 10k + 1, k ≥ 0.
When k ≥ 1, let ei = yt+1+10ixt−3+4i ∈

←−
M4+6i, e t−1

2 +i = xt−2+4iyt+5+10i ∈
−→
M7+6i,

et−1+i = y4+10ix3t+5+4i ∈
←−
M3t+4+6i, e 3(t−1)

2 +i = x3t+6+4iy8+10i ∈
−→
M3t+7+6i, for all i ∈ {0, 1, ..., t−1

2 − 1}.

e2t−2 = y6tx3t−1 ∈
←−
M3t+1, e2t−1 = y6t−2x6t+2 ∈

←−
M6t+1.

When k = 0, let e0 = y4x0 ∈
←−
M4 and e1 = y2x6 ∈

←−
M7.

We have finished all the cases discussion and the arcs {ei, i = 0, 1, ..., 2t − 1} are what we need.
Accordingly,

−→
la3(K∗n) ≤ 2(6t + 5) + 4t + 3 = 2d 2n

3 e − 1. �

Now we conclude the following result for the linear 3-arboricity of K∗n , which verifies
Conjecture 2.1.

Theorem 3.1.

−→
la3(K∗n) =



2
⌈
2n − 2

3

⌉
when n ≡ 4, 8, 11 (mod12),

2
⌈
2n
3

⌉
when n ≡ 1, 3, 6, 9 (mod12),

2
⌈
2n − 2

3

⌉
− 1 when n ≡ 0 (mod12),

2
⌈
2n
3

⌉
− 1 when n ≡ 2, 5, 7, 10 (mod12).

Proof. By Lemmas 2.3, 2.4 and Theorem 2.1,
⌈

n(n−1)
b 3n

4 c

⌉
≤
−→
la3(K∗n) ≤ 2la3(Kn). In addition, with the

above five propositions, we have the result. �

4. Linear 2-arboricity of symmetric complete digraphs

In this section, we study the linear 2-arboricity of K∗n . We first introduce K3-factorization F =

{F1, F2, ..., Ft} of Kn(n ≥ 3): (1) Fi is a spanning subgraph of Kn and each component of Fi is
isomorphic to K3; (2) each edge is in only one Fi (1 ≤ i ≤ t). And we call each Fi is a K3-factor
of Kn. Similarly, we can define the

−→
K3-factorization of K∗n(n ≥ 3) and each component of the

−→
K3-factor

is a directed K3.

Lemma 4.1. Let C∗n be a symmetric directed cycle with n vertices. If n ≡ 0 (mod 6), then
−→
la2(C∗n) = 3.

Proof. Let n = 6t and C∗n = (x0, x1, ..., x6t−1, x0). The arcs of C∗n can be decomposed into three linear
2-diforests: {xixi+1xi+2|i = 0, 6, ..., 6t − 6} ∪ {xi+2xi+1xi|i = 3, 9, ..., 6t − 3}, {xixi+1xi+2|i = 2, 8, ..., 6t −
4} ∪ {xi+2(mod 6t)xi+1(mod 6t)xi|i = 5, 11, ..., 6t − 1} and {xixi+1xi+2|i = 4, 10, ..., 6t − 2} ∪ {xi+2xi+1xi|i =

1, 7, ..., 6t − 5}. �
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Proposition 4.1.
−→
la2(K∗n) ≤ 2


n(n − 1)

2b
2n
3
c

 − 1 when n ≡ 0 (mod 12).

Proof. Let n = 12t.
When t = 1, we know that K∗12 = K∗6,6 ∪ 2K∗6 . Then

−→
la2(K∗12) ≤

−→
la2(K∗6,6) +

−→
la2(K∗6). Since K∗6,6 can

be decomposed into three arc-disjoint symmetric directed cycles and each such cycle can form three
linear 2-forests by Lemma 4.1,

−→
la2(K∗6,6) ≤ 9. Let V(K∗6) = {x0, x1, x2, y0, y1, y2}. We decompose K∗6 =

2K∗3 ∪M∗
0 ∪M∗

1 ∪M∗
2, where M∗

d = {xiyi+d(mod 3), yi+d(mod 3)xi|i = 0, 1, 2} (d = 0, 1, 2). M∗
0 ∪M∗

1 can form
a symmetric directed cycle and thus form three linear 2-diforests by Lemma 4.1. 2K∗3 ∪ M∗

2 contains a
symmetric directed cycle x1x0x2y1y2y0x1 and still can form three linear 2-diforests by Lemma 4.1. In
addition, x1x2, x0y2, y0y1 and x2x1, y2x0, y1y0 form two linear 2-diforests. Thus,

−→
la2(K∗12) ≤

−→
la2(K∗6,6) +

−→
la2(K∗6) ≤ 9 + 3 + 3 + 2 = 17.

Now we assume t ≥ 2. Baker and Wilson [5] proved that if F is a perfect matching of Kn, Kn − F
can be decomposed into 6t − 1 K3-factors if and only if n = 0(mod 12) and t ≥ 2. So for two
perfect matchings F and F

′

in K∗n , which are with opposite directions, we obtain 6t − 1
−→
K3-factors

F1, F2, ..., F6t−1 and 6t − 1
−→
K3-factors F

′

1, F
′

2, ..., F
′

6t−1 with opposite directions in K∗n − {F, F
′

}.

For the union of any two
−→
K3-factors, the directed triangles with a common vertex have two

possibilities as in Figure 2. It is easy to check that both circumstances can be decomposed into three
linear 2-diforests. F1, F2, ..., F6t−1 and F

′

1, F
′

2, ..., F
′

6t−1 can be partitioned into pairs of directed triangles
with a common vertex, and then can form 3(6t − 1) linear 2-diforests. In addition, F and F

′

also form
two linear 2-diforests in a trivial way.

So
−→
la2(K∗n) ≤ 3(6t − 1) + 2 = 2


n(n − 1)

2b
2n
3
c

 − 1. �

ba c

d

e

ba c

d

e

Figure 2. Two directed triangles with a common vertex.

Proposition 4.2.
−→
la2(K∗n) ≤ 2


n(n − 1)

2b
2n
3
c

 − 1 when n ≡ 3 (mod 12) and n > 3.

Proof. Let n = 12t + 3. Ray-Chauduri and Wilson [18] proved that Kn can be decomposed into 6t + 1
K3 factors if and only if n = 3 (mod 6). Thus, as in Proposition 4.1, we obtain 6t + 1

−→
K3-factors

F1, F2, ..., F6t+1 and 6t + 1
−→
K3-factors F

′

1, F
′

2, ..., F
′

6t+1 with opposite directions in K∗n . F1, F3, ..., F6t+1

and F
′

1, F
′

2, ..., F
′

6t+1 can form 3(6t + 1) linear 2-diforests.
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Accordingly,
−→
la2(K∗n) ≤ 3(6t + 1) = 2


n(n − 1)

2b
2n
3
c

 − 1. �

Proposition 4.3.
−→
la2(K∗n) ≤ 2


n(n − 1)

2b
2n
3
c

 − 1 when n ≡ 2, 10 (mod 12).

Proof. Since Alspach el al. [4] proved that Kn has a Hamiltonian path decomposition when n is even,
K∗n can be decomposed into n

2 arc-disjoint symmetric directed n-paths. Each symmetric directed path
can be decomposed into three linear 2-forests. Thus, K∗n can form 3n

2 arc-disjoint linear 2-diforests.

Accordingly,
−→
la2(K∗n) ≤ 3n

2 = 2


n(n − 1)

2b
2n
3
c

 − 1. �

Proposition 4.4.
−→
la2(K∗n) ≤ 2


n(n − 1)

2b
2n
3
c

 − 1 when n ≡ 7 (mod 12).

Proof. Let n = 12t + 7 and {v0, v1, v2, ..., v12t+6} be the vertex set of K∗n . Since Alspach el al. [4] proved
that Kn has a Hamiltonian cycle decomposition when n is odd, K∗n can be decomposed into 6t + 3
symmetric directed Hamiltonian cycles

C∗i = v12t+6viv12t+5+i(mod 12t+6)vi+1v12t+4+i(mod 12t+6)...v6t+2+iv6t+3+iv12t+6 (0 ≤ i ≤ 6t + 2).
Next, we construct symmetric directed paths from C∗i by removing two kinds of symmetric arcs

v3t+1+iv9t+4+i(mod 12t+6), v9t+4+i(mod 12t+6)v3t+1+i (0 ≤ i ≤ 6t + 2). Those removed arcs form two matchings
and thus form two arc-disjoint linear 2-diforests. In addition, each symmetric directed paths can form
three arc-disjoint linear 2-diforests.

Accordingly,
−→
la2(K∗n) ≤ 3(6t + 3) + 2 = 2


n(n − 1)

2b
2n
3
c

 − 1. �

Proposition 4.5.
−→
la2(K∗n) ≤ 2


n(n − 1)

2b
2n
3
c

 − 1 when n ≡ 5 (mod 12).

Proof. Let n = 12t + 5. K∗n can be decomposed into 6t + 2 symmetric directed Hamiltonian cycles
C∗i = v12t+4viv12t+3+i(mod 12t+4)vi+1v12t+2+i(mod 12t+4)...v6t+1+iv6t+2+iv12t+4 (0 ≤ i ≤ 6t + 1).
We obtain symmetric directed paths from C∗i by removing the symmetric arcs v3t+1+iv9t+3+i(mod 12t+4),

v9t+3+i(mod 12t+4)v3t+1+i (0 ≤ i ≤ 6t + 1). Next, for each such path, we relabel these vertices as
x0, x1, x2, ..., x12t+4 along the direction: x0 on behalf of the vertex v9t+3+i(mod 12t+4); x12t+4 on behalf of
the vertex v3t+1+i. Then for each such path, we decompose it into three linear 2-diforests F1, F2, F3

as follows:
F1 = {xixi+1xi+2|i = 0, 6, ..., 12t} ∪ {xi+5xi+4xi+3|i = 0, 6, ..., 12t − 6} ∪ {x12t+3x12t+4};
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F2 = {xi+3xi+2xi+1|i = 0, 6, ..., 12t} ∪ {xi+4xi+5xi+6|i = 0, 6, ..., 12t − 6};
F3 = {xi+2xi+3xi+4|i = 0, 6, ..., 12t} ∪ {xi+7xi+6xi+5|i = 0, 6, ..., 12t − 6} ∪ {x1x0}.
And we move the arcs x12t+4x0 = v3t+1+iv9t+3+i(mod 12t+4) into F2 to form a new linear 2-diforest. In

addition, the arcs {v9t+3+i(mod 12t+4)v3t+1+i|i = 0, 1, ..., 6t +1} form a matching and then also a trivial linear
2-diforest.

Accordingly,
−→
la2(K∗n) ≤ 3(6t + 2) + 1 = 2


n(n − 1)

2b
2n
3
c

 − 1. �

Now we have the following result for the linear 2-arboricity of K∗n , which verifies Conjecture 2.1.

Theorem 4.1. For K∗n(n > 3),

−→
la2(K∗n) =



2


n(n − 1)

2b
2n
3
c

 when n ≡ 1, 4, 6, 8, 9, 11 (mod12),

2


n(n − 1)

2b
2n
3
c

 − 1 when n ≡ 0, 2, 3, 5, 7, 10 (mod12).

Proof. By Lemmas 2.3, 2.4 and Theorem 2.3, we know that
⌈

n(n−1)
b 2n

3 c

⌉
≤
−→
la2(K∗n) ≤ 2la2(Kn). With all the

propositions in this section, we have the result. �

5. Linear 3-arboricity of symmetric complete bipartite digraphs

Let K∗n,n be a symmetric complete bipartite digraph with partite sets X = {x0, x1, ..., xn} and Y =

{y0, y1, ..., yn}. We decompose the arc set of K∗n,n into 2n pairwise disjoint perfect matchings
−→
Md =

{xiyi+d(mod n)|i = 0, 1, ..., n − 1} and
←−
Md = {yi+d(mod n)xi|i = 0, 1, ..., n − 1} (d = 0, 1, 2, ...n − 1).

Proposition 5.1.
−→
la3(K∗n,n) ≤ 2d 2n

3 e − 1 when n ≡ 2 (mod 6).

Proof. Let n = 6t + 2. We partition the 2n pairwise arc-disjoint perfect matchings of K∗n,n into the
following three groups:
(1)
−→
M2,
←−
M3,
−→
M4,...,

−→
M6t,

←−
M6t+1;

(2)
←−
M0,
−→
M1,
←−
M2,...,

←−
M6t−2,

−→
M6t−1;

(3)
−→
M0,
←−
M1,
←−
M6t,

−→
M6t+1.

By Lemma 2.5, the perfect matchings in (1) and (2) can form 8t arc-disjoint linear 3-diforests.
In addition, we claim that the remaining matchings

−→
M0,
←−
M1,
←−
M6t,

−→
M6t+1 can form three arc-disjoint

linear 3-diforests. We partition
←−
M1 into two matchings W1 = {yi+1xi|i = 0, 2, ..., 6t} and W2 = {yi+1xi|i =

1, 3, ..., 6t + 1}. And we partition
−→
M6t+1 into two matchings W

′

1 = {xiy6t+1+i(mod 6t+2)|i = 0, 2, ..., 6t} and

W
′

2 = {xiy6t+1+i(mod 6t+2)|i = 1, 3, ..., 6t + 1}. Then W1 ∪W
′

2, W2 ∪
−→
M0, W

′

1 ∪
←−
M6t form three arc-disjoint

linear 3-diforests.
Accordingly,

−→
la3(K∗n,n) ≤ 8t + 3 = 2d 2n

3 e − 1. �
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Proposition 5.2.
−→
la3(K∗n,n) ≤ 2d 2n+2

3 e − 1 when n ≡ 3 (mod 6).

Proof. Let n = 6t + 3. We partition the 2n pairwise arc-disjoint perfect matchings of K∗n,n into the
following two groups:
(1)
−→
M0,
←−
M1,
−→
M2,...,

←−
M6t+1,

−→
M6t+2;

(2)
←−
M0,
−→
M1,
←−
M2,...,

−→
M6t+1,

←−
M6t+2.

Let ei = y4ix6t+2−2i ∈
←−
M1+6i(i = 0, 1, ..., t),

et+1+i = x6t+1−2iy4i+2 ∈
−→
M4+6i(i = 0, 1, ..., t − 1),

e2t+1+i = x4t+1−2iy4t+2+4i(mod 6t+3) ∈
−→
M1+6i(i = 0, 1, ..., t),

e3t+2+i = y4t+4+4i(mod 6t+3)x4t−2i ∈
←−
M4+6i(i = 0, 1, ..., t − 1).

Then we remove the arcs {e j| j = 0, 1, ..., 4t + 1} from those perfect matchings. By Lemma 2.6, the
perfect matchings of (1) and (2) other than the removed arcs can form 8t + 4 arc-disjoint linear 3-
diforests. In addition, the removed arcs can form another one linear 3-diforests.

Accordingly,
−→
la3(K∗n,n) ≤ 8t + 5 = 2d 2n+2

3 e − 1. �

We have the following result for the linear 3-arboricity of K∗n,n, which verifies Conjecture 2.1.

Theorem 5.1.

−→
la3(K∗n,n) =



2
⌈
2n
3

⌉
when n ≡ 0, 1, 4, 5 (mod 6),

2
⌈
2n
3

⌉
− 1 when n ≡ 2 (mod 6),

2
⌈
2n + 2

3

⌉
− 1 when n ≡ 3 (mod 6).

Proof. By Lemmas 2.3, 2.4 and Theorem 2.2,
⌈

2n2

b 6n
4 c

⌉
≤
−→
la3(K∗n,n) ≤ 2la3(Kn,n). With all the propositions

in this section, we have the result. �

6. Linear 2-arboricity of symmetric complete bipartite digraphs

Proposition 6.1.
−→
la2(K∗n,n) ≤ 2


n2

b
4n
3
c

 − 1 when n ≡ 3 (mod 12).

Proof. Let n = 12t + 3. We partition the 2n pairwise arc-disjoint perfect matchings of K∗n,n into two
groups:
(1)
−→
Mi,
←−
Mi,
−→
Mi+1,

←−
Mi+1, i = 0, 2, 4, ..., 12t;

(2)
←−
M12t+2,

−→
M12t+2.

For i ∈ {0, 2, 4, ..., 12t},
−→
Mi,
←−
Mi,
−→
Mi+1,

←−
Mi+1 can form a symmetric directed cycle and such cycle

can be decomposed into three linear 2-diforests by Lemma 4.1. In addition,
←−
M12t+2 and

−→
M12t+2 form

another two linear 2-diforests.

Accordingly,
−→
la2(K∗n,n) ≤ 3(6t + 1) + 2 = 2


n2

b
4n
3
c

 − 1. �
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Proposition 6.2.
−→
la2(K∗n,n) ≤ 2


n2

b
4n
3
c

 − 1 when n ≡ 4 (mod 12).

Proof. Let n = 12t + 4. K∗n,n can be decomposed into 2n pairwise arc-disjoint perfect matchings

and every four matchings
−→
Mi,
←−
Mi,
−→
Mi+1,

←−
Mi+1 (i = 0, 2, ..., 12t + 2) form a symmetric directed cycle

C∗j( j = i
2 ).

We claim that if C is a symmetric directed cycle with V(C) = {x0, x1, ..., x24t+7} and e is an arc of C,
then C − {e} can form three arc-disjoint linear 2-diforests. Without loss of generality, we assume that
e = x0x24t+7. The three linear 2-diforests F1, F2, F3 are F1 = {xixi+1xi+2|i = 0, 6, ..., 24t} ∪ {xi+2xi+1xi|i =

3, 9, ..., 24t + 3} ∪ {x24t+6x24t+7}, F2 = {xi+2xi+1xi|i = 1, 7, ..., 24t + 1} ∪ {xixi+1xi+2|i = 4, 10, ..., 24t + 4} ∪
{x24t+7x0} and F3 = {xixi+1xi+2|i = 2, 8, ..., 24t + 2} ∪ {xi+2xi+1xi|i = 5, 11, ..., 24t + 5} ∪ {x1x0}.

Let e j = xn−1− jy j ∈ C∗j ( j = 0, 1, ...6t + 1). By the claim above, C∗j − {e j} can form three linear
2-diforests. Furthermore, {e j|i = 0, 1, ..., 6t + 1} is a matching and thus form one linear 2-diforest.

Accordingly,
−→
la2(K∗n,n) ≤ 3(6t + 2) + 1 = 2


n2

b
4n
3
c

 − 1. �

Proposition 6.3.
−→
la2(K∗n,n) ≤ 2


n2

b
4n
3
c

 − 1 when n ≡ 5 (mod 12).

Proof. Let n = 12t + 5. We partition the 2n pairwise disjoint perfect matchings of K∗n,n into two groups:

(1)
−→
Mi,
←−
Mi,
−→
Mi+1,

←−
Mi+1, (i = 0, 2, ..., 12t + 2);

(2)
←−
M12t+4,

−→
M12t+4.

Every four matchings
−→
Mi,
←−
Mi,
−→
Mi+1,

←−
Mi+1 (i ∈ {0, 2, ..., 12t + 2}) form a symmetric directed cycle

C∗j( j = i
2 ).

We claim that if C is a symmetric directed cycle with V(C) = {x0, x1, ..., x24t+9}, and e = x0x24t+9,
e
′

= x3x2 are two arcs of C, then C − {e, e
′

} can form three arc-disjoint linear 2-diforests, which are
F1 = {xixi+1xi+2|i = 3, 9, ..., 24t + 3} ∪ {xi+2xi+1xi|i = 6, 12, ..., 24t + 6} ∪ {x24t+9x0x1}, F2 = {xixi+1xi+2|i =

1, 7, ..., 24t+7}∪{xi+2xi+1xi|i = 4, 10, ..., 24t+4} and F3 = {xixi+1xi+2|i = 5, 11, ..., 24t+5}∪{xi+2xi+1xi|i =

8, 14, ..., 24t + 2, t ≥ 1} ∪ {x2x1x0} ∪ {x4x3} ∪ {x24t+9x24t+8}.
Let e j = x2 jy4 j(mod n), e

′

j = y4 j+2(mod n)x2 j+1 ∈ C∗j , ( j = 0, 1, ...6t+1). From our claim above C∗j−{e j, e
′

j}

form three linear 2-diforests. Furthermore, {e j| j = 0, 1, ..., 6t + 1} ∪ {e
′

j| j = 0, 1, ..., 6t + 1} is a matching
and thus form a linear 2-diforest.

In addition, the remaining matchings
←−
M12t+4,

−→
M12t+4 also form two linear 2-diforests.

Accordingly,
−→
la2(K∗n,n) ≤ 3(6t + 2) + 1 + 2 = 2


n2

b
4n
3
c

 − 1. �

Proposition 6.4.
−→
la2(K∗n,n) ≤ 2


n2

b
4n
3
c

 − 1 when n ≡ 6 (mod 12).
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Proof. Let n = 12t+6. For i ∈ {0, 2, ..., 12t+4}, the matchings
−→
Mi,
←−
Mi,
−→
Mi+1,

←−
Mi+1 can form a symmetric

directed cycle and such cycle can decomposed into three linear 2-diforests by Lemma 4.1.

Accordingly,
−→
la2(K∗n,n) ≤ 3(6t + 3) = 2


n2

b
4n
3
c

 − 1. �

Proposition 6.5.
−→
la2(K∗n,n) ≤ 2


n2

b
4n
3
c

 − 1 when n ≡ 8 (mod 12).

Proof. Let n = 12t + 8. For i ∈ {0, 2, ..., 12t + 6}, every four matchings
−→
Mi,
←−
Mi,
−→
Mi+1,

←−
Mi+1 form a

symmetric directed cycle C∗j( j = i
2 ).

We claim that if C is a symmetric directed cycle with V(C) = {x0, x1, ..., x24t+15}, and e = x0x24t+15,
e
′

= x3x2 are two arcs of C, then C − {e, e
′

} can form three arc-disjoint linear 2-diforests, which are
F1 = {xixi+1xi+2|i = 3, 9, ..., 24t+9}∪{xi+2xi+1xi|i = 6, 12, ..., 24t+12}∪{x24t+15x0x1}, F2 = {xixi+1xi+2|i =

1, 7, ..., 24t + 13} ∪ {xi+2xi+1xi|i = 4, 10, ..., 24t + 10} and F3 = {xixi+1xi+2|i = 5, 11, ..., 24t + 11} ∪
{xi+2xi+1xi|i = 8, 14, ..., 24t + 8} ∪ {x2x1x0} ∪ {x4x3} ∪ {x24t+15x24t+14}. And if we choose e = x24t+15x0,
e
′

= x2x3, we have the same claim.
Let e j = x2 jy4 j(mod n), e

′

j = y4 j+2(mod n)x2 j+1 ∈ C∗j , ( j = 0, 1, ..., 3t + 1); e j = y4 j(mod n)x2 j, e
′

j =

x2 j+1y4 j+2(mod n) ∈ C∗j , j = 3t + 2, 3t + 3, ..., 6t + 3. By the claim above, C∗j − {e j, e
′

j} form three linear
2-diforests. Furthermore, the arcs {e j| j = 0, 1, ..., 6t +3}∪ {e

′

j| j = 0, 1, ..., 6t +3} form a linear 2-diforest
{x2 jy4 jx6t+4+2 j| j = 0, 1, ..., 3t + 1} ∪ {x6t+5+2 jy4 j+2x2 j+1| j = 0, 1, ..., 3t + 1} .

Accordingly,
−→
la2(K∗n,n) ≤ 3(6t + 4) + 1 = 2


n2

b
4n
3
c

 − 1. �

We have the following result for the linear 2-arboricity of K∗n,n, which verifies Conjecture 2.1.

Theorem 6.1.

−→
la2(K∗n,n) =



2


n2

b
4n
3
c

 − 1 when n ≡ 3, 4, 5, 6, 8 (mod 12),

2


n2

b
4n
3
c

 when n ≡ 0, 1, 2, 9, 10, 11 (mod 12).

Proof. By Lemmas 2.3, 2.4 and Theorem 2.4,
⌈

2n2

b 4n
3 c

⌉
≤
−→
la2(K∗n,n) ≤ 2la2(Kn,n). With all Propositions in

this section, we have the result. �
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Note that, in Theorem 6.1, we missed one case when n ≡ 7 (mod 12). We believe that

−→
la2(K∗n,n) = 2


n2

b
4n
3
c

 − 1 in this case, but we can only prove that
−→
la2(K∗n,n) ≤ 2


n2

b
4n
3
c

 by Lemma 2.4

and Theorem 2.4.

7. Conclusions

In this paper, we determine the linear 3-arboricity for symmetric complete digraphs and symmetric
complete bipartite digraphs, and also determine the linear 2-arboricity for symmetric complete
digraphs. All these results verify Conjecture 2.1.
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