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Abstract: By virtue of the left-sided fractional integral operators having exponential kernels, proposed
by Ahmad et al. in [J. Comput. Appl. Math. 353:120-129, 2019], we create the left-sided fractional
Hermite—Hadamard type inequalities for convex mappings. Moreover, to study certain fractional
trapezoid and midpoint type inequalities via the differentiable convex mappings, two fractional integral
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the presented inequalities that occur with the variation of the parameter p.
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1. Introduction

The convexity of functions is an impressive tool, which is applicable, particularly in several
distinct areas of engineering mathematics and applied analysis. Recently, a large number of
researchers, including mathematicians, engineers and scientists, have devoted themselves to studying
the inequalities and properties in association with convexity in certain diverse directions. For
example, Du et al. [10] proposed some k-fractional extensions of the trapezium inequalities in
connection with the generalized semi-(m, h)-preinvexity, Kunt et al. [21] presented the improved
version of fractional Hermite—Hadamard type inequalities for the convex functions, and Mehrez et
al. [28] gave the new Hermite—Hadamard type integral inequalities with regard to the convex
functions and their related applications. For more outcomes with regard to diverse types of the
convexity please see [25, 34] and the references cited in them. And the Hermite—Hadamard’s
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inequalities, one of the most distinguished mathematical inequalities considering convex mappings,
are also applied diffusely in plenty of other aspects of computational mathematics. Let us recognize
them as below.

Suppose that ¢ : A € R — R is a convex mapping defined on the interval A of real numbers,
and 6,¢ € A along with 6 # £. The following inequalities, to be named as the Hermite—Hadamard’s
inequalities, are frequently put into use in engineering mathematics and applied analysis.

0+§ (e>+¢(§>
o= = qub( o (L.1)

The classical integral inequalities, which have given rise to considerable attention from plenty of
authors, provided error bounds for the mean value of a continuous convex mapping ¢ : [0,&] — R.
There have been a large amount of studies, regarding the Hermite—Hadamard type inequalities, on the
basis of other various types of convex mappings, such as convex mappings [15], s-convex mappings
[24], generalized m-convex mappings [12], (@, m)-convex mappings [37], exponential trigonometric
convex mappings [17], h-convex mappings [8], h-preinvex mappings [27], r-preinvex mappings [13],
N-quasiconvex mappings [1] and so on. For more findings with regard to this topical subject, the
interested readers may refer to [11, 18,23,26] and the references therein.

In [9], the authors acquired trapezoid type inequalities, in association with the Hadamard’s
inequality, for the first-order differentiable convex mappings. They took advantage of the following
lemma to deduce their findings.

Lemma 1. Assume that ¢ : A° — R is a differentiable mapping defined on the interval A°, in which
A° is the interior of A, 6,& € A° along with 6 < &. If the mapping ¢’ € L'([6,£)), then the following
identity holds true

$(6) + (&)
2

To create the midpoint type integral inequalities, Kirmaci demonstrated the following lemma in [20].

1
_ f Hwydw = =2 f (1 = 20)¢ (w0 + (1 — W)E)dw. (1.2)
N 2 Jo

Lemma 2. Under the same prerequisites of Lemma 1, we obtain the following identity

6%0 f: ¢<w)dw—¢(9;—§)
1

12
=(£-0) [f wd' (wh + (1 — w)é)dw + (w=1)¢ (Wb + (1 — w)é)dw|.
0

1/2

(1.3)

The next conception, regarding the affine mapping and the related theorem, are of importance to our
study.

Definition 1. [23] A mapping ¢ defined on the interval A has a support at wy € A, if there exists an
affine mapping M(w) = ¢(wpy) + m(w — wy), satisfying that M(w) < ¢(w) for all w € A. The graph of
support mapping M is described as a line of support for the mapping ¢ at wy.
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Theorem 1. [23] The mapping ¢ : (6,&) — R is convex if and only if there is at minimum one line of
support for ¢ at each wq € (0,£).

Next, let us retrospect certain fractional integrals.

Definition 2. Assume that the mapping ¢ € LY([6,&)]). The left-sided and right-sided
Riemann—Liouville integrals ¢ and J gff,(]ﬁ of order u > 0 are defined as

1

o fe (5 = Wy ¢lw)do,

(iqb(s) =

and

£00) = f (= /'~ glw)dw,

with 0 < s < & vrespectively, in which TI'(-) is the gamma function, defined by
T(w) = [~ e“w'dw, Re(u) > 0.

The next two Hermite—-Hadamard type integral inequalities, by means of the left-sided and right-
sided Riemann-Liouville fractional integrals, respectively, were presented by Kunt et al.

Theorem 2. [23] Assume that the mapping ¢ : [60,£] — R is convex for 6,¢ € R together with
0 < & If the mapping ¢ € L'([6,€]), and u > 0, then the following inequalities for the left-sided
Riemann—Liouville fractional integrals hold true

¢(,u(9+§)£ C(u+1)
u+1 (& —OH

Theorem 3. [22] With the same assumptions mentioned in Theorem 2, we have the following
inequalities for the right-sided Riemann—Liouville fractional integrals

(9+u§) Tt 0(0) + o (&)

2]
"5 < ’“‘—”ﬂff ©. (1.4)

£90) < (1.5)

p+l) -0y p+l

In 2019, Ahmad et al. considered the fractional integral operators having exponential kernels as
below.

Definition 3. [3] Assume that the mapping ¢ € L'([6,£]). The left-side and right-side fractional
integrals I'y.¢ and I'._¢ of order u € (0, 1) having exponential kernels are respectively defined by

1 7 1-
T ¢(s) = — f exp (— ’u(s - a))) d(w)dw, s> 6,
HJo H
and
" 1 " 1—pu
If,zp(s) =— exp|——(w — 9) |p(w)dw, s<Eé&.
' M Js M
If we consider to take ¢ — 1, then we obtain that

,lgrllj () = f S P(w)dw, ;111—I>r11I v 9(s) = f P(w)dw.
6 ’ s

AIMS Mathematics Volume 7, Issue 3, 4094-4114.



4097

Moreover, in view of

| |-
lim — exp (— His- a))) = §(s — w),
H=0 H

we observe that
lim I}, ¢(s) = ¢(s),  Lim I% ¢(s) = ¢(s).
u—0 u—0 °

In the same paper, the following Hermite—Hadamard type inequalities, by virtue of fractional
integrals having exponential kernels, were proved by Ahmad et al.

Theorem 4. [3] Suppose that the mapping ¢ : [6,&] — R is positive together with 0 < 0 < & and
the mapping ¢ € L'([6,&]). If ¢ is a convex mapping defined on the interval [0, &], then we obtain the
following inequalities for fractional integrals

L PO+ ¢(§)’

> (1.6)

6(55) < 3t [ 0@ + 12 000)

where .
k=—He_g).
u

Fractional calculus, as a forceful tool, has proven to be an vital cornerstone in engineering
mathematics and applied sciences. This academic realm has absorbed quite a few mathematicians to
take into account this issue. In consequence, certain extraordinary integral inequalities, in light of a
fruitful interaction of various approaches of fractional calculus, were brought into force by mass
learned men, containing Chen [7] and Mohammed [29] in the research of the Hermite—Hadamard
inequalities, Baleanu et al. [4] in the trapezoidal type inequalities involving generalized fractional
integrals, and Set et al. [35] in the Simpson type integral inequalities for Riemann—Liouville fractional
integral operators, Wang et al. [38] in the Ostrowski type inequalities via Hadamard fractional integral
operators, Chen and Katugampola [6] in the Fejér—Hermite—-Hadamard type inequalities by means of
Katugampola fractional integral operators, Butt et al. [S] in the generalized Hermite—-Hadamard type
inequalities via ABK-fractional integrals, Agarwal [2] provided some inequalities in association with
Hadamard-type k-fractional integral operators, Set et al. [36] and Khan et al. [19] gave certain
Hermite—Hadamard type inequalities with regard to the generalized fractional integral operators and
the conformable fractional integral operators, respectively. With regard to further momentous findings
in connection with the fractional integral operators, we recommend the minded readers to [14,16,31]
and the bibliographies quoted in them.

Enlightened by the outcomes mentioned above, in particular those created in [22,23], and as much
as we know, there are few articles with regard to the Hermite—Hadamard type inequalities by using
only the left-sided fractional integrals or the right-sided fractional integrals. The current paper is
designed to investigate the left-sided fractional integral inequalities for convex mappings, which are
relevant to the distinguished Hermite-Hadamard’s inequalities. To achieve this objective, exploiting
only the left-sided fractional integral operators having exponential kernels, we prove the left-sided
fractional Hermite—-Hadamard type inequalities for convex mappings. Moreover, we construct two
integral identities. Under the assistance of these identities, we acquire the fractional trapezoid and
midpoint type integral inequalities for the differentiable convex mappings.
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2. The left-sided fractional Hermite—Hadamard’s inequalities

By virtue of the left-sided fractional integrals having exponential kernels, we derive the following
Hermite—Hadamard’s inequalities for convex mappings.

Theorem 5. Suppose that the mapping ¢ : [6,£] — R is convex for 6, & € R with 6 < &. If the mapping
¢ € L'([6,£)), then we deduce the following inequalities for the left-sided fractional integrals having
exponential kernels

1 —e™—ke™ K+e*—1 l-pu 1 — e — ke« e —1
¢( K=" 6+ (=) §) S T Led@) < (—K(l s )¢(9) + (—K(l 5 )¢(§),
2.1

where k = lﬂ;”(f —60)and u € (0,1).

Proof. On account of the convexity of ¢ defined on the interval [6, £], and employing Theorem 1.1,
there exists at minimum one line of support

l-e™*—ke™ N Kk+e™ -1
k(1 —e™) k(1 —e™)

l-e*—ke™ k+e* -1
w_

M(w) = ¢( k(1 —e™) * k(1 —e™)

§)+m

f)] < ¢(w), (2.2)

K K —K

forall w € [0, &) and m € [¢/_ (l—e‘ ke 4 K+€_K—]§) A (l—e‘ ke g | Kte )]

k(1—e%) k(1—e%) k(1—e%) k(1—e%)
If we put w = 16 + (1 — 1)¢, then we deduce that

M(160 + (1 —1)¢é)
:¢(1 —e‘K—Ke‘K0+ K+e™*—1
k(1 —e™) k(1 —e™)
< o1 + (1 - 1)é),
forall r € (0, 1).

Multiplying both sides of (2.3) with ¢™ and integrating the resulting inequality with regard to 7 over
[0, 1], we find that

1—e™*—ke™ N k+e* -1
k(1 —e™) k(1 —e™)

f) +m |10+ (1 —1)é - ( f)] (2.3)

1
f e "M(10 + (1 — nHé)de
0
b l—e™—ke™ k+e* -1
:fo ¢ {¢( Kl—en OF K(l—e_K)é:)

l—e™*—ke™ k+e* -1
),‘Q-I-(l—t)é:_( K(l—e_K) 0+K(1—€_K)§)]}dt

! 1l—e™—ke™ Kk+e -1
= ‘K’ 0 dt
ﬁ ¢ ¢( k(1 —e™) * K(l—e‘K)g)

Lo l—e*—ke™ k+e*-1
+mfoe t9+(1—t)§_( K(l_e_K) 0+K(1_e—K)§):|dt

fl 7 1—e"‘—1<e‘”0+/<+e"‘—1§ dr
= e
0 k(1 —e™) k(1 —e™)

1—e™—ke™ kK+e* -1 1—e™®—ke™ Kk+e*—-1
6+ &— 0 &

+m

tm 2 2 2 + 2

K K K K
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! ] —e ™ —ke™ K+e* -1
= Kt 0 dr
fo ¢ ¢( k(1 —e™) M K(l—e‘K)f)

B 1(1 ) (l —e " —ke™* . k+e*—1 )
=) i cd—en®
1

< f (18 + (1 — DEYdr (2.4)

0
= 4%0 f e_lﬂl(f_‘”%(w)dw

-
—Er g,

On the other hand, in accordance with the convexity of ¢ defined on the interval [0, £], we know that

¢(10 + (1 = 1)é) < 1¢(0) + (1 = NH(&), (2.5)

forall t € [0, 1].
Multiplying both sides of (2.5) with ™ and integrating the resulting inequality regarding ¢ on the
interval [0, 1], we have that

1
1_”1'“ ¢(¢é) = foe_K’¢(t9+(1—t)§)dt

1 1
< ¢(0) f te™dt + ¢(&) f (1 -pe™dt (2.6)
0
1 — —K __ —K _ 1
= $(60) (%) + (&) (—)
K K

Making use of (2.4) and (2.6), we deduce the required inequalities. This finishes the proof.

Remark 1. If one considers to require u — 1, within Theorem 5, then one has the extraordinary
Hermite—Hadamard’s inequalities (1.1).

3. Identities

We need to prove two fractional integral identities as below, which are relevant to Lemma 1 and
Lemma 2.

Lemma 3. Assume that the mapping ¢ : A° — R is a differentiable mapping defined on A°, 0,& € A°
together with 6 < &. If the mapping ¢’ € L'([0, €]), then we deduce the following trapezoid type identity
for the left-sided fractional integrals having exponential kernels

1 —e™—«ke™ K+e* -1 l—p _,
[—K o O O - T T0©

Ve ®— 1 + ke ™ G.D
=(¢- 9)f ————¢'(t0+ (1 - né)ds,
o k(l—e™)

where k = %“(g —60)and u € (0,1).
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Proof. Integrating by parts for the right side of (3.1), we know that

Lk _ .
(€ - )f ¢ (10 + (1 — né)de
= (£ - )[ ¢ 1 o0 + (1 — 1 + K fl e dep(t0 + (1 — t)f)]
- k(1 =e™*)(0-¢) k(I —e*)(O0-%) Jo
I-e™ K —x
:;aj;;ﬂam—¢@ﬂ——7——;3k mm—¢@yu1—nﬂ;aa]
_l—e‘K—Ke"‘ K+e ™ "
- K(l _ e_K) ¢(9) K( ) I9+¢(§:),

which is the identity asserted in Lemma 3. This ends the proof.
Remark 2. If one considers to require 4 — 1, within Lemma 3, then one achieves Lemma 1.

Lemma 4. With the same assumptions mentioned in Lemma 3, we derive the following midpoint type
identity for the left-sided fractional integrals having exponential kernels

K

M Ig+¢(§)—¢(1_e_ — ke ™~ K+e"<—1§)

k(1 —e™) * k(1 —e™)

1—e"K—ke™K

=@—9{j”“”)i_ei¢we+a—ﬂam (32)
0 — e

1 —K __ ,—Kt
+f- . %‘l"(f“(l—t)f)dt],

- 1
k(1-e7K)

where k = lﬂ;”(f —60)and u € (0,1).

Proof. Integrating by parts for the right side of (3.2), we find that

(= P I ekt
-0 [fﬂ e 11 _Z_K ¢ (0 + (1 — HéE)de + I —el — :_K ¢ 0+ (1 - t)f)dt]

k(1-e7K)

1 N b
= (- 9){ — f & (16 + (1 - Ng)dr — f g0+ (1 - D)
0 o 1—e

—K 1
¢ f #(t0+ (1 — t)g)dz}
1 —e % Jimekowe

k(1-e7K)
1

—E-0
« ){u—eﬂue—a ¢

1
—U_(Qw_@k*am—a®+a—mﬁ¢@ﬂ

e« 1l —e ™ —ke™ K+e ™ -1
T d-en0-0 [¢(9)_¢( (—en 0+K(1—€_K)§)]}
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79

l—e* ¢(1—e"‘—1<e‘“ +K+e"‘—1§) 1—u
l—e*)(0-& k(1 —e™*) k(1 —e™) (I -e*)(@-8 Lo
l—e*—ke™ +/<+e"(—1§)

k(1 —e™) k(1 —e™)

= (&-6
& )[(

_1_ruu _
- —L 1500 ¢(

which is the identity asserted in Lemma 4. The proof is completed.

Remark 3. If one considers to require 4 — 1, within Lemma 4, then one acquires Lemma 2.
4. The left-sided fractional trapezoid and midpoint type inequalities

In this section, in accordance with Lemma 3 and Lemma 4, we will present the left-sided fractional
trapezoid, as well as midpoint type inequalities having exponential kernels.

Theorem 6. Assume that ¢ : A° — R is a differentiable mapping defined on A°, 6,& € A° along with
0 < &. If the mapping |¢'| is convex on [0, €], then we have the following trapezoid type inequality for
the left-sided fractional integrals including exponential kernels

—K

l—e™ —ke kK+e -1
'—_Kd’(@) + (&) - £ IZ+¢(§)‘
k(1 —e™) k(1 —e™) @1
<= 0|81+ M) F O] + (B + A F @ |
where
3 1 1 1 1,
A= k(1 —e™) |k (to " K)e ] 2%
1 i 1 i 1
Az = —K(l — e_K) h(l’o + ; - 1)6 o ; + 1|+ Z(t(z) - =1,
1 1) - 2
=—||-tg—=|e™+ |1+ -] |+ — (1 -
A; (=) ( fo K)e +( +K)e +2 ( to)’
and
1 —Kto 1 —K 1(1 2 1
Ay = P (t0+——l)e € +K(2t0 t0+2),

forty = =4In =2 k= ZE(E - ) with p € (0, 1).

Proof. Taking advantage of Lemma 3 and the convexity of the mapping |¢’| defined on [6, £], we
find that

e K+€
S 7 A
c(d—en O a )

|e/<_ oKt
<(¢- @f =
<€ - 9)f|
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=@—@wwyf%illgﬁﬂm+W@yf%fiiig;a—nm

1_ _ 1_ K _ Kt
Hmwf m+w@d —i—§raﬁw}

Direct computation yields that

f vt ol ke +Ke_Kttdt I S L PR ) D B
= R —le - —17,
0 k(1 —e™) k(1 —e™) |k 0T K 2k °
0 e — 1 + ke ™ 1 1 1 1 1
— (A -0dt= ———|[tg+ == 1]e™ = = + 1|+ —12 — —1,
j(: k(1 —e™) ( ) K(l—e‘K)[(O K )e K ] w0k

f ekt D e 4 (14 L) e
—_— — — — — — e
w Kk(l—e™) k(1 —e™) o K K

b (1-4),

and

1 1
(to +- - l)e_’“o ——e

K

1 _ _
l—e*—ke™ 1 1/1 1
—_— (1 -tdt = —— +— (=2 -to+=].
L - YT o K@°° J

Thus, the proof is completed.

Remark 4. If one attempts to require 4 — 1, within Theorem 6, then one gains Theorem 2.2, testified
by Dragomir and Agarwal in the published article [9].

Theorem 7. Suppose that the mapping ¢ : A° — R is differentiable defined on the interval A°,
0,& € N° together with 6 < &. If the mapping |¢'|" is convex on [0,&] for T > 1, then we obtain the
following trapezoid type inequality for the left-sided fractional integrals containing exponential kernels

1—e™—ke K+e
—¢(9) —¢(§) f e p(&)
(- (- : ! w2

<(¢- 9)31_%((& +A3) 1¢" (O + (s + Ag) 19" (O )

where S = %, A, i=1,2,3,4, k and ty are in line with Theorem 6 with u € (0, 1).

Proof. Taking advantage of Lemma 3, the Power-mean integral inequality and the convexity of the

AIMS Mathematics Volume 7, Issue 3, 4094-4114.
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mapping |¢’'|” defined on [0, £] in order, we know that

—K —K

K+e " —

1l—e*— 1
‘ ¢ = ¢(9)+—¢(§>—

k(1 - K(l ©) ex Lo
<@~ 6) f -
(10 + (1 - t)§)|Tdt]T ]
1 4.3)

|e’<—1+/<e"<’ |e"—1+/< K
<€~ 9)[(f k(1 —e™) ) f k(1 -

e X —1+ke™ L —e*—ke ™ \°
<(&- 9)[(‘[(; e dt+‘[0 e dt)

x(|¢'<9>r f L e e f PR
0

L 1i0©)

1¢)|dt

k(1 —e™) k(1 —e™)
1 1=e*— ke ™ 1= e :
O R f - r)dr) ]

Let us evaluate the integrals involved in (4.3). We observe that

f’O e X —1+«ke™ dt+fl l—e_K—Ke_tht:210€_K—2€_Kt°—2l0+2.
0 k(1 —e™) v k(l—e™) k(1 —e™)

Thus, this finishes the proof.

Remark 5. If one attempts to require ¢ — 1, within Theorem 7, then one obtains Theorem 1, proposed
by Pearce in [30].

Theorem 8. Postulating that ¢ : A° — R is a differentiable mapping considered on the interval A°,
0,& € A° along with 0 < & Fort > 1 withr ' +77! = 1, if the mapping |¢'|" is convex on [0, &], then we
gain the following trapezoid type inequality for the left-sided fractional integrals including exponential
kernels

—K

I —e™ —«ke Kk+e -1 1-
Wfﬁ(@) + ﬁfﬁ(f) - — 9+¢(§)‘

&6 (As + Ag)t (|¢(9)| + 14" )

S —_—
k(1 —e™) 2

4.4)

where

As =2 e = Dty +

(1

ANe=1—-1y— 6_”((1 —ly—r+ }”e_KtO+K),

b

T
r

for ty and k are in line with Theorem 6 with u € (0, 1).
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Proof. Utilizing Lemma 3, the Holder’s integral inequality and the convexity of the mapping |¢'|"
defined on [6, £], it follows that

—K

1—e™®—ke kK+e* -1
'md’(@) + ﬁ‘ﬁ(f) -

< _1 —Kt
—K<1_ek>f| + ke

L 1)

¢w+aﬁmw

< K __ —kt _
_Kﬂ—eﬂ(f‘k 1 + ke dd(j‘mae+a 0@|m) (4.5)
< —— f(eK—1+Ke'“) dt+f(1—e — ke ™) dt)
K(l —e K)
« 1¢"(O)I" + 18" I\
2 .
By virtue of the inequality (A — B)Y < A’ — B” for A > B > 0 with y > 1, we deduce that
) fo
f (e —1+ke™) dr < f [(e_K + ke ™) — l]dt
0 0[0
< f [2r—1(e—rk + Kre—rkt) _ l]df (46)
0
r—1
— (2r—le—r/< _ l)to + (2Kr) (1 _ e—tho)’

in which we take advantage of the inequality (A + B)” < 27" /(A" + B’) with A > 0,8 > 0andy > 1
for the second inequality above.
Analogously, we deduce that

1 .
f (1-e™®—ke™) dt < f
0] o -

1—(e*+ Ke_'“)r]dt

1.
N
1.
).
n -

=1—-ty—e"™

1= [e*(1 + ke~ )]kt “n

1—5%1+w5mﬂkr

(1 —tg — r + re”*),

in which we make use of the inequality (1 + w)* > 1 + dw, if w > -1 with A <0 or A > 1.
Employing (4.6) and (4.7) in (4.5), one obtains the required inequality. This fulfills the proof.

Theorem 9. Suppose that the mapping ¢ : A° — R is differentiable on the interval A°, 6,& € A° along
with 8 < &. If the mapping |¢'| is convex on [0, &), then the following midpoint type inequality for the
left-sided fractional integrals involving exponential kernels holds true

AIMS Mathematics
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—e K —ke™ K+e* -1 )‘

—u )
‘1—e"<19+¢(§) ¢( k(1 —e™) o+ k(1 —e"()g
<(€- 9)[(A7 + Ag) 18" (O)] + (As + Aio) 14 (£ ],

(4.8)

where
1 [ 1 1 1
Ay = ——— | =kt + (1 + —)e™" — —|,
7 K(l—e‘K)>2K] (1 K)e K]
1 [ 1 1 1
Ag= ———|—=k2+(1 -t — =)e™ +kt; + — — 1
8 /<(1—e"<)>2K1 ( ! K)e K ]’
1 [ 1 1 1
Ay=———|(t1+ =)™ == (1-F)k+—+ 1|
’ K(l—e‘K)_(] K)e (2( I)K K )e ],
and
1 1 —Kt 1 2 1 —K
Am:m[(l—tl—;)e 1+(§(1—t1)/<+;+/<t1—/<)e ],
fort, = lzfl_:ff;,/(:ly;”(f—@)alongwith/le(o,l).

Proof. On account of Lemma 4 and the convexity of |¢’| defined on the interval [, £], it follows that

l—p _, B 1 —e™—«ke™ K+e™ -1
'1—e—KIG*¢(§) ¢( K —e") 9+K(1—€_K)§)‘

—Kt —Kt

111_ 1
s@—mLf _5uww+a—nﬂm+j\1_ /(10 + (1 - )] dt

(1 — ndr

<(¢- 9) |¢" (9)|f tdt+|¢ (f)lf

Hmwf W+W®U‘ 1—m4

Direct computation yields that

Nl —eX 1 1 1 1
f ¢ (l—t)dt:— - Ktl-l-(l f—=)e ™ +kty+——1],
g 1—e* k(1 —e™) K K

1 —«t —K

e —e 1 1 1

———tdt=——— (1 + )™ |z (1 = 1])k + — + 1 |e ™|,
j; I —-e* k(1 —e™) (t K)e (2( I)K K )e ]

I —«kt —K
e —e 1 I, _, 1 1 x
‘[l:—_K(l—t)dt:K(Te_K)[(l—t]—;)e tl+(§(1—t%)K+;+Kt1—K)e :|

and

l1-e
Thus, this ends the proof.
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Remark 6. If one attempts to require u — 1, within Theorem 9, then one obtains Theorem 2.2 provided
by Kirmaci in [20].

Theorem 10. Postulating that the mapping ¢ : A° — R is differentiable defined on the interval A°,
0,8 € N° with 6 < & If the mapping |¢'|* is convex on [0, &] for T > 1, then we obtain the following
midpoint type inequality for the left-sided fractional integrals containing exponential kernels

—H o [l-ef ke kte* -1
I9+¢('§:) ¢( K(l—e_K) 9+K(1—€_K)§)'

4.9)
<(¢- 9)771_1[(& 18O + As [¢" ()™ + (Ao [¢"(O) + Ao |6 (E)I)" ]

where

and A;,i =17,8,9, 10, k are in line with Theorem 9 with u € (0, 1).

Proof. Taking advantage of Lemma 4, the Power-mean integral inequality and the convexity of the
mapping |¢’|" on the interval [6, £] in order, we state that

1 —e‘K—Ke‘K9+ K+e ™ — 1§
k(1 —e™) k(1 —e™)

l-p
e - of

71 1 - e*Kt 1 e*Kl‘ —e ¥
< (E-0) [ f 0+ (1= 8)ldr + f —— a0+ (1 =08 dr]
0 —e n —e€

il 1 - —Kt 1‘% 1 1 - —Kt %
< (g—@)[(f l_e_Kdt (f 1_€_K ¢ (16 + (1 —r)g)rdr)
0 e 0 e

T I —«t _ -« T
f e+ (- ol dr) |

1
] et 1-1
<(¢- 0)[(f o= dt (|¢ or f tdt + o' f
o 1-
1 e—Kt _ €_K 1_% 1
+ (f T dt) " (&) f tdt+ AN f (1 - t)dt) ]
n
Direct computation yields that
ul 1= 1 e K — oK e er o — 1Ke_—k
dr = dt = —¢ ,
fo l—e* f,l 1 —e k(1 — e*)

in which ¢, is the same as in Theorem 9. Thus, this ends the proof.

(1 - t)dt)
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Remark 7. If one attempts to require ¢ — 1, within Theorem 10, then one derives the following
midpoint type inequality

|§ 9f¢()d w-9( 5)

(|¢ O +21¢' I ) N (2|¢'(9)IT+ |<f>’(§)|7)i
3 3

(4.10)

[ —

- 8

Theorem 11. Assume that ¢ : A° — R is a differentiable mapping considered on the interval A°,
0,& € A° along with 6 < &. If the mapping |¢'|" is convex on [6,&) for T > 1 with r™' + 77! = 1,
then we obtain the following midpoint type inequality for the left-sided fractional integrals including
exponential kernels

1_ 1_—/(_ —K —K_l
e - o[ e |

Kd—en " x=em

.y T
<0l ( o+ 21 e ) @.11)
1 1 - T t% - 2t1 +1 ’ T ’
+,3,( et <§>|) Ik

where
1 —rKkt
{=th+—("" -1,
rK
1
ﬁ — _(e—rktl _ e—rK) + e—rk(l_l _ 1)’
K

and «, t| are in line with Theorem 9 with u € (0, 1).

Proof. Taking advantage of Lemma 4, the Holder’s integral inequality and the convexity of the
mapping |¢’[" on the interval [0, £] , we know that

Il—p _, B l —e™ —ke™ Kk+e -1
‘1— = 1096) ¢( k(1 —e™) " k(1 —e™) )‘

< 1 e f (1 —e™)|¢' 0+ (1 - t)§)|dt +f (e — ™)

1 —eX f (1-e™ ’dt ( )
( (e - ’dt) (

< 1__e_K fo (1-eydr) (
y f< a) (L0 iy
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(10 + (1 - r)§)| dt) ]

@f)
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Making use of the inequality (A — B)” < A’ — B” for A > B > 0 with y > 1, we observe that

51 1]
f (1-eydt < f (1 —e™)dt
0 0 { (4.13)
=0 +—(e" -1).
rK
Similarly,
1 1
f (e—Kt _ €_K)rdl < f (e—rkt _ e‘”‘)dt
n 1t1 (4.14)
— _(e—rktl _ e—rK) + e—rK(tl _ 1)
rK

Employing (4.13) and (4.14) in (4.12). This completes the proof.
5. Examples

In order to check the correctness of the outcomes investigated in this study, we enumerate three
examples in this section.

Example 1. Let the mapping ¢ : (0,00) — R be defined by ¢p(w) = —Inw. If we attempt to take 6 = 1,
E=2,u= %, then all postulations mentioned in Theorem 5 are met.
Evidently, k = 1#;“(5 — 0) = 1. The left side of (2.1) is

p 1—e"‘—/<e"‘0+/<+e"‘—1§ _ 1—26‘1+ e} 2
k(1 — ) k1—e*)>) "\ 1=el 1=e¢!

1 —2e7! -1
= —In ¢ + ¢ X 2
1 —e! 1 —e!

~ —0.4587.

The middle-hand term of (2.1) is

_ 2
'Lf IZ+¢(§) = — f ¢ 2(~lnw)dw ~ —0.4416.
1 — e 1 — e 1 1
The right side of (2.1) is
1 — e *“—ke™ K+e*—1 1 -2t e!
— O+ ——— = —Inl —In2
e YO+ o 9O = T D+ ()
~ —0.4034.

It is clear that —0.4587 < —0.4416 < —0.4034, which confirms the correctness of the result described
in Theorem 5.

Furthermore, by plotting graph of the inequalities asserted in Theorem 5 for ¢(w) = —In(w), w €
[0, €], corresponding to 6 = 1, & = 2, we examine the correctness of the result.

—K

X2|< . ¢(2) < 1—_<I)(1)+ iy 1<15(2)- (5.1

p 1—€_K—K€_K+K+8_K—1 1 —pu —e ke ™ e —
k(1 —e™) k(1 —e™) T l—ex ! k(1 —e™) k(1 —e™)
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Three functions given by the inequalities (5.1) with respect to the left, middle and right sides are plotted
in Figure 1 against u € [0.2,0.9]. The graph of the functions shows the correctness of the inequalities.

-0.35
04t
Middle
=
S
o 0451
=
T
>
c
o
S -05f
c
>
[
-0.55
06 . . . . . .
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Value p

Figure 1. For the case 8 = 1, £ = 2, the graphical representation for Example 1.

Example 2. For the mapping ¢ : [0,&] — R, given by ¢(w) = e®. It is straightforward to find that the
mapping |¢'| is convex. If we attempt to take 0 = 1, ¢ =2 and u = %, then all postulations mentioned in
Theorem 6 are met.

Evidently, k = 1”;”(5 — 0) = 1. The left side of (4.1) is

1 —e™—«ke™ K+e™ -1 1—pu
I Ky 1o
e YO e O - TS T
1 —2e! et 1 2
— -2-w) w
= 1—e‘1€+1—e—le _1—€_lﬁe e’dw
~ (0.3829.

The right side of (4.1) is

(?ﬂ*&+&MWWHM+MW@ﬂ
= [(Al +Az)e + (A, + A4)e2]

~ 1.2701,

where A;,i = 1,2,3,4 are in line with Theorem 6.
It is clear that 0.3829 < 1.2701, which confirms the correctness of the result described in Theorem 6.
Furthermore, by plotting graph of the inequalities asserted in Theorem 6 for p(w) = e*, w € [6,&],
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corresponding to 0 = 1, ¢ = 2, we examine the correctness of the desired inequalities.
I —e™—ke™ +/<+e"<—12 1
e e —
k(1 —e™) k(1 —e™) 1
< [(Ar + Ay)e + (Mg + Ag)e’].

“[(A; + Ag)e + (Ay + Ag)e?] < __:_‘ T

Three functions given by the inequalities (5.2) with regard to the left, middle and right sides are plotted
in Figure 2 that occur with the variation of the parameter u € [0.1,0.9]. The graph of the functions
shows the correctness of the required inequalities.

15 T T T T T
1 /- T right

D Middle

Function value ¢(u)
o
o w

=
o

1 \ Left
/
-1.5 ; ; ;

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Value

Figure 2. For the case 8 = 1, £ = 2, the graphical representation for Example 2.

Example 3. For the mapping ¢ : [0,&] — R, given by ¢p(w) = %e‘”. It is straightforward to know that
the mapping |¢'|" is convex. If we attempt to take 0 = 1,6 =2, 1 =30, r=7/(t—1) = % and u = 0.85,
then all postulations mentioned in Theorem 8 are met.
Evidently, k = 1#;“((;-‘ -0) = % The left side of (4.4) is

K —K

loeroke o kret=1 o 1-p o
’ k(1 —e™) 90+ k(1 —e™™) $&) 1_e,<Ie+¢(§)‘

‘1—e"<—l<e"‘ 1 +K+e‘K—1 1, 1-0.85
=" | _— = -_—

k(1 —e™) k(1 —e™) \2 1—e*
~ 0.1919.

3¢ 15902)

The right side of (4.4) is

_£-0
k(1 —e™)

¢ (O) + |¢'(§)|T)i
2

(%e)r + (%62)7)1

(As + Ag)7 (

(As + Aﬁ)i( :

k(1 —e™)
1.7397,

Q
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where As and Ag are the same in Theorem 8.
It is clear that 0.1919 < 1.7397, which confirms the correctness of the result asserted in Theorem 8.

Furthermore, by plotting graph of the inequalities asserted in Theorem 8 for ¢p(w) = %e‘“, w € [6,¢&]

corresponding to 0 = 1, ¢ =2, 1 =30andr = 7v/(r-1) = %, we examine the correctness of the

required result.

1
1 29 (%€)3O+(%62)30 »
— ————— (A5 + Ag)®

I —em st ( 2

l—e™*—ke™ (1 k+e*—=1(1, l—p _,
Pt . VL B ) 2 5.3
= T = e (26)+K(1—€_K) (26) Pt (53)
1

(%6)30 + (%62)30 ) 30
3 .

IA

m(As + Ag)% (

Three functions given by the inequalities (5.3) with respect to the left, middle and right sides are plotted
in Figure 3 against u € [0.8,0.9], which shows the correctness of the required inequalities.

Function value ¢(u)

0.8 0.82 0.84 0.86 0.88 0.9
Value p

Figure 3. For the case 8 = 1, £ = 2, the graphical representation for Example 3.

6. Conclusions

By using only the left-sided fractional integrals having exponential kernels, the study addresses
certain Hermite—Hadamard type inequalities. To achieve this objective, we construct two fractional
integral identities, which play a key role in proving our main inequalities. And several fractional
trapezoid and midpoint type integral inequalities involving the differentiable convex mappings are
presented here. The findings acquired in this work, in particular, extend and generalize previous
inequalities in the literature regarding the Hermite—Hadamard type inequalities. What we want to
emphasize here is that the fractional integral operators are widely utilized in applied mathematics,
see [32,33,39]. This significant field is worth further exploration.
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