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1. Introduction

The natural world is full of environmental perturbations almost everywhere, which play an
important role in the ecological system [1–5]. As May [6] said that the growth rates in ecological
systems should be stochastic due to the influences of random noises, so the solution would fluctuate
around some average values, not being a steady positive point. Therefore, it is more rational
by considering a stochastic environmental perturbation (white noise) to better investigate the real
population systems. In mathematical modelling, the white noise has been extensively introduced to
reveal the stochastic population dynamics, see e.g. [3–5,7,8] and references cited therein.

In real world, population systems may inevitably suffer some abrupt changes. It is well known that
the growth rates of some species are affected by seasonal factors, which are much different in summer
from those in winter. These phenomena can be described by a continuous-time Markovian process with
a finite state space, i.e. colorful noise in mathematical modelling. The colorful noise may take several
values and switch among different regimes of environment, which is memoryless, and the waiting time
for the next switching follows an exponential distribution. The effect of colorful noise on population
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dynamics has attracted many researchers [9–14]. For example, by using a Markovian switching process
to model the colorful noise in environment, Liu, He and Yu [14] proposed the following stochastic
system with harvesting and regime-switching:


dx1(t) = x1(t)

(
r1(α(t)) − h1 − a11x1(t) − a12

∫ 0

−τ1

x2(t + s)dµ1(s)
)
dt + σ1(α(t))x1(t)dB1(t),

dx2(t) = x2(t)
(
r2(α(t)) − h2 + a21

∫ 0

−τ2

x1(t + s)dµ2(s) − a22x2(t)
)
dt + σ2(α(t))x2(t)dB2(t),

(1.1)
where r1(·) > 0 is the growth rate of prey, r2(·) < 0 is the death rate of predator, aii > 0 is the intra-
specific competition rate, a12 > 0 is the capture rate and a21 > 0 is the conversion rate of food; hi

is the harvesting constant; B1(t) and B2(t) are standard independent Brownian motions defined on a
complete probability space (Ω,F , {Ft}t≥0, P), where {Ft}t≥0 is a filtration. It is right continuous and
F0 contains all P-null sets; σ2

i (·) is the intensity of stochastic noise, i = 1, 2. The regime of switching
α(t) is a Markovian chain in a finite state space S = {1, 2, . . . ,N}. The generator of α(t) is defined as
Γ = (γi j)N×N with

P{α(t+ M t = j|α(t) = i)} =

{
γi j M t + o(M t), i , j,
1 + γii M t + o(M t), i = j,

where M t > 0, γi j is the transition rate from the ith stage to the jth stage and γi j ≥ 0 if i , j while
γii = −

∑
i, j γi j, i, j ∈ S. It is often assumed that every sample of α(t) is a right continuous step function

and irreducible with a finite simple jumps in any finite subinterval of R+ = [0,∞). It obeys a unique
stationary distribution π = (π1, π2, . . . , πN) satisfying πΓ = 0 and

∑N
k=1 πk = 1, πk > 0, k ∈ S. The

switching mechanism of the hybrid system is referred to [9].

In the study of ecological dynamics, the current growth of populations is usually influenced by its
past history, that is, time delay is often inevitable in the natural ecosystems [15]. S-type distributed time
delay is such a distributed delay that the integral is Lebesgue-Stieltjes. Just as the authors [16] said,
“systems with discrete time delays and those with continuously distributed time delays do not contain
each other. However, systems with S-type distributed time delays contain both.” So it is interesting
to consider the impact of S-type distributed delay on the ecological dynamics. Models with S-type
distributed time delays have been studied by many authors [17, 18]. On the other hand, earthquake,
harvesting and epidemics often happen in natural world. These sudden environmental perturbations
are so strong and can change the population size in a very short time, which can not be described by
white noise [19, 20]. Many experiments show that, due to the influence of environmental disturbance,
the distribution of many species exhibits a scale-free characteristic, and hence the biologists introduce
a non-Gaussian Lévy jump to characterize it. Models with Lévy jump are studied by many researchers
and many nice results have been obtained [21–23].

Considering the effects of S-type time delays and Lévy jumps on system (1.1), we establish the
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following stochastic model

dx1(t) = x1(t−)
(
r1(α(t−)) − h1 − a11x1(t−) −

∫ 0

−τ11

x1(t + θ)dµ11(θ) − a12x2(t−)

−

∫ 0

−τ12

x2(t + θ)dµ12(θ)
)
dt + σ1(α(t−))x1(t−)dB1(t) +

∫
Z

γ1(u, α(t−))x1(t−)Ñ(dt, du),

dx2(t) = x2(t−)
(
r2(α(t−)) − h2 + a21x1(t−) +

∫ 0

−τ21

x1(t + θ)dµ21(θ) − a22x2(t−)

−

∫ 0

−τ22

x2(t + θ)dµ22(θ)
)
dt + σ2(α(t−))x2(t−)dB2(t) +

∫
Z

γ2(u, α(t−))x2(t−)Ñ(dt, du),

(1.2)
with initial value

x(θ) = (x1(θ), x2(θ))T = (φ1(θ), φ2(θ))T = φ(θ) ∈ C([−τ, 0]; R2
+), α(θ) = ς,

where xi(t−) stands for the left limit of xi(t);
∫ 0

−τi j
xi(t + θ)dµi j(θ) is Lebesgue-Stieltjes integral;

τi j > 0 is time delay; µi j(θ) is bounded, nondecreasing variation function defined on [−τ, 0] with

τ = maxi, j=1,2{τi j}, ς ∈ S, i, j = 1, 2; R2
+ = {x = (x1, x2) ∈ R2, xi > 0, i = 1, 2} with |x(t)| =

√∑2
i=1 x2

i ;

N is a Poisson counting measure, Ñ(dt, du) = N(dt, du) − λ(du) is the component of N, where λ is
the characteristic measure on a measurable subset Z ⊂ R+ = [0,∞) such that λ(Z) < ∞. The Markov
chain, Brownian motion and Lévy jumps are mutually independent.

Our main goal of this paper is as follows. First, since the study of dynamical behaviors of
predator-prey system is an important topic [7, 24], we establish some sufficient conditions assuring
the extinction, persistence in the mean for all species of system (1.2).

Second, in the study of long-term behaviors of species, the existence of a unique probability
measure plays an important role in stochastic models with Lévy jumps (see [25–27]). Hence, it is
very interesting to analyze the asymptotic stability in distribution of (1.2).

Third, in mathematical biology, it is valuable to keep the species persistent to maintain the biological
balance. Consequently, the optimal harvesting strategy of renewable resources becomes more and more
important [8, 27–29]. By ergodic method, we will study the optimal harvesting strategy of system (1.2).

The rest of this paper is organized as follows. Section 2 begins with some definitions, important
lemmas and notations. Section 3 is devoted to the extinction and persistence in the mean for species.
Section 4 and Section 5 focus on the asymptotic stability in distribution and the optimal harvesting
strategy of (1.2), respectively. Section 6 gives some numerical simulations to verify the main results.
Finally, Section 7 presents a brief discussion to conclude this paper.

2. Preliminaries

To begin with this section, we introduce some notations of the Itô’s integral for a stochastic
differential equation with Markovian switching and Lévy jumps [19, 23]. Let

dx(t) = f (x(t−), t−, α(t−))dt + g(x(t−), t−, α(t−))dB(t) +

∫
Z

h(x(t−), t−, α(t−), µ)Ñ(dt, dµ),
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where f and g : R2 × R+ × S → R2, h : R2 × R+ × S × Z → R2 are measurable functions. Let
V ∈ C2,1(R2 × R+ × S,R2). Define the operator L as follows:

LV(x, t, k) = Vt(x, t, k) + Vx(x, t, k) f (x, t, k) +
1
2

trace[gT (x, t, k)Vxx(x, t, k)g(x, t, k)]

+

∫
Z

{V(x + h(x, t, k, u), t, k) − V(x, t, k) − Vx(x, t, k)h(x, t, k, u)}λ(du) +

N∑
j=1

γk jV(x, t, j),

where Vt(x, t, k) =
∂V(x,t,k)

∂t ,Vx(x, t, k) = (∂V(x,t,k)
∂x1

, ∂V(x,t,k)
∂x2

),Vxx(x, t, k) = (∂
2V(x,t,k)
∂xi∂x j

)2×2, i, j = 1, 2. The
generalized Itô’s formula with jumps (see, for example[19, 23]) is defined as

dV(x, t, k) = LV(x, t, k)dt + Vx(x, t, k)g(x, t, k)dB(t) +

∫
Z

{V(x + h(x, t, k, u), t, k) − V(x, t, k)}Ñ(dt, du).

Now we give the definitions of extinction and persistence in the mean of each species, and an important
comparison theorem.

Definition 2.1 ( [27]). Let x(t) = (x1(t), x2(t))T ∈ R2
+ be a solution of system (1.2). Then,

(a) the population xi(t) is said to be extinct if lim
t→∞

xi(t) = 0, i = 1, 2;

(b) the population xi(t) is said to be persistent in the mean if lim
t→∞

1
t

∫ t

0
xi(s)ds = K a.s., where K is a

positive constant, i = 1, 2.

Lemma 2.1 ( [4]). Suppose that Z(t) ∈ C[Ω × [0,+∞),R+] and lim
t→∞

F(t)/t = 0, a.s.

(a) If there exist two positive constants T and λ0 such that, for all t > T,

ln Z(t) ≤ λt − λ0

∫ t

0
Z(s)ds + F(t), a.s.,

then  lim sup
t→∞

1
t

∫ t

0
Z(s)ds ≤ λ/λ0, a.s., i f λ ≥ 0,

lim
t→∞

Z(t) = 0, a.s., i f λ < 0.

(b) If there exist three positive constants T, λ0 and λ such that, for all t > T,

ln Z(t) ≥ λt − λ0

∫ t

0
Z(s)ds + F(t), a.s,

then

lim inf
t→∞

1
t

∫ t

0
Z(s)ds ≥ λ/λ0, a.s.

Further, for the need of our discussion, we give some technical assumptions.
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Assumption 1. For any α ∈ S and i = 1, 2, we assume γi(α, u) > −1 and∫
Z

{γi(α, u) − ln(1 + γi(α, u))}λ(du) ≤ K,

∫
Z

max{|γi(α, u)|2, [ln(1 + γi(α, u))]2}λ(du) ≤ K,

where K > 0 denotes a positive and finite constant unless otherwise stated, which may be different
in different places.

Assumption 2. For any p > 0, we assume∫
Z

{|1 + γi(α, u)|p − 1 − pγi(α, u)}λ(du) ≤ K(p).

Assumptions 1 and 2 imply that the intensity of Lévy noise cannot be too strong, otherwise, the solution
of system (1.2) may explode in some finite time [23]. About the existence of nontrivial positive
solutions of (1.2), we have the following lemma.

Lemma 2.2. Let Assumptions 1 and 2 hold. For any given initial value x(θ) ∈ C([−τ, 0]; R2
+), α(θ) = ς,

system (1.2) has a unique solution x(t) on t ∈ [−τ,∞), and the solution remains in R2
+ with probability

one. Moreover, for any p > 0, there is a K(p) > 0 such that lim supt→∞ E|x(t)|p ≤ K(p).

Proof. The proof of the existence of solutions is straightforward, one may refer to [14, 23]. As to
the proof of the boundedness of expectation, one can get it by using the generalized Itô’s formular with
jumps to function et ∑2

i=1 xp
i (t). The process is similar to reference [14] and is omitted.

For simplicity, we introduce some notations to end this section.

ξi(α(t)) = ri(α(t)) −
σ2

i (α(t))
2

−

∫
Z

[γi(u, α(t)) − ln(1 + γi(u, α(t)))]λ(du), ξi =

N∑
k=1

πkξi(k),

ηi(α(t)) = ξi(α(t)) − hi, ηi =

N∑
k=1

πkηi(k), Ai j = ai j +

∫ 0

−τi j

dµi j(θ), i, j = 1, 2,

∆ =

∣∣∣∣∣∣ A11 A12

−A21 A22

∣∣∣∣∣∣ , ∆1 =

∣∣∣∣∣∣ η1 A12

η2 A22

∣∣∣∣∣∣ , ∆2 =

∣∣∣∣∣∣ A11 η1

−A21 η2

∣∣∣∣∣∣ .
3. Extinction and persistence in the mean of species

In this section, we study the long-term behaviors of (1.2). Consider the following system,

dW(t) = W(t−)
(
r(α(t−)) − aW(t−) −

∫ 0

−τ

W(t− + θ)dµ(θ)
)

dt + σ(α(t−))W(t−)dB(t)

+

∫
Z

γ(α(t−), u)W(t−)Ñ(dt, du). (3.1)

Lemma 3.1. For system (3.1), the following statements hold.
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(i) If
∑N

k=1 πkξ(k) < 0, then lim
t→∞

W(t) = 0.

(ii) If
∑N

k=1 πkξ(k) > 0, then lim
t→∞

1
t

∫ t

0
W(s)ds =

∑N
k=1 πkξ(k)

a +
∫ 0

−τ
dµ(θ)

,

where ξ(k) = r(k) − σ2(k)
2 −

∫
Z
[γ(k, u) − ln(1 + γ(k, u))]λ(du).

Proof. Using the Itô’s formula to ln W(t) and computing the stochastic differential along the solution
of (3.1), we have

d ln W(t) =

(
r(α(t)) − aW(t) −

∫ 0

−τ

W(t + θ)dµ(θ) −
∫
Z

[γ(u, α(t)) − ln(1 + γ(α(t)))]λ(du)

−1
2σ

2(α(t))
)
dt + σ(α(t))dB(t) +

∫
Z

ln(1 + γ(u, α(t)))Ñ(dt, du).
(3.2)

Integrating both sides of (3.2) from 0 to t, and divided by t from both sides, then

1
t

ln
W(t)
W(0)

=
1
t

∫ t

0
ξ(α(s))ds − a

1
t

∫ t

0
W(s)ds −

1
t

∫ 0

−τ

[∫ 0

θ

+

∫ t

0
+

∫ t+θ

t

]
W(s)dsdµ(θ)

+
1
t

∫ t

0
σ(α(s))dB(s) +

1
t

∫ t

0

∫
Z

ln(1 + γ(u, α(s)))Ñ(ds, du).
(3.3)

Since

lim
t→∞

1
t

∫ 0

−τ

∫ t+θ

0
W(s)dsdµ(θ) = lim

t→∞

∫ 0

−τ

dµ(θ) ×
1
t

∫ t

0
W(s)ds,

it follows that

lim
t→∞

1
t

∫ 0

−τ

∫ t+θ

t
W(s)dsdµ(θ) = lim

t→∞

1
t

∫ 0

−τ

∫ t+θ

0
W(s)dsdµ(θ) − lim

t→∞

1
t

∫ 0

−τ

dµ(θ)
∫ t

0
W(s)ds = 0.

Then

lim
t→∞

1
t

∫ 0

−τ

[∫ 0

θ

W(s)ds −
∫ t

t+θ
W(s)ds

]
dµ(θ) = lim

t→∞

1
t

∫ 0

−τ

[∫ 0

θ

ψ(s)ds −
∫ t

t+θ
W(s)ds

]
dµ(θ) = 0.

Therefore (3.3) leads to (3.4) as follows.

1
t

ln
W(t)
W(0)

=
1
t

∫ t

0
ξ(α(s))ds −

(
a +

∫ 0

−τ

dµ(θ)
)

1
t

∫ t

0
W(s)ds +

1
t

∫ t

0
σ(α(s))dB(s)

+
1
t

∫ t

0

∫
Z

ln(1 + γ(u, α(s)))Ñ(ds, du).
(3.4)

On the other hand, by the ergodicity of Markovian chain, we have

lim
t→∞

1
t

∫ t

0
ξ(α(s))ds =

N∑
k=1

πkξ(k).

Now we give the proof of (i) and (ii).
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(i) By comparison method, using Lemma 2.1, we can easily derive from (3.4) that

lim sup
t→∞

1
t

∫ t

0
W(s)ds ≤

N∑
k=1

πkξ(k)

a +

∫ 0

−τ

dµ(θ)
.

If
∑N

k=1 πkξ(k) < 0 , it is clear that lim
t→∞

W(t) = 0.

(ii) If
∑N

k=1 πkξ(k) > 0, by Lemma 2.1 again, we have

lim inf
t→∞

1
t

∫ t

0
W(s)ds ≥

N∑
k=1

πkξ(k)

a +

∫ 0

−τ

dµ(θ)
.

Therefore,

lim
t→∞

1
t

∫ t

0
W(s)ds =

N∑
k=1

πkξ(k)

a +

∫ 0

−τ

dµ(θ)
.

The proof is completed.
Next, we consider the following comparison system of (1.2):

dy1(t) = y1(t)
(
r1(α(t)) − h1 − a11y1(t) −

∫ 0

−τ11

y1(t + s)dµ11(s)
)
dt + σ1(α(t))y1(t)dB1(t)

+

∫
Z

γ1(u, α(t))y1(t)Ñ(dt, du),

dy2(t) = y2(t)
(
r2(α(t)) − h2 + a21y1(t) +

∫ 0

−τ21

y1(t + s)dµ21(s) − a22y2(t)

−

∫ 0

−τ22

y2(t + s)dµ22(s)
)
dt + σ2(α(t))y2(t)dB2(t) +

∫
Z

γ2(u, α(t))y2(t)Ñ(dt, du).

(3.5)

By Lemma 3.1, we derive from (3.5) that

lim
t→∞

1
t

∫ t

0
y1(s)ds =

N∑
k=1

πkη1(k)

a11 +

∫ 0

−τ11

dµ11(θ)
,

η̄1

A11
.

Consider the following comparison system of the second equation of (3.5),

dŷ2(t) = ŷ2(t−)
(
r2(α(t)) − h2 + a21y1(t−) +

∫ 0

−τ21

y1(t + s)dµ21(s) − a22ŷ2(t−)
)

dt
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+σ2(α(t−))ŷ2(t−)dB(t) +

∫
Z

γ2(u, α(t−))ŷ2(t−)Ñ(dt, du).

Similar with the previous reasoning, using Lemma 3.1 again, we can derive that

lim
t→∞

1
t

∫ t

0
ŷ2(s)ds =

A11η̄2 + A21η̄1

A11A22
,

∆2

A11A22
.

By the comparison theory [1, 9], it is clear that x1 ≤ y1 and y2 ≤ ŷ2. Consequently, we have the
following results.

Lemma 3.2. For system (3.5), the following statements of Table 1 hold.

Table 1. Dynamics of system (3.5).

Conditions Species y1 Species y2

η̄1 < 0 Extinction Extinction

η̄1 > 0 and ∆2 < 0 lim
t→∞

1
t

∫ t

0
y1(s)ds =

η̄1

A11
Extinction

∆2 > 0 lim
t→∞

1
t

∫ t

0
y1(s)ds =

η̄1

A11
lim
t→∞

1
t

∫ t

0
y2(s)ds =

∆2

A11A22

Now we give the main result on the extinction and persistence in the mean of the species of
system (1.2).

Theorem 3.1. For system (1.2), the following statements hold (see the Table 2).

Table 2. Dynamics of system (1.2).

Cases Conditions Species x1 Species x2

i η̄1 < 0 Extinction Extinction

ii η̄1 > 0 and ∆2 < 0 lim
t→∞

1
t

∫ t

0
x1(s)ds =

η̄1

A11
Extinction

iii ∆2 > 0 lim
t→∞

1
t

∫ t

0
x1(s)ds =

∆1

∆
lim
t→∞

1
t

∫ t

0
x1(s)ds =

∆2

∆

Proof. For system (1.2), by using the Itô’s formula to ln xi(t), i = 1, 2, we have

d ln x1(t) =

(
r1(α(t)) − h1 − a11x1(t) −

∫ 0

−τ11

x1(t + θ)dµ11(θ) − a12x2(t) −
∫ 0

−τ12

x2(t + θ)dµ12(θ)

−1
2σ

2
1(α(t)) −

∫
Z

[γ1(u, α(t)) − ln(1 + γ1(α(t)))]λ(du)
)
dt + σ1(α(t))dB1(t)

+

∫
Z

ln(1 + γ1(u, α(t)))Ñ(dt, du),

(3.6)
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and

d ln x2(t) =

(
r2(α(t)) − h2 + a21x1(t) +

∫ 0

−τ21

x1(t + θ)dµ21(θ) − a22x2(t) −
∫ 0

−τ22

x2(t + θ)dµ22(θ)

−1
2σ

2
2(α(t)) −

∫
Z

[γ2(u, α(t)) − ln(1 + γ2(α(t)))]λ(du)
)
dt + σ2(α(t))dB2(t)

+

∫
Z

ln(1 + γ2(u, α(t)))Ñ(dt, du).

(3.7)

Similar with the proof of Lemma 3.1, we have

lim
t→∞

1
t

∫ 0

−τ11

[∫ 0

θ

+

∫ t

0
+

∫ t+θ

t

]
x1(s)dsdµ11(θ)

= lim
t→∞

1
t

∫ 0

−τ11

[∫ 0

θ

x1(s)ds −
∫ t

t+θ
x1(s)ds

]
dµ11(θ) + lim

t→∞

1
t

∫ 0

−τ11

∫ t

0
x1(s)dsdµ11(θ)

= lim
t→∞

1
t

∫ 0

−τ11

dµ11(θ)
∫ t

0
x1(s)ds, (3.8)

and

lim
t→∞

1
t

∫ 0

−τ12

[∫ 0

θ

+

∫ t

0
+

∫ t+θ

t

]
x2(s)dsdµ12(θ)

= lim
t→∞

1
t

∫ 0

−τ12

[∫ 0

θ

x2(s)ds −
∫ t

t+θ
x2(s)ds

]
dµ12(θ) + lim

t→∞

1
t

∫ 0

−τ12

∫ t

0
x2(s)dsdµ12(θ)

= lim
t→∞

1
t

∫ 0

−τ12

dµ12(θ)
∫ t

0
x2(s)ds. (3.9)

Integrating both sides of (3.6) from 0 to t, and combining (3.8) and (3.9), then

1
t

ln
x1(t)
x1(0)

=
1
t

∫ t

0
η1(α(s))ds − a11

1
t

∫ t

0
x1(s)ds −

1
t

∫ 0

−τ11

[∫ 0

θ

+

∫ t

0
+

∫ t+θ

t

]
x1(s)dsdµ11(θ)

−a12
1
t

∫ t

0
x2(s)ds −

1
t

∫ 0

−τ12

[∫ 0

θ

+

∫ t

0
+

∫ t+θ

t

]
x2(s)dsdµ12(θ)

+
1
t

∫ t

0
σ1(α(s))dB1(s) +

1
t

∫ t

0

∫
Z

ln(1 + γ1(u, α(s)))Ñ(ds, du).

=
1
t

∫ t

0
η1(α(s))ds −

a11

t

∫ t

0
x1(s)ds −

1
t

∫ 0

−τ11

dµ11(θ)
∫ t

0
x1(s)ds −

a12

t

∫ t

0
x2(s)ds

−
1
t

∫ 0

−τ12

dµ12(θ)
∫ t

0
x2(s)ds +

1
t

∫ t

0
σ1(α(s))dB1(s) +

1
t

∫ t

0

∫
Z

ln(1 + γ1(u, α(s)))Ñ(ds, du).

(3.10)

By the same argumentation, we have

1
t

ln
x2(t)
x2(0)

=
1
t

∫ t

0
η2(α(s))ds +

a21

t

∫ t

0
x1(s)ds +

1
t

∫ 0

−τ21

dµ21(θ)
∫ t

0
x1(s)ds −

a22

t

∫ t

0
x2(s)ds

−
1
t

∫ 0

−τ22

dµ22(θ)
∫ t

0
x2(s)ds +

1
t

∫ t

0
σ2(α(s))dB2(s) +

1
t

∫ t

0

∫
Z

ln(1 + γ2(u, α(s)))Ñ(ds, du).
(3.11)

By the ergodicity of Markovian chain, then

lim
t→∞

1
t

∫ t

0
ηi(α(s))ds =

N∑
k=1

πkηi(k), i = 1, 2.
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Now we prove the conclusion of Theorem 3.1.
(i) If η̄1 < 0, then by Lemma 3.2, we have lim

t→∞
x1(t) = 0. Since η̄2 < 0, it follows from (3.11) that

lim
t→∞

x2(t) = 0. Hence lim
t→∞

xi(t) = 0, i = 1, 2.

(ii) If η̄1 > 0, then we derive from Lemma 3.2 that lim sup
t→∞

1
t

∫ t

0
x1(s)ds ≤

η̄1

A11
. Substituting it

into (3.11) and using Lemma 2.1 gives

lim sup
t→∞

1
t

∫ t

0
x2(s)ds ≤

η2 + A21
η̄1
A11

A22
=

A11η̄2 + A21η̄1

A11A22
=

∆2

A11A22
.

By the condition ∆2 < 0, then lim
t→∞

x2(t) = 0.

From (3.11) again, by the comparison theorem [4, 14, 27], we have lim inf
t→∞

1
t

∫ t

0
x1(s)ds ≥

η̄1

A11
.

Therefore,

lim
t→∞

1
t

∫ t

0
x1(s)ds =

η̄1

A11
.

(iii) If ∆2 > 0, it is clear that η̄1 > 0. We compute (3.10) × A21 + (3.11) × A11, then

A21
1
t

ln
x1(t)
x1(0)

+ A11
1
t

ln
x2(t)
x2(0)

=
A21

t

∫ t

0
(η1(α(s))ds +

A11

t

∫ t

0
(η2(α(s))ds −

(A12A21 + A11A22)
t

∫ t

0
x2(s)ds

+
1
t
[A21M1(t) + A11M2(t)],

where Mi(t) =

∫ t

0
σi(α(s))dBi(s) +

∫ t

0

∫
Z

ln(1 + γi(u, α(s)))Ñ(ds, du), i = 1, 2. By the strong law of

large numbers [9], we have

lim
t→∞

Mi(t)
t

= 0, i = 1, 2.

On the other hand, by (3.10) and (ii), we can derive that lim
t→∞

ln x1(t)
t

= 0. By comparison method (using
Lemma 2.1 again), then

lim
t→∞

1
t

∫ t

0
x2(s)ds =

A21η1 + A11η2

A12A21 + A11A22
=

∆2

∆
. (3.12)

Substituting (3.12) into (3.10) and using Lemma 2.1 again, we can obtain that

lim
t→∞

1
t

∫ t

0
x1(s)ds =

η1 − A12
∆2
∆

A11
=

∆1

∆
. (3.13)

Consequently, we have limt→∞
1
t

∫ t

0
xi(s)ds =

∆i

∆
, i = 1, 2. The proof is completed.

Remark 3.1. Compared with (1.1), model (1.2) is more popular and contains (1.1) as its special case.
Another difference between (1.1) and (1.2) is that the Lévy jump is considered in (1.2) while it is not
considered in (1.1).
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Remark 3.2. Theorem 3.1 implies that the regime switching, time delays and Lévy jumps will bring
large influence to the dynamics of (1.2). By changing their values, the species of (1.2) may change from
persistence in the mean to extinction, and vice versa, which is analyzed and verified well by numerical
simulations in Section 6.

4. Asymptotically stable in distribution of (1.2)

For simplicity, we denote the solution of (1.2) with initial data x(θ) = φ(θ), α(θ) = ς by x(t, φ, ς). Let
x(t, φ, ς) be the R2

+×S−valued stochastic Markovian process. Let B ⊆ R2
+ be a Borel measurable set and

D ⊆ S, and we denote the transmission probability of the event {x(t, φ, ς) ∈ B×D} by P(t, φ, ς,B×D),
that is, P(t, φ, ς,B × D) =

∑
u∈D

∫
B

P(t, φ, ς, dx × {u}). Denote by P(R2
+,S) all the probability measures

on R2
+ × S, and for any two P1, P2 ∈ P(R2

+,S), we define the metric dL as follows:

dL(P1, P2) = sup
f∈L

∣∣∣∣∣∣∣
N∑

k=1

f (x, k)P1(dx, k) −
N∑

k=1

f (x, k)P2(dx, k)

∣∣∣∣∣∣∣ , (4.1)

where L = { f : C([−τ, 0],R2
+) × S→ R : | f (x1, k) − f (x2, k̃) ≤ |x1 − x2| + |k − k̃|, | f (·, ·)| ≤ 1}.

Definition 4.1 ( [9]). The process x(t, φ, ς) is said to be asymptotically stable in distribution if there
exists a probability measure u(·×·) on R2

+×S such that the transmission probability P(t, φ, ς, dx×{k}) of
x(t, φ, ς) converges weakly to u(dx× {k}) as t → ∞ for every (φ, ς) ∈ C([−τ, 0],R2

+)× S. System (1.2) is
said to be asymptotically stable in distribution if the solution x(t, φ, ς) of (1.2) is asymptotically stable
in distribution.

Lemma 4.1 ( [30]). Let f (t) be a nonnegative function defined on [0,∞) such that f (t) is integrable on
[0,∞) and is uniformly continuous on [0,∞), then limt→∞ f (t) = 0.

For the need of discussion, we give the following technical assumption.

Assumption 3. aii −
∫ 0

−τii
dµii(θ) −

∫ 0

−τ ji
dµ ji(θ) > a ji, i, j = 1, 2, i , j.

Assumption 3 means that under the effect of time delays, the intraspecific competition rate is still
greater than the interaction rate between different species.

Theorem 4.1. Let x(t) = x(t, φ, ς) and x̃(t) = x̃(t, ϕ, ς) be two solutions of (1.2) with initial value
x(θ) = φ, x̃(θ) = ϕ and α(θ) = ς, respectively. If Assumption 3 holds, then we have

lim
t→∞
E|xi(t) − x̃i(t)| = 0, i = 1, 2.

Proof. Define Lyapunov function Vi(t) = | ln xi(t) − ln x̃i(t)|, t ≥ 0, i = 1, 2. We calculate the right
differential of V1(t) along the solutions of (1.2), then

LV1(t) = sgn(x1(t) − x̃1(t))
(
−a11(x1(t) − x̃1(t)) −

∫ 0

−τ11

(x1(t + θ) − x̃1(t + θ))dµ11(θ)

−a12(x2(t) − x̃2(t)) −
∫ 0

−τ12

(x2(t + θ) − x̃2(t + θ))dµ12(θ)
)
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≤ −a11|x1(t) − x̃1(t)| + a12|x2(t) − x̃2(t)| +
∫ 0

−τ11

|x1(t + θ) − x̃1(t + θ)|dµ11(θ)

+

∫ 0

−τ12

|x2(t + θ) − x̃2(t + θ)|dµ12(θ).

Similarly, we have

LV2(t) ≤ −a22|x2(t) − x̃2(t)| + a21|x1(t) − x̃1(t)| +
∫ 0

−τ21

|x1(t + θ) − x̃1(t + θ)|dµ21(θ)

+

∫ 0

−τ22

|x2(t + θ) − x̃2(t + θ)|dµ22(θ).

Define V3(t) as follows:

V3(t) =

∫ 0

−τ11

∫ t

t+θ
|x1(s) − x̃1(s)|dsdµ11(θ) +

∫ 0

−τ12

∫ t

t+θ
|x2(s) − x̃2(s)|dsdµ12(θ)

+

∫ 0

−τ21

∫ t

t+θ
|x1(s) − x̃1(s)|dsdµ21(θ) +

∫ 0

−τ22

∫ t

t+θ
|x2(s) − x̃2(s)|dsdµ22(θ).

Let V(t) = V1(t) + V2(t) + V3(t), then by Assumption 3, after computation, we have

LV(t) ≤ −

(
a11 −

∫ 0

−τ11

dµ11(θ) −
∫ 0

−τ21

dµ21(θ) − a21

)
|x1(t) − x̃1(t)|

−

(
a22 −

∫ 0

−τ21

dµ21(θ) −
∫ 0

−τ22

dµ22(θ) − a12

)
|x2(t) − x̃2(t)|

< 0.

Therefore,

0 ≤ EV(t) ≤ EV(0) −
(
a11 −

∫ 0

−τ11

dµ11(θ) −
∫ 0

−τ21

dµ21(θ) − a21

)
E|x1(t) − x̃1(t)|

−

(
a22 −

∫ 0

−τ21

dµ21(θ) −
∫ 0

−τ22

dµ22(θ) − a12

)
E|x2(t) − x̃2(t)|.

Hence,

E|xi(t) − x̃i(t)| ≤
EV(0)

aii −
∫ 0

−τii
dµii(θ) −

∫ 0

−τi j
dµi j(θ)

∈ L1[0,∞)

for i, j = 1, 2, i , j.
On the other hand, by (1.2) we have,

xi(t) = xi(0) +

∫ t

0
fi(xi(s), α(s))ds +

∫ t

0
gi(xi(s), α(s))dB(s) +

∫ t

0

∫
Z

hi(xi(s), α(s), u)Ñ(ds, du), (4.2)
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where

fi(xi, α(s)) = xi

(
ri(α(s)) − hi − aiixi −

∫ 0

−τii

xi(s + θ)dµii(θ) − ai jx j −

∫ 0

−τi j

x j(s + θ)dµi j(θ)
)
,

gi(xi(s), α(s)) = xi(s)σi(α(s)), hi(xi(s), α(s), u) = xi(s)γi(α(s), u), i, j = 1, 2, i , j.

Taking expectation from both sides of (4.2), then

Exi(t) = xi(0) +

∫ t

0
(ri(α(s)) − hi)E(xi) − aiiE(x2

i ) −
∫ 0

−τii

E(xi)E(xi(s + θ))dµii(θ)

−ai jE(xi)E(x j) −
∫ 0

−τi j

E(xi)E(x j(s + θ))dµi j(θ)ds.

Consequently, E(xi(t)) is continuously differentiable with respect to t. Moreover,

dE(xi(t))
dt

≤ (ri(α(s)) − hi)E(xi(t)) ≤ K.

That is to say, E(xi(t)) is uniformly continuous. An application of Lemma 4.1 gives limt→∞ E|xi(t) −
x̃i(t)| = 0. This completes the proof.

Remark 4.1. Theorem 4.1 will be applied later to prove the stability in distribution of (1.2).
Assumption 3 is necessary in our proof. If without S-type time delays and Lévy jumps, Reference
[14] implies that Assumption 3 is unnecessary and may be dropped.

Lemma 4.2. For any compact subset B ⊆ R2
+ and (φ, ς) ∈ C([−τ, 0],B) × S, the family of transmission

probability of the solution P(t, φ, ς, dx × {u}) is tight.

Proof. For (4.2), by use of the Hölder inequality and the moment inequality of stochastic integrals,
there exist k = 1, 2, ... such that

E

[
sup

(k−1)δ≤s≤kδ
|xi|

p

]
≤ 4p−1

{
E

∣∣∣∣∣∣
∫ kδ

(k−1)δ
fi(xi, α(s))ds

∣∣∣∣∣∣p + E sup
(k−1)δ≤s≤kδ

∣∣∣∣∣∣
∫ kδ

(k−1)δ
gi(xi, α(s))ds

∣∣∣∣∣∣p
+|xi((k − 1)δ)|p + E sup

(k−1)δ≤s≤kδ

∣∣∣∣∣∣
∫ kδ

(k−1)δ

∫
Z

hi(xi, α(s))Ñ(ds, du)

∣∣∣∣∣∣p
}
. (4.3)

By Lemma 2.2 (i.e., E|xi(t)|p ≤ K(p)), then

E

∣∣∣∣∣∣
∫ kδ

(k−1)δ
fi(xi, α(s))ds

∣∣∣∣∣∣p
≤ E

[
δp sup

(k−1)δ≤s≤kδ
xp

i

(
ri(α(s)) − hi − aiixi −

∫ 0

−τii

xi(t + θ)dµii(θ) − ai jx j −

∫ 0

−τi j

x j(t + θ)dµi j(θ)
)p]

≤ 2p−1δpE

∣∣∣∣∣∣ri(α(s)) − hi − aiixi −

∫ 0

−τii

xi(t + θ)dµii(θ) − ai jx j −

∫ 0

−τi j

x j(t + θ)dµi j(θ)

∣∣∣∣∣∣p
+2p−1δpE|xi|

p
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≤ 2p−1δp5p−1
{
E|ri(α(s)) − hi|

p + aiiE|xi|
p + E

∣∣∣∣∣∣
∫ 0

−τii

xi(t + θ)dµii(θ)

∣∣∣∣∣∣p + ai jE|x j|
p

+E

∣∣∣∣∣∣
∫ 0

−τi j

x j(t + θ)dµi j(θ)

∣∣∣∣∣∣p
}

+ 2p−1δpE|xi|
p

≤ 10p−1δp

[
|ru

i − hi|
p + aiiKi(p) +

∣∣∣∣∣∣
∫ 0

−τii

dµii(θ)

∣∣∣∣∣∣p Ki(p) + ai jK j(p) +

∣∣∣∣∣∣
∫ 0

−τi j

dµi j(θ)

∣∣∣∣∣∣p K j(p)
]

+2p−1δpKi(p)
, M1(p)δp, (4.4)

where M1(p) is a constant. On the other hand, using the Burkholder-Davis-Gundy inequality [19],
there exists a constant Cp such that

E

[
sup

(k−1)δ≤s≤kδ

∣∣∣∣∣∣
∫ kδ

(k−1)δ
g1(x1, α(s))ds

∣∣∣∣∣∣p
]
≤ CpE

[∫ kδ

(k−1)δ
|xi(s)σi(α(s))|2 ds

] p
2

≤ Cpδ
p
2 (σu)pE|xi(s)|p , M2(p)δ

p
2 . (4.5)

As to the semimartingale part, by applying the Kunita’s first inequality [19], there exists a constant
D(p) such that

E

[
sup

(k−1)δ≤s≤kδ

∣∣∣∣∣∣
∫ kδ

(k−1)δ

∫
Z

hi(xi(s), α(s), u)Ñ(ds, du))

∣∣∣∣∣∣p
]

≤ D(p)E
[∫ kδ

(k−1)δ

∫
Z

|xi(s)γi(α(s), u)|2λ(du)ds
] p

2

+ E

[∫ kδ

(k−1)δ

∫
Z

|xi(s)γi(α(s), u)|pλ(du)ds
]

≤ D(p)δ
p
2 K

p
2 K(p) + D(p)δK

p
2 K(p). (4.6)

Therefore, for any s ∈ [0, t], we have

sup
(φ,ς)∈(C([−τ,0],R2

+)×S)
E

[
sup
0≤s≤t
|x(φ, ς, s)|p

]
< ∞.

That is, the probability measure set P(t, φ, ς, dx × {u}) is tight for (φ, ς) ∈ C([−τ, 0],R2
+) × S . This

completes the proof.

Lemma 4.3. Let Assumptions 1–3 hold, then for any (φ, ς) ∈ C([−τ, 0],R2
+) × S, the transmission

probability P(t, φ, ς, · × · : t ≥ 0) of the solution of (1.2) is Cauchy in the space P(R2
+ × S) with the

metric dL defined as before.

Proof. LetB = {x ∈ C([−τ, 0],R2
+) : σ ≤ |x| ≤ %},where % is a sufficiently large positive number, and

σ is a sufficiently small positive number. By the tightness of the transmission probability of solutions
of (1.2), for any ε > 0, we have P(t, x, α,BC × S) ≤ ε, t ≥ 0, where BC = R2

+/B.

For any f ∈ L, t, s > 0, and initial value (φ, ς) ∈ C([−τ, 0],R2
+)×S, by the characteristic of condition

expectation, we have

dL(P(t + s, φ, ς, · × ·), P(t, φ, ς, · × ·))
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= sup
f∈L
|E[ f (x(t + s; φ, ς), ας(t + s))] − E[ f (x(t; φ, ς), ας(t))]|

= sup
f∈L
|E[E[ f (x(t + s; φ, ς), ας(t + s))|FS ]] − E[ f (x(t; φ, ς), ας(t))]|

= sup
f∈L
|

N∑
k=1

∫
R2

+

E[ f (x(t;ϕ, k), αk(t))P(s, φ, ς, dϕ × {k}) − E[ f (x(t; φ, ς), ας(t))]|

≤ sup
f∈L

N∑
k=1

∫
R2

+

|E[ f (x(t;ϕ, k), αk(t)) − E[ f (x(t; φ, ς), ας(t))]|P(s, φ, ς, dϕ × {k})

≤ sup
f∈L

N∑
k=1

∫
R2

+/B

|E[ f (x(t;ϕ, k), αk(t)) − E[ f (x(t; φ, ς), ας(t))]|P(s, φ, ς, dϕ × {k})

+ sup
f∈L

N∑
k=1

∫
B

|E[ f (x(t;ϕ, k), αk(t)) − E[ f (x(t; φ, ς), ας(t))]|P(s, φ, ς, dϕ × {k}), (4.7)

where

sup
f∈L

N∑
k=1

∫
R2

+/B

|E[ f (x(t;ϕ, k), αk(t)) − E[ f (x(t; φ, ς), ας(t))]|P(s, φ, ς, dϕ × {k})

≤ 2P(s, φ, ς,R2
+/B × S) ≤ 2ε. (4.8)

By the proof of Theorem 4.6 in [23] (4.22 of page 106), for any ε > 0 and sufficiently large t, we have

f (x(t;ϕ, k), αk(t)) − f (x(t; φ, ς), ας(t)) ≤ ε.

Then

sup
f∈L

N∑
k=1

∫
B

|E[ f (x(t;ϕ, k), αk(t)) − E[ f (x(t; φ, ς), ας(t))]|P(s, φ, ς, dϕ × {k})

≤ sup
f∈L

N∑
k=1

∫
B

εP(s, φ, ς, dϕ × {k})

≤ ε. (4.9)

Hence, dL(P(t + s, φ, ς, ·× ·), P(t, φ, ς, ·× ·)) ≤ 3ε for s > 0 and sufficiently large t, that is, P(t, φ, ς, ·× · :
t ≥ 0) is Cauchy in the space P(C([−τ, 0],R2

+) × S). The proof is completed.

Theorem 4.2. Under the conditions of Lemma 4.3, the solution process x(t) of (1.2) is asymptotically
stable in distribution.

Proof. By Lemma 4.3, the transmission probability P(t, φ, ς, · × · : t ≥ 0) is Cauchy in the space
P(R2

+ × S) with the metric dL. Hence, for any fixed ϕ ∈ C([−τ, 0],R2
+), P(t, x̃, ς, · × · : t ≥ 0) is Cauchy

in P(R2
+ × S). Then there exists a probability measure u(· × ·) such that

lim
t→∞

dL(P(t, ϕ, ς, · × ·), u(· × ·)) = 0. (4.10)
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On the other hand, by Theorem 4.1, we have

dLP(t, ϕ, ς, · × ·), P(t, φ, ς, · × ·)))
= sup

f∈L
|E f (x(t, ϕ, ς) − E f (x(t, φ, ς)|

≤ sup
f∈L
|E( f (x(t, ϕ, ς)) − f (x(t, φ, ς)))|

≤ E|x(t, ϕ, ς) − x(t, φ, ς)|
→ 0. (4.11)

Therefore, by the triangle inequality, we can derive from (4.10) and (4.11) that

lim
t→∞

dL(P(t, φ, ς, · × ·), u(· × ·))

≤ lim
t→∞

dL(P(t, ϕ, ς, · × ·), u(· × ·)) + dL(P(t, ϕ, ς, · × ·), P(t, φ, ς, · × ·))

= 0. (4.12)

Since the weak convergence of probability measure is a metric concept, (4.12) shows that for any initial
value (φ, ς) ∈ C([−τ, 0],R2

+) × S, the probability measure P(t, φ, ς, · × · : t ≥ 0) of the solution of (1.2)
converges weakly to the probability measure u(· × ·). By Definition 4.1, then the solution process x(t)
of (1.2) is asymptotically stable in distribution. This completes the proof.

Remark 4.2. The asymptotic stability in distribution of species reveals the existence and uniqueness
of an invariant probability measure, which is the basis of discussing the optimal harvesting effort in
Section 5.

5. Optimal harvesting effort

In this section, we consider the optimal harvesting effort (OHE) of (1.2). By [8, 27–29], the
OHE problem is to find a constant h∗ = (h∗1, h

∗
2)T such that both x1 and x2 survive, and Y(h∗) =

limt→∞ E(h∗i xi(t)) is maximum.

Theorem 5.1. Let λ = (λ1, λ2)T = (A(A−1)T + I)−1ξ, where I is the unit matrix, ξ = (ξ̄1, ξ̄2)T .

(1) If A + (A−1)T is positive semi-definite, and ∆2|hi=λi > 0, λi ≥ 0, i = 1, 2, then the OHE is h∗ = λ,
and the maximum of the sustainable yield is

Y(h∗) = λT A−1(ξ − λ).

(2) If the conditions of (1) fail, then there exists no OHE.

Proof. We define Ξ = {h = (h1, h2)T ∈ R2
+,∆2 > 0}, then for any h ∈ Ξ, by Theorem 3.1, we have

lim
t→∞

1
t

∫ t

0
xi(t)dt =

∆i

∆
, i = 1, 2. Conversely, if the h∗ of OHE exists, obviously h∗ ∈ Ξ.

(1) By the given conditions, it is clear that λ ∈ Ξ, that is, the set Ξ is not empty. For any h ∈ Ξ, by
Theorem 3.1, after computation, we have

lim
t→∞

1
t

∫ t

0
hT x(s)ds =

2∑
i=1

hi lim
t→∞

1
t

∫ t

0
xi(s)ds =

2∑
i=1

hi
∆i

∆
= hT A−1(ξ − h). (5.1)
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Theorem 4.1 implies that the distribution of solutions of (1.2) is asymptotically stable, and hence
suppose the stationary probability density is ρ, then

Y(h) = lim
t→∞
E(hixi(t)) = lim

t→∞
E(hT x(t)) =

N∑
k=1

∫
R2

+

hT xρ(x, k)dx. (5.2)

The asymptotical stability in distribution means that there exists a unique invariant measure u. In
view of the one-to-one correspondence between the stationary probability density ρ and the invariant
measure u (see, e.g.[31], page 105), we have

N∑
k=1

∫
R2

+

hT xρ(x, k)dx =

N∑
k=1

∫
R2

+

hT xu(dx, k). (5.3)

By (5.1)–(5.3), we observe that
Y(h) = hT A−1(ξ − h). (5.4)

Clearly, by computing the derivative of the variable h, we have d(Y(h))
dh = A−1ξ− (A−1 + (A−1)T )h. Denote

the solution of d(Y(h))
dh = 0 by λ, then λ = (AA−1 + I)ξ. Further, after computation, we have

d d(Y(h))
dh

dhT = −(A−1 + (A−1)T ),

which is negative semi-definite for all h by the given conditions, then we derive from Theorem 4.1.5
of [32] that λ is a global maximum point of Y(h). That is, if the conditions ∆2|hi=λi > 0, λi ≥ 0(i = 1, 2)
hold, then the OHE is h∗ = λ, and Y(h∗) = λT A−1(ξ − λ).

(2) Firstly we prove that there is no OHE if ∆2|hi=λi,i=1,2 > 0, λ1 ≥ 0 and λ2 ≥ 0, but A−1+(A−1)T is not
positive semi-definite. By above conditions, clearly the set Ξ is not empty. Let (ιi j)2×2 = A−1 + (A−1)T ,
then ι11 = 2A22

∆
> 0. It implies that A−1 + (A−1)T is not negative semi-definite. Noting that A−1 + (A−1)T

is not positive semi-definite, hence A−1 + (A−1)T is indefinite. The extreme value theory [32] shows that
Y(h) has no extreme points. Therefore, there is no OHE.

Secondly, under the conditions ∆2|hi=λi,i=1,2 < 0, or λ1 ≤ 0, or λ2 ≤ 0, we prove there is also no OHE.
Otherwise, suppose the OHE is h̃∗ = (h̃∗1, h̃

∗
2)T , then h̃∗ ∈ Ξ. Thus ∆2|h∗i =h̃∗i

> 0, h̃∗i ≥ 0, i = 1, 2. That
means h̃∗i is also the solution of d(Y(h))

dh = 0, which contradicts with the uniqueness of the solution. This
completes the proof.

Remark 5.1. The existence and uniqueness of an invariant probability measure plays a key role to
derive (5.4). With the invariant measure, by using the extremum theory, we find the maximum of Y(h),
which is very popular and can be applied to resolve some similar problems.

6. Examples and simulations

In this section, by numerical analysis, we give some examples and apply the Milstein method [33]
to illustrate our theoretical results, and explore the effects of regime switching, time delays and Lévy
jumps on the system dynamics.
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For simplicity, we assume that the continuous-time discrete state Markovian chain α(t) takes value
in the space S = {1, 2}, then system (1.2) reduces to the following subsystem (6.1) and (6.2):



dx1(t) = x1(t−)
(
r1(1) − h1 − a11x1(t−) −

∫ 0

−τ11

x1(t + θ)dµ11(θ) − a12x2(t−)

−

∫ 0

−τ12

x2(t + θ)dµ12(θ)
)
dt + σ1(1)x1(t−)dB1(t) +

∫
Z

γ1(u, 1)x1(t−)Ñ(dt, du),

dx2(t) = x2(t−)
(
r2(1) − h2 + a21x1(t−) +

∫ 0

−τ21

x1(t + θ)dµ21(θ) − a22x2(t−)

−

∫ 0

−τ22

x2(t + θ)dµ22(θ)
)
dt + σ2(1)x2(t−)dB2(t) +

∫
Z

γ2(u, 1)x2(t−)Ñ(dt, du),

(6.1)

and



dx1(t) = x1(t−)
(
r1(2) − h1 − a11x1(t−) −

∫ 0

−τ11

x1(t + θ)dµ11(θ) − a12x2(t−)

−

∫ 0

−τ12

x2(t + θ)dµ12(θ)
)
dt + σ1(2)x1(t−)dB1(t) +

∫
Z

γ1(u, 2)x1(t−)Ñ(dt, du),

dx2(t) = x2(t−)
(
r2(2) − h2 + a21x1(t−) +

∫ 0

−τ21

x1(t + θ)dµ21(θ) − a22x2(t−)

−

∫ 0

−τ22

x2(t + θ)dµ22(θ)
)
dt + σ2(2)x2(t−)dB2(t) +

∫
Z

γ2(u, 2)x2(t−)Ñ(dt, du).

(6.2)

For (6.1) and (6.2), unless otherwise stated, we always take a11 = 0.8, a12 = 0.6, a21 = 0.4, a22 =

0.7, hi = 0, σ2
i = 0.2,

∫ 0

−τii
dµii(θ) = 0.3,

∫ 0

−τi j
dµi j(θ) = 0.2, γi(1) = γi(2) = 0.4, i = 1, 2, i , j,Z = [0,∞),

and λ(Z) = 1. Then A11 = 1.1, A12 = 0.8,−A21 = −0.6, A22 = 1,∆ = 1.58.

For (6.1), let r1(1) = 0.06, r2(1) = −0.02. It is easy to verify that Assumptions 1–3 hold, and
η1(1) = −0.1035 < 0. Theorem 3.1 implies both x1 and x2 are extinct (see Figure 1 (a)).

For (6.2), let r1(2) = 0.7, r2(2) = −0.05. Similarly Assumptions 1–3 hold, and η1(2) = 0.5365 >

0, η2(2) = −0.2135,∆1 = 0.7073,∆2 = 0.087 > 0.

By Theorem 3.1 again, we can obtain that both x1 and x2 are persistent in the mean, and

lim
t→∞

1
t

∫ t

0
x1(s)ds =

∆1

∆
= 0.4477, lim

t→∞

1
t

∫ t

0
x2(s)ds =

∆2

∆
= 0.0551.

Figure 1 (b) reveals it clearly.
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Figure 1. Dynamics of system (6.1) and (6.2), respectively. (a) Dynamics of (6.1) with
r1(1) = 0.06, r2(1) = −0.02, where x1 and x2 are extinct. (b) Dynamics of (6.2) with
r1(2) = 0.7, r2(2) = −0.05, where x1 and x2 are persistent in the mean with lim

t→∞
1
t

∫ t

0
x1(s)ds =

0.4477, lim
t→∞

1
t

∫ t

0
x2(s)ds = 0.0551.

Next we will study the effect of regime switching, time delays and Lévy jumps on the extinction
and persistence in the mean of all species, respectively. We discuss in three cases.

• Case (i) The effect of switching π.
(1) Let the stationary distribution π = (0.1, 0.9). By computation, then

η̄1 = 0.1 ∗ (−0.1035) + 0.9 ∗ 0.5365 = 0.4725, η̄2 = 0.1 ∗ (−0.1835) + 0.9 ∗ (−0.2135) = −0.2105,

and

lim
t→∞

1
t

∫ t

0
x1(s)ds =

∆1

∆
= 0.4056, lim

t→∞

1
t

∫ t

0
x2(s)ds =

∆2

∆
= 0.0328.

That is, both x1(t) and x2(t) are persistent in the mean. We call it the “persistent case”. Figure
2 (a) is the long-term behaviours and Figure 2 (b) is the probability densities of x1(t) and x2(t),
respectively. Figure 3 gives the time series and histogram of Markov chain α(t) with stationary
distribution π = (0.1, 0.9).
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Figure 2. The “persistent case” of hybrid system of (6.1) and (6.2) with π =

(0.1, 0.9). (a) Both x1(t) and x2(t) are persistent in the mean with lim
t→∞

1
t

∫ t

0
x1(s)ds =

0.4056, lim
t→∞

1
t

∫ t

0
x2(s)ds = 0.0328. (b) The probability density of x1(t) and x2(t) respectively.

(c) The OHE Y(h∗) = 0.0669 with λ = (0.3258, 0.0532)T , depicted in red line. The green line
represents the yield Y1 = 0.0484 with λ1 = (0.1558, 0.0632)T , and the blue line represents the
yield Y2 = 0.0601 with λ2 = (0.4258, 0.0332)T . By comparison, the maximum of sustainable
yield is Y(h∗) = 0.0669.
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Figure 3. (a) Time series of the Markovian chain ξ(t) switching between states 1 and 2. (b)
The histogram of Markovian chain ξ(t).

For the persistent case, Theorem 5.1 shows that there exists OHE, and

h∗ = λ = (A(A−1)T + I)−1η = (0.3258, 0.0532)T .

The maximum of the sustainable yield is

Y(h∗) = λT A−1(ξ − λ) = 0.0669.

By numerical simulation, we get Figure 2 (c). In Figure 2 (c), the red line represents the yield
Y = 0.0669 with λ = (0.3258, 0.0532)T , the green line represents the yield Y1 = 0.0484 with λ1 =

(0.1558, 0.0632)T , the blue line represents the yield Y2 = 0.0601 with λ2 = (0.4258, 0.0332)T ,

respectively. Obviously, the maximum of sustainable yield is Y(h∗) = 0.0669. Figure 2 (c) verify
it well. For the interpretation of the references to color, readers are referred to the web version of
the article.
(2) Let π = (0.9, 0.1). Then η̄1 = 0.9 ∗ (−0.1035) + 0.1 ∗ 0.5365 = −0.0395 < 0. Theorem 3.1
implies that both x1(t) and x2(t) are to be extinct. That is, the switching π leads to the extinction
of x1(t) and x2(t) (see Figure 4 (a)).
(3) Let π = (0.4, 0.6). Then by computing, we have

η̄1 = 0.2805 > 0 and ∆2 = −0.0534 < 0.

By Theorem 3.1 again, then x2 is extinct and x1 is persistent in the mean, and

lim
t→∞

1
t

∫ t

0
x1(s)ds =

η̄1

A11
= 0.255.

It shows the switching π leads to the extinction of x2(t) and the different persistence in the mean
of x1(t) (see Figure 4 (b)).

AIMS Mathematics Volume 7, Issue 3, 4068–4093.



4089

• Case (ii) The effect of time-delays.
For the persistent case, if we take

∫ 0

−τii
dµii(θ) = 0.87,

∫ 0

−τi j
dµi j(θ) = 0.3, other parameters are same

as before, then η̄1 = 0.4725 > 0,∆2 = −0.0208 < 0, which leads to the extinction of x2(t) and

lim
t→∞

1
t

∫ t

0
x1(s)ds = 0.2829.

That is, time delays destroy the persistent case, see Figure 4 (c).
• Case (iii)The effect of Lévy jumps.

For the persistent case, if we take γi(1) = γi(2) = 1, i = 1, 2, i , j, then η1 = −0.4189 < 0. By
Theorem 3.1, both x1 and x2 go to be extinct. It implies that too large Lévy jumps leads to the
extinction of x1(t) and x2(t), see Figure 4 (d).
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Figure 4. The effects of regime switching, time delays and Lévy jumps on the “persistent
case”, respectively. (a) The effect of regime switching with π = (0.9, 0.1), where x1(t) and
x2(t) are extinct. (b) The effect of regime switching with π = (0.4, 0.6), where x1 is persistent
in the mean with lim

t→∞
1
t

∫ t

0
x1(s)ds = 0.255 and x2 is extinct. (c) The effect of time-delays

with
∫ 0

−τii
dµii(θ) = 0.87,

∫ 0

−τi j
dµi j(θ) = 0.3, i = 1, 2, i , j, where lim

t→∞
1
t

∫ t

0
x1(s)ds = 0.2829

and x2(t) is extinct. (d) The effect of Lévy jumps with γi(1) = γi(2) = 1, where x1 and x2 are
extinct.

7. Conclusions and discussions

In this paper, we study the dynamics of a stochastic predator-prey system with S-type distributed
time delays, regime switching and Lévy jumps. Theorem 3.1 gives the sufficient conditions assuring the
extinction and persistence in the mean of each species. Theorem 4.2 shows that (1.2) is asymptotically
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stable in distribution. Theorem 5.1 gives the optimal harvesting effort. Finally, some examples are
given and the effects of regime switching, distributed time delays and Lévy jumps are discussed by
numerical analysis.

Figure 4 (a) and (b) imply that different regime switching may lead to very different long-term
behaviours of species. Figure 2 (c) shows that the OHE is based on the suitable regime switching.
Figure 4 (c) and (d) show that too large delays or Lévy jumps will destroy the persistent case of (1.2),
respectively. All these show that regime switching, distributed time delays and Lévy jumps play key
role in the dynamics of (1.2).

Further, (1.2) is very popular and contains many researched model as its special cases. Firstly, (1.1)
is contained in (1.2), and hence, one can obtain the sufficient conditions of the extinction and
persistence in the mean for species of (1.1), that is, Theorems 1 and 2 of Reference [14] are contained
in our results. Secondly, if α(t) = 1, hi = 0, γi = 0(i = 1, 2), then we get the model studied by
Wang et.al. [18]. Our result coincides with Theorem 2.2 of [18]. Thirdly, if µii(θ) are constant on
[−τ, 0], ai j = 0, i , j, and

µ12(θ) =

{
b12, −τ1 < θ ≤ 0,
0, −τ12 ≤ θ ≤ −τ1,

µ21(θ) =

{
b21, −τ2 < θ ≤ 0,
0, −τ21 ≤ θ ≤ −τ2,

then we get the discrete time delays model proposed in Reference [5, 8]. Similarly we can obtain
Theorem 2.2 in [8] and Lemma 3 in [5]. As Liu et. al. stated in [14], the growth of the ith species at
time t is often affected by the abundance of the jth species on the interval [t − τi, t], rather than only on
the time t − τi. Hence the S-type distributed delays can fit with some real biological systems better. In
above sense, we improve and generalize the obtained conclusions of [5, 8, 14, 18].

However, the switching does not appear in all parameters and the control inputs are all constants, if
they are dependent on time t, then the persistence in the mean and the optimal harvesting strategy can
not be established and is still unknown. On the other hand, for predator-prey system, if the predator
is provided with additional food [34], or the fear of prey induced by predator appears [35], what will
happen is very interesting. All these will be our research work in the future.
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