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Abstract: Let G(a1, a2, . . . , ak) be a simple graph with vertex set V(G) = V1 ∪ V2 ∪ · · · ∪ Vk and edge
set E(G) = {(u, v)|u ∈ Vi, v ∈ Vi+1, i = 1, 2, . . . , k − 1}, where |Vi| = ai > 0 for 1 ≤ i ≤ k and Vi ∩ V j = ∅

for i , j. Given two positive integers k and n, and k − 2 positive rational numbers t2, t3, . . . , tdk/2e and
t′2, t

′
3, . . . , t

′
bk/2c, let Υ(n; k)t′

t = {G(a1, a2, . . . , ak)|
∑k

i=1 ai = n, a2i−1 = tia1, a2 j = t′ja2, i = 2, 3, . . . , dk/2e,
j = 2, 3, . . . , bk/2c; t = (t2, t3, . . . , tdk/2e), t′ = (t′2, t

′
3, . . . , t

′
bk/2c); as ∈ N, 1 ≤ s ≤ k}, where N is the set of

positive integers. In this paper, we prove that all graphs in Υ(n; k)t′
t are cospectral with respect to the

normalized Laplacian if it is not an empty set.

Keywords: normalized Laplacian; cospectral; tridiagonal matrix; normalized Laplacian characteristic
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1. Introduction

Let G be a simple connected graph with vertex set V(G) = {v1, v2, . . . , vn} and edge E(G). Let
d(v) denote the degree of vertex v of G and D(G) = diag(d(v1), d(v2), . . . , d(vn)) the diagonal matrix
of vertex degrees. The adjacency matrix of G is defined to be the n × n matrix A(G) = (ai j), where
ai j = 1 if vi and v j are adjacent and ai j = 0 otherwise. The normalized Laplacian matrix is defined
to be L(G) = D(G)−1/2(D(G) − A(G))D(G)−1/2 (with the convention that if the degree of v is 0 then
d(v)−1/2 = 0) by Chung [7]. So its entries are defined by
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Li j =


1, if i = j,
−1/

√
d(vi)d(v j), if (vi, v j) ∈ E(G),

0, otherwise.

The normalized Laplacian characteristic polynomial of a graph is the characteristic polynomial of
its normalized Laplacian matrix. Denote by Φ(B; x) = det(xI − B) the characteristic polynomial of
the square matrix B. Hence Φ(L(G); x) = det(xI − L(G)) is the normalized Laplacian characteristic
polynomial of a graph G.

Spectral graph theory examines relationships between the structure of a graph and the eigenvalues
(or spectrum) of a matrix associated with that graph. Different matrices are able to give different
information, but all the common matrices have limitations. This is because there are graphs which
have the same spectrum for a certain matrix but different structure–such graphs are called cospectral
with respect to that matrix [4].

Cospectral graphs for the adjacency matrix (see for example [8, 10–13]) and the Laplacian matrix
(see for example, [12, 17, 19]) have been studied extensively, particularly for graphs with few vertices.
But little is also known about cospectral graphs with respect to the normalized Laplacian since the
normalized Laplacian is a rather new tool which has rather recently (mid 1990s) been popularized by
Chung [7]. One of the original motivations for defining the normalized Laplacian was to be able to
deal more naturally with non-regular graphs. In some situations the normalized Laplacian is a more
natural tool that works better than the adjacency matrix or Laplacian matrix. In particular, when dealing
with random walks, the normalized Laplacian is a natural choice. This is because D(G)−1A(G) is the
transition matrix of a Markov chain which has the same eigenvalues as I − L(G). Previously, the only
cospectral graphs with respect to normalized Laplacian were bipartite (complete bipartite graphs [19]
and bipartite graphs found by “unfolding” a small bipartite graph in two ways [3]). Some recent studies
on cospectral graphs were carried out in [1, 2, 5, 6, 14–16, 18].

In this paper, a particular class of graphs are constructed as follows. Let G(a1, a2, . . . , ak) be a
simple graph with vertex set V(G) = V1 ∪ V2 ∪ · · · ∪ Vk and edge set E(G) = {(u, v)|u ∈ Vi, v ∈ Vi+1, i =

1, 2, . . . , k − 1}, where |Vi| = ai > 0 for 1 ≤ i ≤ k and Vi ∩ V j = ∅ for i , j. The graph G(3, 1, 2, 4) is
illustrated in Figure 1.

Figure 1. The graph G(3, 1, 2, 4).

Given two positive integers k and n, and k − 2 positive rational numbers t2, t3, . . . , tdk/2e and
t′2, t

′
3, . . . , t

′
bk/2c, let Λ be the set of the positive integer solutions (a1, a2, . . . , ak) of the following

equations:
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
a1 + a2 + · · · + ak = n,
a2i−1 = tia1 for i ≥ 2,
a2 j = t′ja2 for j ≥ 2.

It is not difficult to show that Λ = {(a1, a2, . . . , ak) ∈ N × N × · · · × N =: Nk|(1 + t2 + t3 + · · · +

tdk/2e)a1 + (1 + t′2 + t′3 + · · ·+ t′
bk/2c)a2 = n; a2i−1 = tia1, a2 j = t′ja2, i = 2, 3, . . . , dk/2e, j = 2, 3, . . . , bk/2c},

where N is the set of positive integers. Define Υ(n; k)t′
t = {G(a1, a2, . . . , ak)|(a1, a2, . . . , ak) ∈ Λ}, where

t = (t2, t3, . . . , tdk/2e), t′ = (t′2, t
′
3, . . . , t

′
bk/2c).

Example 1.1. If n = 20, k = 5, and t2 = t3 = 1
2 and t′2 = 1

3 , then the set of positive integer solutions
(a1, a2) of the Eq (1 + 1

2 + 1
2 )a1 + (1 + 1

3 )a2 = 20 is {(2, 12), (4, 9), (6, 6), (8, 3)}. Hence

Λ = {(2, 12, 1, 4, 1), (4, 9, 2, 3, 2), (6, 6, 3, 2, 3), (8, 3, 4, 1, 4)}

and
Υ(20; 5)1/3

1/2,1/2 = {G(2, 12, 1, 4, 1),G(4, 9, 2, 3, 2),G(6, 6, 3, 2, 3),G(8, 3, 4, 1, 4)}.

In this paper, we prove that all graphs in Υ(n; k)t′
t are cospectral with respect to the normalized

Laplacian if it is not an empty set.

2. Main results

Given 2n−1 real numbers a1, a2, . . . , an, b1, b2, . . . , bn−1, define T b1,b2,...,bn−1
a1,a2,...,an to be the set of tridigonal

matrices Q = (qi j)n×n with form of

Q =



a1 x1

y1 a2 x2

y2 a3 x3
. . .

. . .
. . .

yn−2 an−1 xn−1

yn−1 an


,

where xiyi = bi, i = 1, 2, . . . , n − 1.

Lemma 2.1. Keeping the above notation, then, for arbitrary two matrices Q1,Q2 ∈ T
b1,b2,...,bn−1
a1,a2,...,an , we

have Φ(Q1; x) = Φ(Q2; x). That is, all matrices in T b1,b2,...,bn−1
a1,a2,...,an are cospectral.

Proof. We prove the lemma by induction on n. if n=2, then matrix

Q =

(
a1 x1

y1 a2

)
∈ T b1

a1,a2
.

Note that
Φ(Q; x) = (x − a1)(x − a2) − x1y1 = (x − a1)(x − a2) − b1.

So, for arbitrary Q1,Q2 ∈ T
b1
a1,a2 , Φ(Q1; x) = Φ(Q2; x).
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Now we assume that n > 2. Let

Qn =



a1 x1

y1 a2 x2

y2 a3 x3
. . .

. . .
. . .

yn−2 an−1 xn−1

yn−1 an


∈ T b1,b2,...,bn−1

a1,a2,...,an
.

Hence,
Φ(Qn; x) = det(xIn − Qn) = (x − a1) det(xIn−1 − Qn−1) − b1 det(xIn−2 − Qn−2), (1)

where Qn−1 and Qn−2 are the matrices obtained from Qn by deleting the first row and column and first
two rows and columns, respectively. Obviously, Qn−1 ∈ T

b2,b3,...,bn−1
a2,a3,...,an and Qn−2 ∈ T

b3,...,bn−1
a3,...,an . By induction,

all matrices in T b2,b3,...,bn−1
a2,a3,...,an (resp. T b3,b4,...,bn−1

a3,a4,...,an ) are cospectral. Hence, by Eq (1), it is not difficult to see
that all matrices in T b1,b2,...,bn−1

a1,a2,...,an are cospectral. The lemma has thus been proved.
�

Now we use a similar method to that in [9] to prove the following theorem.

Theorem 2.2. The characteristic polynomial of normalized Laplacian matrix of graph G(a1, a2, . . . , ak)
with

∑k
i=1 ai = n is

Φ(L(G(a1, a2, . . . , ak)); x) = (x − 1)n−kΦ(M; x), (2)

where M = (mi j)k×k is the tridigonal matrix satisfying mi j = 1 if i = j and mi j = −a j/
√

did j if i = j − 1
or i = j + 1, and mi j = 0 otherwise, d1 = a2, d2 = a1 + a3, d3 = a2 + a4, . . . , dk−1 = ak−2 + ak, dk = ak−1.

Proof. Note that if vertices v and w are in the same part of G(a1, a2, . . . , ak), the transpose of the row
vector βi whose coordinates on v, w and elsewhere are respectively 1, −1 and 0 is an eigenvector
for the eigenvalue 1 of the normalized Laplacian matrix L(G(a1, a2, . . . , ak)), and there are ai − 1
eigenvectors for the eigenvalue 1 (1 ≤ i ≤ k). So we can find

∑k
i=1(ai − 1) = n − k linearly independent

eigenvectors of matrix L(G(a1, a2, . . . , ak)) which generate a linear subspace U of dimension n − k.
Now we choose an orthogonal basis of the orthogonal complement of U. It is constituted by the
transposes of k row vectors γi (1 ≤ i ≤ k), where γi is the vector whose coordinates on vertices

v ∈ Vi are 1 and elsewhere are 0, that is, γi = (0, . . . , 0,
ai︷  ︸︸  ︷

1, . . . , 1, 0, . . . , 0). It is easy to find that
L(G(a1, a2, . . . , ak))(γT

1 , γ
T
2 , . . . , γ

T
k ) = (γT

1 , γ
T
2 , . . . , γ

T
k )M, where M = (mi j) is a k × k matrix such that

mi j = 1 if i = j, mi j = −a j/
√

did j if i = j − 1 or i = j + 1, mi j = 0 otherwise. Hence Eq (2) holds.
�

Theorem 2.3. Given two positive integers k and n, and k − 2 positive rational numbers t2, t3, . . . , tdk/2e
and t′2, t

′
3, . . . , t

′
bk/2c, then all graphs in Υ(n; k)t′

t are cospectral with respect to the normalized Laplacian
if it is not an empty set.

Proof. We only need to consider the case |Υ(n; k)t′
t | ≥ 2. Let G(a1, a2, . . . , ak) and G(b1, b2, . . . , bk) be

two graphs in Υ(n; k)t′
t . Then, by Theorem 2.2,

Φ(L(G(a1, a2, . . . , ak)); x) = (x − 1)n−kΦ(M1; x)
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and
Φ(L(G(b1, b2, . . . , bk)); x) = (x − 1)n−kΦ(M2; x),

where M1 = (mi j)k×k and M2 = (m′i j)k×k are two tridigonal matrices satisfying mi j = m′i j = 1 if i = j

and mi j = −a j/
√

did j and m′i j = −b j/
√

d′i d
′
j if i = j − 1 or i = j + 1, and mi j = m′i j = 0 otherwise,

d1 = a2, d2 = a1 + a3, d3 = a2 + a4, . . . , dk−1 = ak−2 + ak, dk = ak−1, and d′1 = b2, d′2 = b1 + b3, d′3 =

b2 + b4, . . . , d′k−1 = bk−2 + bk, d′k = bk−1. Hence we need to show that Φ(M1; x) = Φ(M2; x).
Note that (a1, a2, . . . , ak) and (b1, b2, . . . , bk) are two solutions of the following equations:

x1 + x2 + · · · + xk = n,
x2i−1 = tix1 for i ≥ 2,
x2 j = t′jx2 for j ≥ 2.

It is not difficult to show that tridigonal matrices M1 and M2 satisfy mi,i+1mi+1,i = m′i,i+1m′i+1,i for i =

1, 2, · · · , k − 1. For example,

m12m21 = m′12m′21 =
1

1 + t2
,

m23m32 = m′23m′32 =
t2

(1 + t2)(1 + t′2)
,

m34m43 = m′34m′43 =
t2t′2

(1 + t′2)(t2 + t3)
,

and so on. By Lemma 2.1, M1 and M2 are cospectral. Hence the theorem has been proved. �

3. Examples

In this section, by using Theorem 2.3, we give some examples of cospectral graphs with respect to
the normalized Laplacian.

Note that the graphs with form of G(a1, a2) or G(b1, b2, b3) are complete bipartite graphs. Using
Theorem 2.2, it is not difficult to see that, if a1 + a2 = n and b1 + b2 + b3 = n, then

Φ(L(G(a1, a2)); x) = Φ(L(G(b1, b2, b3)); x) = (x − 1)n−2(x2 − 2x).

Hence we have the following.

Corollary 3.1 ( [19]). All complete bipartite graphs with n vertices are cospectral with respect to the
normalized Laplacian.

By Theorems 2.2 and 2.3, four graphs G(2, 12, 1, 4, 1),G(4, 9, 2, 3, 2),G(6, 6, 3, 2, 3), and
G(8, 3, 4, 1, 4) in Example 1.1 are cospectral with respect to the normalized Laplacian. Their
normalized Laplacian characteristic polynomial is

x20 − 20x19 +
4523
24

x18 −
4449

4
x17 +

13829
3

x16 −
42764

3
x15 +

68215
2

x14−

193843
3

x13 +
295009

3
x12 − 121264x11 +

1459601
12

x10 −
595205

6
x9 + 65481x8

−
103964

3
x7 +

86869
6

x6 − 4661x5 +
3340

3
x4 −

556
3

x3 +
153
8

x2 −
11
12

x.
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Example 3.2. It is not difficult to show that

Υ(24; 4)1
1 = {G(1, 11, 1, 11),G(2, 10, 2, 10),G(3, 9, 3, 9),G(4, 8, 4, 8),G(5, 7, 5, 7),G(6, 6, 6, 6)}.

By Theorems 2.2 and 2.3, all six graphs in Υ(24; 4)1
1 are cospectral with respect to the normalized

Laplacian. Their normalized Laplacian characteristic polynomial is

x24 − 24x23 +
1099

4
x22 −

3993
2

x21 +
20675

2
x20 − 40584x19 +

501999
4

x18 −
626943

2
x17+

643416x16 − 1098200x15 +
3142467

2
x14 − 1893749x13 + 1927341x12 − 1656344x11 +

2398275
2

x10−

727719x9 + 367251x8 − 152304x7 +
204079

4
x6 −

26925
2

x5 +
5387

2
x4 − 384x3 +

139
4

x2 −
3
2

x.

Example 3.3. It is not difficult to show that

Υ(60; 5)2
2,3 = {G(1, 18, 2, 36, 3),G(2, 16, 4, 32, 6),G(3, 14, 6, 28, 9),G(4, 12, 8, 24, 12),

G(5, 10, 10, 20, 15),G(6, 8, 12, 16, 18),G(7, 6, 14, 12, 21),G(8, 4, 16, 8, 24),G(9, 2, 18, 4, 27)}.

By Theorem 2.3, all nine graphs in Υ(60; 5)2
2,3 are cospectral with respect to the normalized Laplacian.

4. Conclusions

In this paper, we construct a class of graph Υ(n; k)t′
t , and proved that all graphs in Υ(n; k)t′

t are
cospectral graphs with respect to the normalized Laplacian. We also give some examples to verify our
results.
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