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Abstract: In this work, we numerically solve some different single and multi-asset European options
with the finite difference method (FDM) and take the advantages of the antithetic variate method
in Monte Carlo simulation (AMC) as a variance reduction technique in comparison to the standard
Monte Carlo simulation (MC) in the end point of the domain, and the linear boundary condition has
been implemented in other boundaries. We also apply the grid stretching transformation to make a
non-equidistance discretization with more nodal points around the strike price (K) which is the non-
smooth point in the payoff function to reduce the numerical errors around this point and have more
accurate results. Superiority of our method (GS&AMC) will be demonstrated by comparison with
the finite difference scheme with the equidistance discretization and the linear boundary conditions
(Equi&L), the grid stretching discretization around K with linear boundary conditions (GS&L) and
also the equidistance discretization with combination of the standard Monte Carlo simulation at the
end point of the domain (Equi&MC). Furthermore, the root mean square errors (RMSE) of these four
schemes in the whole region and the most interesting region which is around the strike price, have been
compared.
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1. Introduction

The well-known Black-Scholes (B-S) equation [1] for multi-asset option pricing is the following
d-dimensional partial differential equation (PDE):

∂v(S, t)
∂t

+
1
2

d∑
i, j=1

σiσ jρi jS iS j
∂2v(S, t)
∂S i∂S j

+ r
d∑

i=1

S i
∂v(S, t)
∂S i

− rv(S, t) = 0, (1.1)
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for (S, t) ∈ (0,∞)d × [0,T ) with the final condition v(S,T ) = vT (S), where v(S, t) is the value of the
option in the multi-asset S = (S 1, S 2, . . . , S d) at time t. T is the maturity time, σi is the volatility of
underlying asset S i, ρi j is the correlation between i-th and j-th assets, and r is the risk-free interest rate.

However most of the financial derivatives specially linear ones have analytical solutions, but they
are not often easy to implement. Therefore the numerical methods would be suitable to find numerical
approximations of them. Various numerical methods have been considered for one and
multi-dimensional Black-Scholes equations. For instance, mesh free methods [9], high-order option
pricing schemes [10, 14], alternating direction implicit schemes [2, 7] and etc. Furthermore, not only
the numerical methods are so common to implement for the financial derivatives, but also they have
been implemented for other variety problems and equations frequently [3, 11, 12, 15].

One of the most common and simple numerical methods to implement for solving PDEs is FDMs.
The main problem of FDMs for pricing multi-asset options with non-linear payoffs is significant
numerical errors around their boundary points and also the strike price K. Several studies have been
done to achieve an accurate numerical solution of multi-asset options. Jeong et al. [8] proposed a
useful remedy to reduce numerical error around Smax by using the standard Monte Carlo simulation at
this boundary point. Here we improved their methodology by using the antithetic variate method in
Monte Carlo simulation [4], and furthermore a space transformation [13, 16] that causes more nodal
points around the strike price to get more robust solution.

2. FDM for the two-asset B-S equation with combination of the GS and the MC simulation

Two-dimensional B-S equation with two assets x = S 1 and y = S 2 is the following PDE:

∂u
∂τ

=
1
2
σ2

xx2∂
2u
∂x2 +

1
2
σ2

yy2∂
2u
∂y2 + σxσyρ

∂2u
∂x∂y

+ rx
∂u
∂x

+ ry
∂u
∂y
− ru, (2.1)

for (x, y, τ) ∈ Ω × [0,T ) with the initial condition u(x, y, 0) = u0(x, y) which is the Eq (1.1) with d = 2
and a variable changing τ = T − t in the truncated domain Ω = (0, xmax) × (0, ymax). Suppose LBS is
the operator of the right hand side of Eq (2.1). Now we discretize the time interval with a uniform
time step ∆τ = T/Nτ and the following grid stretching transformation that makes non-uniform space
discretization of the interval [xmin, xmax] with more nodal points around K:

x = K
(
1 +

sinh(c2w + c1(1 − w))
15

)
, for w ∈ [0, 1], (2.2)

where c1 = arcsinh(15(xmin−K)/K) and c2 = arcsinh(15(xmax−K)/K). Therefore x(w) ∈ [xmin, xmax] for
any w ∈ [0, 1]. The grid stretching transformation by locating more nodal points around the strike price
K, leads to reduce the numerical errors around K for the options with non-smooth payoffs which can
be applied to even higher order finite difference methods in both single and multi-asset Black-Scholes
equations. At first for the x-direction, we discretize the interval [0, 1] uniformly to Nx sub-intervals,
then we use the transformation (2.2) in [0, xmax] and define hx

i = xi+1 − xi for i = 0, . . . ,Nx − 1. we
discretize the interval [0, ymax] to Ny sub-intervals similarly. Let for i = 0, . . . ,Nx, j = 0, . . . ,Ny and
n = 0, . . . ,Nτ define un

i j ≈ u(xi, y j, τn) and use the operator splitting method for solving Eq (2.1) with
the following two discrete fractional time step equations:

AIMS Mathematics Volume 7, Issue 3, 3771–3787.



3773

un+ 1
2

i j − un
i j

∆τ
= Lx

BS

(
αun+ 1

2
i j + βun

i j

)
, (2.3)

un+1
i j − un+ 1

2
i j

∆τ
= L

y
BS

(
αun+1

i j + βun+ 1
2

i j

)
, (2.4)

where α ≥ 0, β ≥ 0 and α + β = 1. We can choose different sets of values of α and β to achieve
us implicit or explicit schemes in both (2.3) and (2.4). These schemes have first-order accuracy in
general [5]. Here we take the implicit scheme by choosing α = 1 and β = 0 for both Eqs (2.3) and
(2.4) which leads to a consistent and stable scheme and thereby the scheme is convergent with the first

order of accuracy in time. Furthermore, with the operators
(
Lx

BS u
)n+ 1

2

i j
and

(
L

y
BS u

)n+1

i j
as follows, we

obtain the second order of accuracy in space as the central finite difference approximations have been
used for the space derivatives.

(
Lx

BS u
)n+ 1

2
i j =

(σxxi)2

2
Dxxu

n+ 1
2

i j +
σxσyρxiy j

2
Dxyun

i j + rxiDxu
n+ 1

2
i j −

r
2

un+ 1
2

i j , (2.5)

(
L

y
BS u

)n+1

i j
=

(σyy j)2

2
Dyyun+1

i j +
σxσyρxiy j

2
Dxyu

n+ 1
2

i j + ry jDyun+1
i j −

r
2

un+1
i j , (2.6)

where the derivatives approximations are defined as

Dxxui j ≈
2

hx
i−1(hx

i−1 + hx
i )

ui−1, j −
2

hx
i−1hx

i
ui j +

2
hx

i (hx
i−1 + hx

i )
ui+1, j, (2.7)

Dxyui j ≈
ui+1, j+1 − ui−1, j+1 − ui+1, j−1 + ui−1, j−1

hx
i hy

j + hx
i−1hy

j + hx
i hy

j−1 + hx
i−1hy

j−1

, (2.8)

Dxui j ≈ −
hx

i

hx
i−1(hx

i−1 + hx
i )

ui−1, j +
hx

i − hx
i−1

hx
i−1hx

i
ui j +

hx
i−1

hx
i (hx

i−1 + hx
i )

ui+1, j. (2.9)

By substituting above derivatives in Eq (2.3), the following equations will be achieved:

αiu
n+ 1

2
i−1, j = βiu

n+ 1
2

i, j + γiu
n+ 1

2
i+1, j = fi j, i = 1, . . . ,Nx, (2.10)

where αi, βi and γi are the lower, main and upper diagonal of the tridiagonal matrix of the above system
of equations respectively and fi j is the constant vector of the system which are defined as:

αi = −
(σxxi)2

hx
i−1(hx

i−1 + hx
i )

+
rxihx

i

hx
i−1(hx

i−1 + hx
i )
, (2.11)

βi =
1

∆τ
+

(σxxi)2

hx
i−1hx

i
−

rxi(hx
i − hx

i−1)
hx

i−1hx
i

+
r
2
, (2.12)

γi = −
(σxxi)2

hx
i (hx

i−1 + hx
i )
−

rxihx
i−1

hx
i (hx

i−1 + hx
i )
, (2.13)

f n
i j =

1
2
σxσyρxiy jDxyun

i j −
1

∆τ
un

i j, (2.14)
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for fixed j and the linear boundary condition at the boundaries. For instance u0 j = 2u1 j − u2 j, for
j = 1, . . . ,Ny and similarly for uNx, j, ui0 and ui,Ny or at the end point of the domain, we apply the Monte
Carlo simulation with the antithetic variate method (AMC) or the standard Monte Carlo simulation
(MC). The solution of the above system of equations will be the vector u

1
2
1:Nx, j

. Similarly by substituting
the derivatives approximations with respect to y in (2.4), we have another system of equations to solve
for finding the value of the two-asset option.

Note that with the AMC and the MC simulations we obtain the option value VAMC and VMC

respectively at time t = 0 and (x, y) = (xmax, ymax) as follow:

VAMC =
e−rT

M

M∑
m=1

[
1
2

(
Λ(Smax) + Λ(S̃max)

)]
, (2.15)

VMC =
e−rT

M

M∑
m=1

(Λ(Smax)) , (2.16)

where

Smax =

[
xmax × e

(
(r−Φ2

2 )T+Σ(1,:).z.
√

T
)
, ymax × e

(
(r−Φ2

2 )T+Σ(2,:).z.
√

T
)]
, (2.17)

S̃max =

[
xmax × e

(
(r−Φ2

2 )T−Σ(1,:).z.
√

T
)
, ymax × e

(
(r−Φ2

2 )T−Σ(2,:).z.
√

T
)]
, (2.18)

and M is the number of replications in the antithetic and the standard Monte Carlo simulation which
in this work we choose M = 106, Λ is a payoff function, z, Σ and Φ are the random vector from a
standard normal distribution, the volatility matrix and a vector with the size of multi-asset respectively.
For instance, for the case of two-asset Σ and Φ are as follows:

Σ =

[
σ11 σ12

σ21 σ22

]
, (2.19)

Φ =
√

diag(Σ × Σ′) =

[ √
σ11 × σ12√
σ21 × σ22

]
, (2.20)

where the elements of the volatility matrix will be obtained by solving the following system of
equations:

σx =

√
σ2

11 + σ2
12, (2.21)

σy =

√
σ2

21 + σ2
22, (2.22)

ρ =
σ11σ21 + σ12σ22√

(σ2
11 + σ2

12)(σ2
21 + σ2

22)
. (2.23)

Then with the exponential interpolation between V (which is VAMC or VMC) and the payoff value u0
Nx,Ny

,
we obtain the option price at the end point of the domain for every time step:

un
Nx,Ny

= u0
Nx,Ny

 V
u0

Nx,Ny


n∆τ
T

, n = 0, . . . ,Nτ. (2.24)
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3. Numerical results

Here we solve numerically the B-S equation in one and two-dimensional space for different options
with these parameters: T = 1, K1 = K2 = 100, r = 0.03, σx = σy = 0.3, ρ = 0.5.

3.1. Power option

A power call option has a payoff max(xp−K, 0) where p ∈ R+ is a power. The closed-form solution
of the power option is given by [18]:

u(x, τ) = xpe(p−1)(r+pσ2/2)τN(d1) − Ke−rτN(d2) (3.1)

where

d1 =
ln

(
x

p√K

)
+(r+(p−0.5)σ2)τ
σ
√
τ

, d2 = d1 − pσ
√
τ. (3.2)

Note that the power option with p = 1 is the call option. Figure 1 shows the comparison of the
numerical errors of one-asset power call option with different schemes: The equidistance
discretization in space with the linear boundary condition (Equi&L), the grid stretching discretization
around the strike price with linear boundary condition (GS&L), the equidistance discretization in
space with Monte Carlo simulation at S max (Equi&MC) and the grid stretching discretization with the
antithetic Monte Carlo simulation at S max (GS&AMC).

Table 1 shows the RMSE of the power option with Nx = 250 and ∆τ = 1
720 for p = 1, p = 2

and p = 3 in the whole domain Ω = (0, S max) and the interesting domain around the strike price
Ωe = [0.7 p√K, 1.3 p√K] for the different schemes and different S max. Keep in mind that in the grid
stretching transformation (2.2) we must substitute p√K instead of K. We can see the MC and AMC
simulation at the end point of the domain reduce RMSE significantly for bigger p and none of the GS,
MC and AMC improve the accuracy of the numerical approximation for the call option (p = 1).

3.2. European call option on the maximum of two assets

Now we consider a European call option on the maximum of two assets with the payoff u(x, y, 0) =

max{max{x, y}−K, 0}. Then the following exact analytical solutions of the option [17] will be compared
to the numerical solutions.

u(x, y, τ) =xM (d1, d; ρ1) + yM
(
d2,−d + σ

√
τ; ρ2

)
(3.3)

− Ke−rτ
[
1 − M

(
−d1 + σ1

√
τ,−d2 + σ2

√
τ; ρ

)]
,

where M is the cumulative bivariate normal distribution function and defined as

M(a, b; ρ) =
1

2π
√

1 − ρ2

∫ b

−∞

∫ a

−∞

exp
(
−

x2 − 2ρxy + y2

2(1 − ρ2)

)
dxdy , (3.4)

and other parameters are as follows:

d1 =
ln( x

K )+

(
r+

σ2
x

2

)
T

σx
√

T
, d2 =

ln( y
K )+

(
r+

σ2
y

2

)
T

σy
√

T
, d =

ln
(

x
y

)
+σ2

2 T

σ
√

T
, (3.5)
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σ =
√
σ2

x + σ2
y − 2ρσxσy , ρ1 = (σx − ρσy)/σ , ρ2 = (σy − ρσx)/σ. (3.6)

Figure 2 shows the comparison of the numerical solutions of the call option on the maximum of two
assets with the different schemes and (xmax, ymax) = (250, 250).

Now in Table 2 we compare the RMSE of these four schemes in the whole region Ω = (0, xmax) ×
(0, ymax) and in the most interesting region ΩK = (0.7K, 1.3K) × (0.7K, 1.3K) with different domain
sizes (xmax, ymax) = (L, L) and Nx = Ny = L at t = 0.

3.3. European call on the minimum of two assets

A European call on the minimum of two assets has the payoff u(x, y, 0) = max{min{x, y} − K, 0} and
the closed form solution as follows [17]

u(x, y, τ) =xM (d1,−d;−ρ1) + yM
(
d2, d − σ

√
τ;−ρ2

)
(3.7)

− Ke−rτM
(
d1 − σ1

√
τ, d2 − σ2

√
τ; ρ

)
.

where its parameters are the same as the European call option on the maximum of two assets. In Figure
3 and Table 3 we compare the four above mentioned schemes for this two-asset option.

3.4. Two-asset correlation call option

Here we consider a two-asset correlation call option wich pays off:

u(x, y, 0) =

{
y − K2 , if x > K1

0 , otherwise
(3.8)

This option has been priced by [18]:

u(x, y, τ) = yM
(
dy + σy

√
τ, dx + ρσy

√
τ; ρ

)
− Ke−rτM

(
dy, dx; ρ

)
, (3.9)

where ρ is the correlation coefficient between the returns on the two assets and

dx =
ln( x

K )+

(
r−σ

2
x

2

)
T

σx
√

T
, dy =

ln( y
K )+

(
r−

σ2
y

2

)
T

σy
√

T
. (3.10)

Now we solve numerically this option. Figure 4 shows the comparison of the numerical solutions of
two-asset correlation call option with the different schemes.

Table 4 shows the RMSE of the equidistance discretization (Equi) and the grid stretching
discretization around the strike price with Monte Carlo simulation at the last point of the boundary
(xmax, ymax) = (L, L) (GS&MC)with different L in the whole region Ω = [0, L] × [0, L] and the most
interesting region ΩK = [0.7K, 1.3K] × [0.7K, 1.3K] respectively.
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Figure 1. One-asset power call option with p = 2, S max =
√

250, Nx = 250 and ∆τ =
1

720 , exact option price (top-left), payoff (top-right), Equi&L error (middle-left), GS&L error
(middle-right), Equi&MC error (bottom-left) and GS&AMC error (bottom-right).
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Figure 2. Call option on the maximum of two assets with Nx = Ny = 250 and ∆τ = 1
720 exact

option price (top-left), payoff (top-right), Equi&L error (middle-left), GS&L error (middle-
right), Equi&MC error (bottom-left) and GS&AMC error (bottom-right).
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Figure 3. Call option on the minimum of two assets with (xmax, ymax) = (250, 250),
Nx = Ny = 250 and ∆τ = 1

720 exact option price (top-left), payoff (top-right), Equi&L error
(middle-left), GS&L error (middle-right), Equi&MC error (bottom-left) and GS&AMC error
(bottom-right).
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Figure 4. Two-asset correlation call option with (xmax, ymax) = (250, 250), Nx = Ny = 250
and ∆τ = 1

720 , exact option price (top-left), payoff (top-right), Equi&L error (middle-left),
GS&L error (middle-right), Equi&MC error (bottom-left) and GS&AMC error (bottom-
right).
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Table 1. RMSE for the power call option.

S max 150 200 250 300 350 400 450

Equi&L 0.3452 0.0271 0.0024 0.0009 0.0008 0.0008 0.0008
p=1 GS&L 0.2737 0.0165 0.0022 0.0017 0.0016 0.0016 0.0015
Ω Equi&MC 0.0457 0.0172 0.0072 0.0511 0.0148 0.0038 0.0419

GS&AMC 0.0457 0.0033 0.0032 0.0023 0.0023 0.0017 0.0024

Equi&L 0.1505 0.0015 0.0015 0.0016 0.0017 0.0018 0.0019
p=1 GS&L 0.1122 0.0027 0.0024 0.0022 0.0021 0.0021 0.0020
ΩK Equi&MC 0.0563 0.0016 0.0015 0.0016 0.0017 0.0018 0.0019

GS&AMC 0.0472 0.0023 0.0024 0.0022 0.0021 0.0021 0.0020

S max
√

150
√

200
√

250
√

300
√

350
√

400
√

450

Equi&L 6.8424 6.8064 7.7089 8.9340 10.2820 11.6811 13.1029
p=2 GS&L 8.4653 6.1009 5.8106 6.0578 6.4852 6.9842 7.5149
Ω Equi&MC 0.2272 0.0685 0.0319 0.0205 0.0457 0.0926 0.0863

GS&AMC 0.3311 0.0253 0.0244 0.0345 0.0266 0.0364 0.0348

Equi&L 10.4749 5.5909 2.9152 1.7040 1.0414 0.6631 0.4350
p=2 GS&L 9.6261 4.6061 2.3610 1.3371 0.8022 0.5133 0.3308
ΩK Equi&MC 0.3478 0.0661 0.0193 0.0170 0.0115 0.0161 0.0106

GS&AMC 0.3765 0.0245 0.0165 0.0203 0.0146 0.0117 0.0081

S max
3√150 3√200 3√250 3√300 3√350 3√400 3√450

Equi&L 19.3431 22.0844 25.8076 29.9848 34.3954 38.9355 43.5521
p=3 GS&L 28.5178 25.4178 25.0462 25.8940 27.3175 29.0375 30.9201
Ω Equi&MC 1.2650 0.6127 0.4785 0.3064 0.3175 0.2029 0.1936

GS&AMC 1.9696 0.9038 0.5715 0.3920 0.3462 0.2689 0.2511

Equi&L 31.1024 33.1054 28.4051 21.9288 17.3308 14.1742 11.8378
p=3 GS&L 32.8550 28.7798 23.0077 17.4396 13.9633 11.2298 9.3862
ΩK Equi&MC 2.0303 0.9183 0.6883 0.4127 0.3427 0.2148 0.1607

GS&AMC 2.2680 1.0233 0.6413 0.4100 0.3167 0.2264 0.1849

Table 2. RMSE of call on the maximum of two assets.

L 150 200 250 300
Equi&L 12.1428 16.9562 22.3907 28.4710
GS&L 9.1971 5.7377 5.4052 5.5654

Ω Equi&MC 2.6188 3.0868 3.8931 4.6910
GS&AMC 2.2287 1.5009 1.7865 2.0569

Equi&L 8.5065 0.7793 0.0690 0.0084
GS&L 6.1609 0.4476 0.0354 0.0051

ΩK Equi&MC 2.1547 0.2287 0.0225 0.0048
GS&AMC 1.9339 0.1858 0.0178 0.0040
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Table 3. RMSE of call on the minimum of two assets.

L 150 200 250 300
Equi&L 11.4121 16.5529 21.9750 28.0137
GS&L 8.7458 5.6337 5.1434 5.1969

Ω Equi&MC 0.9972 1.4289 1.8595 3.7692
GS&AMC 0.8470 0.7205 0.6078 0.5893

Equi&L 8.2864 0.7763 0.0666 0.0062
GS&L 5.9848 0.4443 0.0330 0.0030

ΩK Equi&MC 1.0381 0.1382 0.0128 0.0029
GS&AMC 0.6490 0.0951 0.0087 0.0016

Table 4. RMSE for the correlation call option.

L 150 200 250 300
Equi&L 0.8040 0.5688 0.6639 0.7581
GS&L 0.7340 0.6739 0.9008 0.9729

Ω Equi&MC 0.2578 0.3740 0.5793 0.8419
GS&AMC 0.1999 0.5024 0.8245 0.8788

Equi&L 0.2386 0.1022 0.1023 0.1023
GS&L 0.1803 0.0213 0.0181 0.0108

ΩK Equi&MC 0.2582 0.1255 0.1047 0.1026
GS&AMC 0.2355 0.0474 0.0171 0.0110

3.5. Two-asset butterfly option

A butterfly option can be regarded as a combination of two long calls with strikes K1 and K2 and
two short calls both with strike K = (K1 + K2)/2. Thus, for given values K1,K2 > 0 with K1 < K2, the
payoff of a two-asset European butterfly option is:

u(x, y, 0) = max{max{x, y} − K1, 0} + max{max{x, y} − K2, 0} (3.11)
−2max{max{x, y} − K, 0},

and has the following analytical solution:

u(x, y, τ) = x
[
M

(
d(1)

1 , d; ρ1

)
− 2M (d1, d; ρ1) + M

(
d(2)

1 , d; ρ1

)]
+ y

[
M

(
d(1)

2 ,−d + σ
√
τ; ρ2

)
− 2M

(
d2,−d + σ

√
τ; ρ2

)
+ M

(
d(2)

2 ,−d + σ
√
τ; ρ2

)]
− K1e−rτ

[
1 − M

(
−d(1)

1 + σx
√
τ,−d(1)

2 + σy
√
τ; ρ

)]
+ 2Ke−rτ

[
1 − M

(
−d1 + σx

√
τ,−d2 + σy

√
τ; ρ

)]
− K2e−rτ

[
1 − M

(
−d(2)

1 + σx
√
τ,−d(2)

2 + σy
√
τ; ρ

)]
,

where the M(a, b; ρ) is the cumulative bivariate normal distribution function (3.4) and other parameters
are defined in (3.5) and (3.6). where d(i)

1 and d(i)
2 will be obtained by substituting Ki in 3.5 for i = 1, 2.
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Here we consider a two-asset butterfly option with K1 = 50, K2 = 150. Figure 5 shows the
comparison of the numerical solutions of the two-asset butterfly option with the equidistance and the
grid stretching discretization schemes. Since u0

Nx,Ny
= 0 we can not use the Monte Carlo simulation at

the end point of the domain in (2.24).

Figure 5. Two-asset butterfly option with K1 = 50,K2 = 150, (xmax, ymax) = (250, 250),
Nx = Ny = 250 and ∆τ = 1

720 , exact option price (top-left), payoff (top-right), Equi error
(bottom-left), GS error (bottom-right).

Now in Table 5 we compare the RMSE of the equidistance discretization (Equi) and the grid
stretching discretization (GS) for the space in the whole region Ω = (xmax, ymax) and the most
interesting region ΩK = [0.7K1, 1.3K2] × [0.7K1, 1.3K2] with different domain sizes
(xmax, ymax) = (L, L) and Nx = Ny = L at t = 0. We can see in this option the GS scheme does not have
any superiority over Equi for the bigger domain.
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Table 5. RMSE for the two-asset butterfly option.

L 200 250 300 350
Equi 1.0136 0.2986 0.2065 0.1753

Ω GS 0.5842 0.2733 0.2258 0.1946
Equi 0.8978 0.0174 0.0043 0.0042

ΩK GS 0.5099 0.0098 0.0052 0.0049

3.6. Two-asset cash-or-nothing call option

The payoff function of a two-asset cash-or-nothing option is given by

u(x, y, 0) =

{
c, if x ≥ K1, y ≥ K2

0, otherwise,
(3.12)

which c is a constant. The closed form solution for the two-asset cash-or-nothing option is as follows

u(x, y, τ) = ce−rτM(dx, dy; ρ), (3.13)

where M(a, b; ρ) is the cumulative bivariate normal distribution function (3.4) and dx and dy are the
same as (3.10). Now we consider a two-asset cash-or-nothing call option with c = 100, then the
exact analytical solutions of the option [6] will be compared to the numerical solutions. Figure 6
shows the comparison of the numerical solutions of the option with the different four schemes and also
Table 6 demonstrates the RMSE of the four schemes with different domain sizes (xmax, ymax) = (L, L),
Nx = Ny = L and ∆τ = 1

720 in the whole region Ω and the in interesting region ΩK . Since the payoff of
this option is constant at the end point of the domain, we can see that the MC and AMC simulations
do not have any superiority for the bigger domain.

Table 6. RMSE for the cash-or-nothing call option.

L 150 200 250 300
Equi&L 3.6561 1.1174 0.9870 0.9458
GS&L 3.0292 0.6828 0.5302 0.3400

Ω Equi&MC 1.3850 1.0302 0.9847 0.9462
GS&AMC 1.1707 0.6454 0.5294 0.3400

Equi&L 0.0429 0.0218 0.0217 0.0217
GS&L 0.0237 0.0051 0.0042 0.0024

ΩK Equi&MC 0.0250 0.0217 0.0217 0.0217
GS&AMC 0.0047 0.0050 0.0042 0.0024
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Figure 6. Two-asset cash-or-nothing call option with (xmax, ymax) = (250, 250), Nx =

Ny = 250 and ∆τ = 1
720 , exact option price (top-left), payoff (top-right), Equi&L error

(middle-left), GS&L error (middle-right), Equi&MC error (bottom-left) and GS&AMC error
(bottom-right).
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4. Conclusions

We applied the FDM for solving numerically one and two-dimensional B-S equations with
different space discretization and boundary conditions. Also, RMSE has been applied for estimating
error of the method as it is common to use and consider the numerical errors for all nodal points of the
region. Numerical experiments illustrated that by applying the antithetic Monte Carlo simulation for
the end point of the space domain and discretization with grid stretching to put more nodal points
around the non-smooth point of the payoff function, we obtained more accurate numerical solutions in
the considered exotic options with non-constant payoff at the end point of the space domain. These
remedies can be considered and implemented for other options, higher dimensional models, nonlinear
B-S equations and also other financial derivatives.
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