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1. Introduction and main results

In this paper, we assume that the reader is familiar with the basic notions of Nevanlinna’s value
distribution theory, see [6, 10, 14, 15]. In the following, a meromorphic function means meromorphic
in the whole complex plane. By S (r, f ), we denote any quantity satisfying S (r, f ) = o(T (r, f )) as
r → ∞, possible outside of an exceptional set E with finite logarithmic measure

∫
E

dr/r < ∞. A
meromorphic function a(z) is said to be a small function of f (z) if it satisfies T (r, a) = S (r, f ). If a(z)
is an entire function, then a(z) is called an entire small function of f (z). We say that two nonconstant
meromorphic functions f (z) and g(z) share small function a(z) CM(IM), if f (z) − a(z) and g(z) − a(z)
have the same zeros counting multiplicities (ignoring multiplicities ).

Let f (z) be a nonconstant meromorphic function. Define

ρ( f ) = lim
r→∞

log+ T (r, f )
log r

,

ρ2( f ) = lim
r→∞

log+ log+ T (r, f )
log r

,

µ(g) = lim
r→∞

log+ T (r, f )
log r

,
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by the order, the hyper-order and the lower order of f (z), respectively.
If a meromorphic function f (z) satisfies

ρ( f ) = µ( f ) = lim
r→∞

log+ T (r, f )
log r

,

then we say that f (z) is of regular growth.
The exponents of convergence of zeros and poles of f (z) are defined by

λ( f ) = lim
r→∞

log+ N
(
r, 1

f

)
log r

,

and

λ

(
1
f

)
= lim

r→∞

log+ N(r, f )
log r

.

Let a(z) be an entire small function of f (z). The exponent of convergence of zeros of f (z) − a(z) is
defined by

λ( f − a) = lim
r→∞

log+ N
(
r, 1

f−a

)
log r

.

If

lim
r→∞

log+ N
(
r, 1

f−a

)
log r

< ρ( f ),

for ρ( f ) > 0; and N
(
r, 1

f−a

)
= O(log r), for ρ( f ) = 0, then a(z) is called a Borel exceptional value of

f (z). If a = ∞, then N
(
r, 1

f−a

)
is replaced by N(r, f ).

In addition, we also use the following notations [15]. We denote by Nk)(r, f ) the counting function
for poles of f (z) with multiplicity ≤ k, and by Nk)(r, f ) the corresponding one for which multiplicity is
not counted. Let N(k(r, f ) be the counting function for poles of f (z) with multiplicity ≥ k and N(k(r, f )
be the corresponding one for which multiplicity is not counted. Set

Nk(r, f ) = N(r, f ) + N(2(r, f ) + · · · + N(k(r, f ).

Similarly, we have the notations:

Nk)

(
r,

1
f

)
,Nk)

(
r,

1
f

)
,N(k

(
r,

1
f

)
,N(k

(
r,

1
f

)
,Nk

(
r,

1
f

)
, · · · .

Let f (z) and g(z) be two nonconstant meromorphic functions and f (z) and g(z) share 1 IM. We
denote by NL

(
r, 1

f−1

)
the counting function for 1-points of both f (z) and g(z) about which f (z) has

larger multiplicity than g(z), with multiplicity being not counted [16]. Similarly, we have the notation
NL

(
r, 1

g−1

)
. Especially, if f (z) and g(z) share 1 CM, then

NL

(
r,

1
f − 1

)
= NL

(
r,

1
g − 1

)
= 0.
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If

N
(
r,

1
f − a

)
+ N

(
r,

1
f − b

)
− 2N(r, a) ≤ S (r, f ) + S (r, g)

or

N
(
r,

1
f − a

)
+ N

(
r,

1
f − b

)
− 2N(r, a) ≤ S (r, f ) + S (r, g),

then we call that f (z) and g(z) share a CM or IM almost.
For a nonzero complex constant η, we define the difference operators of f (z) as 4η f (z) = f (z + η)−

f (z) and 4n
η f (z) = 4η(4n−1

η f (z)), where n(≥ 2) is an integer.
Let

L(z, f ) = b1(z) f (z + c1) + b2(z) f (z + c2) + · · · + bn(z) f (z + cn), (1.1)

where bi(z)(. 0) (i = 1, 2, · · · , n) are small functions of f (z), and ci (i = 1, 2, · · · , n) are distinct finite
complex numbers.

In 1996, Brück [1] investigated the uniqueness question of entire functions sharing one value with
its first derivatives and posed the following conjecture.

Conjecture 1. Let f (z) be a nonconstant entire function satisfying ρ2( f ) < +∞, which is not a positive
integer, and let a be a finite value. If f (z) and f ′(z) share a CM, then

f ′(z) − a = c( f (z) − a),

where c , 0.

Brück proved that the conjecture is true provided a , 0 and N(r, 1
f ′ ) = S (r, f ) or a = 0.However, this

conjecture is still an open question. Recently, many authors considered the uniqueness of meromorphic
functions sharing a small function with their difference operators. For example, Liu and Yang [12]
proved the following result.

Theorem A. Let f (z) be a transcendental entire function such that ρ( f ) < 1, let n be a positive integer,
let a be a finite value, and let η be a nonzero complex number. If f (z) and ∆n

η f (z) share a CM, then

∆n
η f − a = c( f − a),

where c is a nonzero finite complex number.

But Zhang et al. [18] found that such probability in the conclusion of Theorem A does not exist.
They obtained the following result.

Theorem B. Let f (z) be a transcendental entire function such that ρ( f ) < 1, let n be a positive integer,
and let a and η be two finite values. Then f (z) and ∆n

η f (z) can not share a CM.

In the proof of Theorem A, it is easy to know that the hypothesis ρ( f ) < 1 plays an important role.
Zhang, Kang and Liao [18] posed the following question: If ρ( f ) < 1 is replaced by ρ( f ) ≥ 1 in
Theorem A, Theorem A is valid or not?
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In this direction, Zhang et al. [18] proved the following result.

Theorem C. Let f (z) be a transcendental entire function such that ρ( f ) < 2, let n be a positive integer,
let a and η be two nonzero constants, and let λ( f − a) < ρ( f ). If f (z) and ∆n

η f (z) share a CM, then

f (z) = a + becz,

where b, c are two nonzero constants such that ec = 1.

But Zhang et al. [17] found out such probability in Theorem C does not exist. They proved the
following result.

Theorem D. Let f (z) be a transcendental entire function with ρ2( f ) < 1, let L(z, f ) be a linear
difference polynomial of the form (1.1) with bi(z)(. 0) (i = 1, 2, · · · , n) are entire small functions of
f (z), and let a(z) be an entire small function of f (z) satisfying a(z) . L(z, a) and L(z, f ) . L(z, a). If
δ(a, f ) = 1, then f (z) and L(z, f ) can not share either a(z) or L(z, a) CM.

By Theorem D, it is naturally to pose the following question.

Question 1: If a(z), bi(z)(. 0) (i = 1, 2, · · · , n) are entire small functions of f (z) is replaced by
a(z), bi(z)(. 0) (i = 1, 2, · · · , n) are small functions of f (z), and f (z) and L(z, f ) can not share either
a(z) or L(z, a) CM is replaced by f (z) and L(z, f ) can not share either a(z) or L(z, a) IM in Theorem D,
Theorem D is valid or not?

In this paper, we give a positive answer to Question 1, and prove the following result.

Theorem 1. Let f (z) be a transcendental entire function with ρ2( f ) < 1, let L(z, f ) be a linear
difference polynomial of the form (1.1) with bi(z)(. 0) (i = 1, 2, · · · , n) are small functions of f (z), and
let a(z) be a small function of f (z) satisfying a(z) . L(z, a) and L(z, f ) . L(z, a). If δ(a, f ) = 1, then
f (z) and L(z, f ) can not share either a(z) or L(z, a) IM.

Corollary 2. Let f (z) be a transcendental entire function with ρ2( f ) < 1, let L(z, f ) be a linear
difference polynomial of the form (1.1) with bi(z)(. 0) (i = 1, 2, · · · , n) are small functions of f (z),
and let a(z) be a small function of f (z) satisfying a(z) . L(z, a) and L(z, f ) . L(z, a). If a(z) is a Borel
exceptional small entire function of f (z), then f (z) and L(z, f ) can not share either a(z) or L(z, a) IM.

Li and Yi [11] proved the following result.

Theorem E. Let f (z) be a transcendental entire function with λ( f ) < ρ( f ) < +∞, let a(z)(. 0) be an
entire small function of f (z) satisfying ρ(a) < ρ( f ), let η be a nonzero complex number, and let n be a
positive integer. If f (z) and ∆n

η f (z) share a(z) CM, then ρ( f ) = 1, and ∆n
η f (z) ≡ f (z).

Zhang et al. [19] improved Theorem E as follows.

Theorem F. Let f (z) be a transcendental entire function with λ( f ) < ρ( f ) < +∞, let a(z)(. 0) be an
entire small function of f (z) satisfying ρ(a) < ρ( f ), let η be a nonzero complex number, and let n be a
positive integer. If f (z) and ∆n

η f (z) share a(z) CM, then f (z) = cec1z, where c and c1 are two nonzero
constants.

Recently, Zhang et al. [17] proved

Theorem G. Let f (z) be a transcendental entire function with ρ2( f ) < 1, let a1(z), a2(z) be two entire
small functions of f (z) satisfying a1(z) . a2(z) and ρ(a j) < 1( j = 1, 2), and let L(z, f ) be a linear
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difference polynomial of the form (1.1) with bi(z)(. 0) are entire small functions of f (z), ρ(bi) < 1
(i = 1, 2, · · · , n), and a1(z) . L(z, a2(z)). If δ(a2, f ) + δ(a2, L(z, f )) > 1, and f (z) and L(z, f ) share a1(z)
CM, then f (z) ≡ L(z, f ).

In this paper, we improve Theorems E–G as follows.

Theorem 3. Let f (z) be a transcendental entire function with ρ2( f ) < 1, let a1(z), a2(z) be two small
functions of f (z) satisfying a1(z) . a2(z), and let L(z, f ) be a linear difference polynomial of the form
(1.1) with bi(z)(. 0) (i = 1, 2, · · · , n) are small functions of f (z), and a1(z) . L(z, a2(z)). If δ(a2, f ) +

δ(a2, L(z, f )) > 1, and f (z) and L(z, f ) share a1(z) CM, then L(z, f ) ≡ f (z).

Corollary 4. Let f (z) be a transcendental entire function with λ( f ) < ρ( f ) < +∞, let a(z) be an entire
small function of f (z) such that a(z) . 0, let n be a positive integer, and let η be a nonzero finite value.
If f (z) and ∆n

η f (z) share a(z) IM, then f (z) = cec1z, where c and c1 are two nonzero constants.
By Corollary 4, we remove the condition ρ(a) < ρ( f ) in Theorem F.

2. Preliminary lemmas

For the proof of our results, we need the following lemmas.

Lemma 2.1. [2, 3, 7–9] Let f (z) be a meromorphic function with ρ( f ) < +∞, and let c be a nonzero
finite constant. Then

m
(
r,

f (z + c)
f (z)

)
= S (r, f ).

Lemma 2.2. [13, 14] Let f (z) be a nonconstant meromorhic function, and let a0, a1, · · · , an be small
functions of f (z) such that an . 0. Then

T (r, an f n + · · · + a2 f 2 + a1 f + a0) = nT (r, f ) + S (r, f ).

Lemma 2.3. [14] Let f (z) and g(z) be two nonconstant meromorphic functions, and let ρ( f ) and ρ(g)
be the order of f (z) and g(z), respectively. Then we have

ρ( f · g) ≤ max{ρ( f ), ρ(g)}.

Lemma 2.4. [14] Let f (z) and g(z) be two nonconstant meromorphic functions, let ρ( f ) be the order
of f (z), and let µ(g) be the lower order of g(z). If ρ( f ) < µ(g), then we have

T (r, f ) = o(T (r, g)).

Lemma 2.5. [5] Let f (z) and g(z) be two meromorphic functions. If f (z) and g(z) share 1 IM. Then
one of the following cases must occur:

(1)

T (r, f ) + T (r, g) ≤2
[
N2(r, f ) + N2(r, g) + N2

(
r,

1
f

)
+ N2

(
r,

1
g

)]
+3NL

(
r,

1
f − 1

)
+ 3NL

(
r,

1
g − 1

)
+ S (r, f ) + S (r, g);
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(2) f =
(b+1)g+(a−b−1)

bg+(a−b) , where a(, 0) and b are two constants.

Lemma 2.6. [4] Let n be a positive integer, let f (z) be a transcendental meromorphic function of finite
order with two Borel exceptional values 0 and∞, and let η be a nonzero constant such that ∆n

η f (z) . 0.
If f (z) and ∆n

η f (z) share 0,∞ CM, then f (z) = ecz+c1 , where c(, 0), c1 are two constants.

Lemma 2.7. Let f (z) be a nonconstant entire function with ρ( f ) < +∞, and let a(z) be a small entire
function of f (z). If λ( f − a) < ρ( f ), then δ(a, f ) = 1.

Proof. We consider two cases.
Case 1. ρ( f ) > 0. Since λ( f − a) < ρ( f ), then

f − a = HeQ,

where H is the canonical product of zeros of f − a, and Q is a nonzero polynomial.
Since a(z) is a small entire function of f (z) and λ( f − a) < ρ( f ), by Hadamard’s factorization

theorem, we have ρ(H) = λ(H) = λ( f − a) < ρ( f ).
Obviously, T (r, f − a) = T (r, f ) + S (r, f ). So we get ρ( f − a) = ρ( f ).
From Lemma 2.3 and eQ is of regular growth, we obtain

ρ(H) < ρ( f ) = ρ( f − a) ≤ max{ρ(H), ρ(eQ)} = ρ(eQ),

and
ρ(eQ) ≤ max{ρ(H), ρ( f )} = ρ( f ).

It follows that ρ( f ) = ρ(eQ) = µ(eQ). From Lemma 2.4, we get T (r,H) = o(T (r, eQ)). Then we have

T (r, f ) =T (r, f − a) + S (r, f )
=T (r,HeQ) + S (r, f )
≤T (r,H) + T (r, eQ) + S (r, f )
≤T (r, eQ) + S (r, f ) + S (r, eQ).

We also get T (r, eQ) ≤ T (r, f ) + S (r, f ) + S (r, eQ). Then we obtain T (r, f ) = T (r, eQ) + S (r, f ). So we
have

δ(a, f ) = 1 − lim
r→∞

N
(
r, 1

f−a

)
T (r, f )

≤ 1 − lim
r→∞

N
(
r, 1

H

)
T (r, eQ)

= 1.

Case 2. ρ( f ) = 0. As defined in the introduction, when ρ( f ) = 0, the number of zeros of f − a is
finite. We obtain N

(
r, 1

f−a

)
= o(T (r, f )). So we have δ(a, f ) = 1.

This completes the proof of Lemma 2.7. �

Lemma 2.8. [6, 13–15] Let f (z) be a transcendental meromorphic function, then

lim
r→∞

T (r, f )
log r

= ∞.
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3. Proof of Theorem 1

Considering that f (z) is a transcendental entire function with ρ2( f ) < 1 and by Lemma 2.1, we have

m
(
r,

1
f − a

)
= m

(
r,

L(z, f ) − L(z, a)
f − a

·
1

L(z, f ) − L(z, a)

)
≤ m

(
r,

1
L(z, f ) − L(z, a)

)
+ S (r, f ), (3.1)

Then we obtain
m

(
r, 1

f−a

)
T (r, f )

≤
m

(
r, 1

L(z, f )−L(z,a)

)
T (r, L(z, f ))

·
T (r, L(z, f ))

T (r, f )
+

S (r, f )
T (r, f )

.

Thus we get

lim
r→∞

m
(
r, 1

f−a

)
T (r, f )

≤ lim
r→∞

m
(
r, 1

L(z, f )−L(z,a)

)
T (r, L(z, f ))

· lim
r→∞

T (r, L(z, f ))
T (r, f )

+ lim
r→∞

S (r, f )
T (r, f )

.

Then from δ(a, f ) = 1, we obtain

1 = δ(a, f ) ≤ δ(L(z, a), L(z, f )) ≤ 1. (3.2)

So we have δ(a, f ) = δ(∞, f ) = 1, δ(L(z, a), L(z, f )) = δ(∞, L(z, f )) = 1. Suppose f and L(z, f ) share
a(z) IM. So we have

N
(
r,

1
L(z, f ) − a

)
= N

(
r,

1
f − a

)
≤ N

(
r,

1
f − a

)
= S (r, f ). (3.3)

From the Nevanlinna’s second fundamental theorem, we have

T (r, L(z, f ))

≤N
(
r,

1
L(z, f ) − a

)
+ N

(
r,

1
L(z, f ) − L(z, a)

)
+ N(r, L(z, f )) + S (r, L(z, f ))

≤N
(
r,

1
L(z, f ) − a

)
+ S (r, L(z, f ))

=N1)

(
r,

1
L(z, f ) − a

)
+ N(2

(
r,

1
L(z, f ) − a

)
+ S (r, L(z, f ))

≤N1)

(
r,

1
L(z, f ) − a

)
+

1
2

N(2

(
r,

1
L(z, f ) − a

)
+ S (r, L(z, f ))

≤N1)

(
r,

1
L(z, f ) − a

)
+

1
2

[
N

(
r,

1
L(z, f ) − a

)
− N1)

(
r,

1
L(z, f ) − a

)]
+S (r, L(z, f ))

≤
1
2

N
(
r,

1
L(z, f ) − a

)
+

1
2

N1)

(
r,

1
L(z, f ) − a

)
+ S (r, L(z, f ))

≤
1
2

T (r, L(z, f )) +
1
2

N1)

(
r,

1
L(z, f ) − a

)
+ S (r, L(z, f )).

AIMS Mathematics Volume 7, Issue 3, 3731–3744.



3738

It follows that

N
(
r,

1
L(z, f ) − a

)
= T (r, L(z, f )) + S (r, L(z, f )). (3.4)

By (3.3) and (3.4), we get
T (r, L(z, f )) = S (r, f ). (3.5)

From (3.1), we obtain

T (r, f ) =m
(
r,

1
f − a

)
+ S (r, f )

≤m
(
r,

1
L(z, f ) − L(z, a)

)
+ S (r, f )

≤T (r, L(z, f )) + S (r, f ). (3.6)

By (3.5) and (3.6), we get T (r, L(z, f )) = S (r, L(z, f )), a contradiction.
Suppose f (z) and L(z, f ) share L(z, a) IM. Similarly, we get T (r, f ) = S (r, f ), a contradiction.
This completes the proof of Theorem 1.

4. Proof of Corollary 2

Since a is a Borel exceptional small entire function of f (z), by Lemma 2.7, it follows that δ(a, f ) = 1.
Hence by Theorem 1 we know that f (z) and L(z, f (z)) can not share either a(z) or L(z, a(z)) IM. This
completes the proof of Corollary 2.

5. Proof of Theorem 3

According to the definition of δ(a2, f ) and δ(a2, L(z, f )), we have

lim
r→∞

N
(
r, 1

f−a2

)
T (r, f )

= 1 − δ(a2, f ) = α,

lim
r→∞

N
(
r, 1

L(z, f )−a2

)
T (r, L(z, f ))

= 1 − δ(a2, L(z, f )) = β.

Then we get

N
(
r,

1
f − a2

)
≤ (α + ε)T (r, f ), (5.1)

N
(
r,

1
L(z, f ) − a2

)
≤ (β + ε)T (r, L(z, f )), (5.2)

where ε = 1
6 [δ(a2, f ) + δ(a2, L(z, f )) − 1].

From (5.1) and (5.2), we obtain

N
(
r,

1
f − a2

)
+ N

(
r,

1
L(z, f ) − a2

)
≤ (α + ε)T (r, f ) + (β + ε)T (r, L(z, f )). (5.3)
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According to the Nevanlinna’s second fundamental theorem, Lemma 2.5 and (5.3), we get

T (r, f ) + T (r, L(z, f ))
≤T (r, f − a2) + T (r, L(z, f ) − a2) + S (r, f )

≤2
[
N2

(
r,

1
f − a2

)
+ N2

(
r,

1
L(z, f ) − a2

)]
+ S (r, f ) + S (r, L(z, f ))

≤2(α + ε)T (r, f ) + 2(β + ε)T (r, L(z, f )) + S (r, f ) + S (r, L(z, f ))
≤2[1 − δ(a2, f ) + ε]T (r, f ) + 2[1 − δ(a2, L(z, f )) + ε]T (r, L(z, f ))
+S (r, f ) + S (r, L(z, f )).

Then we have

[2δ(a2, f ) − 2ε − 1]T (r, f ) + [2δ(a2, L(z, f )) − 2ε − 1]T (r, L(z, f )) ≤ S (r, f ) + S (r, L(z, f )). (5.4)

Since δ(a2, f ) + δ(a2, L(z, f )) > 1, we get α, β < 1. Hence, we obtain

2δ(a2, f ) + 2δ(a2, L(z, f )) − 4ε − 2 =
4
3

[δ(a2, f ) + δ(a2, L(z, f )) − 1] > 0.

If T (r, f ) ≤ T (r, L(z, f )), where r ∈ I and I is a set of infinite logarithmic measure, then we have

[2δ(a2, f ) − 2ε − 1]T (r, f ) + [2δ(a2, L(z, f )) − 2ε − 1]T (r, L(z, f ))
≥[2δ(a2, f ) + 2δ(a2, L(z, f )) − 4ε − 2]T (r, f )

=
4
3

[δ(a2, f ) + δ(a2, L(z, f )) − 1]T (r, f ). (5.5)

From (5.4) and (5.5), we have

4
3

[δ(a2, f ) + δ(a2, L(z, f )) − 1]T (r, f ) ≤ S (r, f ) + S (r, L(z, f )) ≤ S (r, f ).

It follows that T (r, f ) = S (r, f ), a contradiction. If T (r, L(z, f )) ≤ T (r, f ), where r ∈ I and I is a set of
infinite logarithmic measure. Similarly, we get

T (r, L(z, f )) = S (r, f ). (5.6)

Since f (z) and L(z, f ) share a1(z) CM, we obtain

N
(
r,

1
f − a1

)
= N

(
r,

1
L(z, f ) − a1

)
. (5.7)

From (5.1), we have

N
(
r,

1
f − a2

)
<

1 + α

2
T (r, f ). (5.8)

By the Nevanlinna’s second fundamental theorem, (5.7) and (5.8), we get

T (r, f ) ≤N
(
r,

1
f − a1

)
+ N

(
r,

1
f − a2

)
+ S (r, f )
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<N
(
r,

1
L(z, f ) − a1

)
+

1 + α

2
T (r, f ) + S (r, f )

≤T (r, L(z, f )) +
1 + α

2
T (r, f ) + S (r, f ).

It follows that (
1 −

1 + α

2

)
T (r, f ) ≤ T (r, L(z, f )) + S (r, f ). (5.9)

By (5.6) and (5.9), we have T (r, L(z, f )) = S (r, f ) = S (r, L(z, f )), a contradiction.
Next we prove L(z, a2) ≡ a2. Suppose L(z, a2) . a2. Similarly, from (3.2), it is easy to know that

δ(a2, f ) ≤ δ(L(z, a2), L(z, f )). It follows that

δ(L(z, a2), L(z, f )) + δ(a2, L(z, f )) + δ(∞, L(z, f ))
≥δ(a2, f ) + δ(a2, L(z, f )) + δ(∞, L(z, f )) > 2,

a contradiction.
Set

F =
f (z) − a2(z)

a1(z) − a2(z)
,G =

L(z, f ) − a2(z)
a1(z) − a2(z)

. (5.10)

Since δ(a2, f ) + δ(a2, L(z, f )) > 1, we have

δ(0, F) + δ(0,G) > 1. (5.11)

From Lemma 2.5, we have

F =
(b + 1)G + (a − b − 1)

bG + (a − b)
, (5.12)

where a(, 0) and b are two constants.
Clearly, we have

T (r, F) = T (r,G) + O(1). (5.13)

Next we consider three cases:
Case 1. b , 0,−1. In the following, we consider two subcases.
Case 1.1. a − b − 1 , 0.
From (5.12), we have

N
r, 1

G + a−b−1
b+1

 = N
(
r,

1
F

)
. (5.14)

Furthermore, by the Nevanlinna’s second fundamental theorem, we have

T (r,G) ≤N (r,G) + N
(
r,

1
G

)
+ N

r, 1
G + a−b−1

b+1

 + S (r,G)

≤N (r,G) + N
(
r,

1
G

)
+ N

(
r,

1
F

)
+ S (r,G). (5.15)

According to the definition of δ(0, F) and δ(0,G), we have

lim
r→∞

N
(
r, 1

F

)
T (r, F)

= 1 − δ(0, F) = α1, (5.16)
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lim
r→∞

N
(
r, 1

G

)
T (r,G

= 1 − δ(0,G) = β1. (5.17)

Then we get

N
(
r,

1
F

)
≤ (α1 + ε1)T (r, F), (5.18)

N
(
r,

1
G

)
≤ (β1 + ε1)T (r,G), (5.19)

where ε1 = 1
4 [δ(0, F) + δ(0,G) − 1].

From (5.13), (5.18), (5.19) and Lemma 2.8, we obtain

N
(
r,

1
G

)
+ N

(
r,

1
F

)
≤N

(
r,

1
G

)
+ N

(
r,

1
F

)
≤(β1 + ε1)T (r,G) + (α1 + ε1)T (r, F)
≤(α1 + β1 + 2ε1)T (r,G) + S (r,G).

It follows that

N
(
r,

1
G

)
+ N

(
r,

1
F

)
≤ (α1 + β1 + 2ε1)T (r,G) + S (r,G). (5.20)

By (5.15)–(5.20) and N(r,G) ≤ N(r,G) = S (r,G), we have

[1 − (α1 + β1 + 2ε1)]T (r,G) =
1
2

[δ(0, F) + δ(0,G) − 1]T (r,G) = S (r,G).

It follows that T (r,G) = S (r,G), a contradiction.
Case 1.2. a − b − 1 = 0. By (5.12), we know

N
r, 1

G + 1
b

 = N (r, F) .

Similarly, we deduce a contradiction.
Case 2. b = −1. Then (5.12) becomes

F =
a

(a + 1) −G
. (5.21)

Next we consider two subcases:
Case 2.1. a + 1 , 0. By (5.21), we have

N
(
r,

1
G − (a + 1)

)
= N (r, F) .

Similarly, we deduce a contradiction as in Case 1.1.
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Case 2.2. a + 1 = 0. From (5.21), we obtain F ·G ≡ 1. Then

( f − a2) · (L(z, f ) − a2) ≡ (a1 − a2)2.

Since f is an entire function, we know

N(r,
1

f − a2
) ≤N(r, L(z, f ) − a2) + 2N

(
r,

1
a1 − a2

)
≤2T (r, a1 − a2) + S (r, f ) = S (r, f ).

By Lemmas 2.1, 2.2 and 2.8, we have

2T (r, f ) =2T (r, f − a2) = 2T
(
r,

1
f − a2

)
+ O(1)

=2m
(
r,

1
f − a2

)
+ 2N

(
r,

1
f − a2

)
+ O(1)

=2m
(
r,

1
f − a2

)
+ S (r, f ) = m

(
r,

1
( f − a2)2

)
+ S (r, f )

≤m
(
r,

(a1 − a2)2

( f − a2)2

)
+ S (r, f ) = m

(
r,

L(z, f ) − a2

f − a2

)
+ S (r, f )

≤S (r, f ).

It gives T (r, f ) = S (r, f ), a contradiction.
Case 3. b = 0. From (5.12) we have

F =
G + (a − 1)

a
. (5.22)

Next we consider two subcases:
Case 3.1. a + 1 , 0. By (5.22), we have

N
(
r,

1
G − (a + 1)

)
= N (r, F) .

Similarly, we deduce a contradiction as in Case 1.1.
Case 3.2. a + 1 = 0. From (5.22), we obtain F ≡ G. So we have f ≡ L(z, f ).
This completes the proof of Theorem 3.

6. Proof of Corollary 4

Set

F1 =
f
a
,G1 =

∆n
η f

a
.

Since a(z) is an entire small function of f (z), by Lemma 2.7 it follows δ(0, f ) = 1. Considering f
and ∆n

η f share a IM, we deduce that F1 and G1 share 1 CM almost. Thus by Theorem 3, we know
F1 ≡ G1. So we have f ≡ ∆n

η f . Since f and ∆n
η f share 0,∞ CM, by Lemma 2.6, we deduce that

f (z) = cec1z, where c and c1 are two nonzero constants. This completes the proof of Corollary 4.
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