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Abstract: In this paper we consider the following system of coupled biharmonic Schrödinger
equations ∆2u + λ1u = u3 + βuv2,

∆2v + λ2v = v3 + βu2v,

where (u, v) ∈ H2(RN) × H2(RN), 1 ≤ N ≤ 7, λi > 0(i = 1, 2) and β denotes a real coupling parameter.
By Nehari manifold method and concentration compactness theorem, we prove the existence of ground
state solution for the coupled system of Schrödinger equations. Previous results on ground state
solutions are obtained in radially symmetric Sobolev space H2

r (RN) × H2
r (RN). When β satisfies some

conditions, we prove the existence of ground state solution in the whole space H2(RN) × H2(RN).
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1. Introduction

In this paper, we consider the existence of standing waves for the following coupled system of
biharmonic Schrödinger equations

i∂tE1 − 4
2E1 + |E1|

2E1 + β|E2|
2E1 = 0,

i∂tE2 − 4
2E2 + |E2|

2E2 + β|E1|
2E2 = 0,

(1.1)

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022206


3720

where E1 = E1(x, t) ∈ C, E2 = E2(x, t) ∈ C and β is a constant. This system describes the interaction
of two short dispersive waves. By standing waves we mean solutions of type

(E1(x, t), E2(x, t)) = (eiλ1tu(x), eiλ2tv(x)), (1.2)

where u, v are real functions. This leads us to study the following biharmonic Schrödinger system∆2u + λ1u = u3 + βuv2,

∆2v + λ2v = v3 + βu2v,
(1.3)

where (u, v) ∈ H2(RN) × H2(RN). In this paper we assume that 1 ≤ N ≤ 7, λi > 0(i = 1, 2) and β is a
coupling parameter.

In order to describe wave propagation, some models with higher-order effects and variable
coefficients, such as the third-, fourth- and fifth-order dispersions, self-steepening and symmetric
perturbations, have been proposed in physical literatures (see e.g. [26]). Karpman investigated the
stability of the soliton solutions for fourth-order nonlinear Schrödinger equations (see [13, 14]). To
understand the differences between second and fourth order dispersive equations, one can refer to [11].

Physically, the interaction of the long and short waves can be described by a system of coupled
nonlinear Schrödinger and Korteweg-de Vries equations. Recently, a fourth-order version of such
system was considered by P. Alvarez-Caudevilla and E. Colorado [5]. Using the method of Nehari
manifold, they proved the existence of ground state in radially symmetric space H2

r (RN) × H2
r (RN).

In their proof, the compact embedding of radially symmetric function space is essential. A natural
problem is whether there exists a ground state in the Sobolev space H2(RN) × H2(RN).

On the other hand, the second order counterparts of (1.1) and (1.3) are respectivelyi∂tE1 − 4E1 + |E1|
2E1 + βE1|E2|

2 = 0,
i∂tE2 − 4E2 + |E2|

2E2 + β|E1|
2E2 = 0.

(1.4)

and ∆u + λ1u = u3 + βuv2,

∆v + λ2v = v3 + βu2v.
(1.5)

Since pioneering works of [2–4, 18, 19, 22], system (1.5) and its extensions to more general second
order elliptic systems have been extensively studied by many authors, e.g. [8, 9, 12, 21, 23]. For the
similar problem for fractional order elliptic system, one can refer to [7, 10, 25].

Motivated by the above developments, using techniques of variation principle and concentration-
compactness lemma, we consider the existence of ground state for system (1.3). By ground state, we
mean a nontrivial least energy solution of the system.

We organize the paper as follows. In Section 2, we give some notations, elementary results and
statements of our main theorems. In Section 3, we study some properties of Palais-Smale sequence. In
Section 4, we give the proof of our main theorems.

2. Preliminaries and main theorems

In H2(RN), we define the following norm:

〈u, v〉i :=
∫
RN

(∆u · ∆v + λiuv), ‖u‖2i := 〈u, u〉i, i = 1, 2. (2.1)
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For u ∈ Lp(RN), we set |u|p =
( ∫
RN |u|p

) 1
p for 1 ≤ p < ∞. Accordingly, the inner product and induced

norm on
H := H2(RN) × H2(RN).

are given by

〈(u, v), (ξ, η)〉 =

∫
RN

(∆u · ∆ξ + ∆v · ∆η + λ1uξ + λ2vη),

‖(u, v)‖2 =‖u‖21 + ‖v‖22.
(2.2)

The energy functional associated with system (1.3) is

Φ(u) =
1
2
‖u‖21 +

1
2
‖v‖22 −

1
4

∫
RN

(u4 + v4) −
1
2
β

∫
RN

u2v2. (2.3)

for u = (u, v) ∈ H.
Set

I1(u) =
1
2
‖u‖21 −

1
4

∫
RN

u4, I2(v) =
1
2
‖v‖21 −

1
4

∫
RN

v4,

Ψ(u) = Φ
′

(u)[u] = ‖u‖2 −
∫
RN

(u4 + v4) − 2β
∫
RN

u2v2. (2.4)

and the Nehari manifold
N = {u = (u, v) ∈ H\{(0, 0)} : Ψ(u) = 0}.

Remark 2.1. (see [1, 5, 16])

Let

2∗ =


2N

N − 4
, i f N > 4,

∞, i f 1 ≤ N ≤ 4.

Then we have the following Sobolev embedding:

H2(RN) ↪→ Lp(RN), f or

2 ≤ p ≤ 2∗, i f N , 4,
2 ≤ p < 2∗, i f N = 4.

Proposition 2.1. Let ΦN be the restriction of Φ on N . The following properties hold.
i) N is a locally smooth manifold.
ii) N is a complete metric space.
iii) u ∈ N is a critical point of Φ if and only if u is a critical point of ΦN .
iv) Φ is bounded from below on N .

Proof. i) Differentiating expression (2.4) yields

Ψ
′

(u)[u] = 2‖u‖2 − 4
∫
RN

(u4 + v4) − 8β
∫
RN

u2v2. (2.5)
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By the definition of Nehari manifold, for u ∈ N , Ψ(u) = 0 and hence

Ψ
′

(u)[u] = Ψ
′

(u)[u] − 3Ψ(u) = −2‖u‖2 < 0. (2.6)

It follows that N is a locally smooth manifold near any point u , 0 with Ψ(u) = 0 .
ii) Let {un} ⊂ N be a sequence such that ‖un − u0‖ → 0 as n → +∞. By Gagliardo-Nirenberg-

Sobolev inequality and interpolation formula for Lp space, we have |un − u0|p → 0 and |vn − v0|p → 0
for 2 ≤ p < 2∗. It easily follows that Φ

′

(un)[un] − Φ
′

(u0)[u0] → 0. Since Φ
′

(un)[un] = 0, we have
Φ
′

(u0)[u0] = 0.
Claim: There exists ρ > 0 such that for all u ∈ N , ||u|| > ρ.
Since un ∈ N for all n and ‖un − u0‖ → 0, we get u0 , (0, 0). Hence un ∈ Nand N is a complete

metric space.
Proof of the claim: Taking the derivative of the functional Φ in the direction h = (h1, h2) , it follows

that

Φ
′

(u)[h] =

∫
RN

(∆uh1 + λ1uh1 + ∆vh2 + λ2vh2) −
∫
RN

(u3h1 + v3h2) − β
∫
RN

(uv2h1 + u2vh2).

Taking the derivative of Φ
′

(u)[h] in the direction h again, it follows that

Φ
′′

(u)[h]2 = ‖h‖2 − 3
∫
RN

(u2h2
1 + v2h2

2) − β
∫
RN

(u2h2
2 + v2h2

1 + 4uvh1h2).

Note that [h]2 means [h,h] and h = (h1, h2). Let u = 0, we obtain Φ
′′

(0)[h]2 = ‖h‖2, which implies
that 0 is a strict minimum critical point of Φ. In a word, we can deduce that N is a smooth complete
manifold and there exists a constant ρ > 0 such that

‖u‖2 > ρ for all u ∈ N . (2.7)

iii) Assume that (u0, v0) ∈ N is a critical point of ΦN . Then there is a Lagrange multiplier Λ ∈ R

such that
Φ
′

(u0, v0) = ΛΨ
′

(u0, v0). (2.8)

Hence
0 = (Φ

′

(u0, v0), (u0, v0)) = Λ(Ψ
′

(u0, v0), (u0, v0)). (2.9)

From (2.6) and (2.9) , we get Λ = 0. Now (2.10) shows that Φ
′

(u0, v0) = 0 , i.e. (u0, v0) is a critical
point of Φ.

iiii) By (2.3), (2.4) and (2.7), we have

ΦN (u) =
1
4
‖u‖2, (2.10)

and
Φ(u) ≥

1
4
ρ for all u ∈ N . (2.11)

Then Φ is bounded from below on N . �

Lemma 2.1. For every u = (u, v) ∈ H\{(0, 0)}, there is a unique number t > 0 such that tu ∈ N .
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Proof. For (u, v) ∈ H\{(0, 0)} and t > 0, define

ω(t) := Φ(tu, tv) =
1
2

t2‖u‖2 −
1
4

t4
∫
RN

(u4 + v4) −
1
2
βt4

∫
RN

u2v2.

For fixed (u, v) , (0, 0), we have ω(0) = 0 and ω(t) ≥ C
′

t2 for small t. On the other hand, we have
ω(t) → −∞ as t → ∞. This implies that there is a maximum point tm > 0 of ω(t) such that ω

′

(tm) =

Φ
′

(tmu)u = 0 and hence tmu ∈ N . Actually, since Φ has special structure, by direct computation we
can also get the unique tm. �

Lemma 2.2. ( [20, page 125])

Let u ∈ Lq(RN) and Dmu ∈ Lr(RN) for 1 ≤ r, q ≤ ∞. For 0 ≤ j < m, there exists a constant C > 0
such that the following inequalities hold:

‖D ju‖Lp ≤ C‖Dmu‖αLr‖u‖1−αLq ,

where
1
p

=
j

N
+ (

1
r
−

m
N

)α +
1 − α

q
,

j
m
≤ α ≤ 1.

and C = C(n,m, j, q, r, α).

The main results of the present paper are as follows:

Theorem 2.1. There exist two positive numbers Λ− and Λ+, Λ− ≤ Λ+, such that
(i) If β > Λ+, the infimum of Φ on N is attained at some ũ = (ũ, ṽ) with Φ(ũ) < min{Φ(u1),Φ(v2)}

and both ũ and ṽ are non-zero.
(ii) If 0 < β < Λ−, then Φ constrained on N has a mountain pass critical point u∗ with Φ(u∗) >

max{Φ(u1),Φ(v2)}.

The definitions of Λ+,Λ−,u1 and v2 will be given in section 4.

3. Palais-Smale sequence

Let
c = inf

N
Φ(u).

Lemma 3.1. There exists a bounded sequence un = (un, vn) ⊂ N such that Φ(un)→ c and Φ
′

(un)→ 0
as n→ +∞.

Proof. From Proposition 2.1, Φ is bounded from below onN . By Ekeland’s variational principle [24],
we obtain a sequence un ⊂ N satisfying

Φ(un) ≤ inf
N

Φ(u) +
1
n
,

Φ(u) ≥ Φ(un) −
1
n
‖un − u‖ for any u ∈ N .

(3.1)
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Since
c +

1
n
≥ Φ(un) =

1
4
‖un‖

2, (3.2)

there exists C > 0 such that
‖un‖

2 ≤ C. (3.3)

For any (y, z) ∈ H with ‖(y, z)‖ ≤ 1, denote

Fn(s, t) = Φ
′

(un + sy + tun, vn + sz + tvn)(un + sy + tun, vn + sz + tvn). (3.4)

Obviously, Fn(0, 0) = Φ
′

(un, vn)(un, vn) = 0 and

∂Fn

∂t
(0, 0) = (Ψ

′

(un, vn), (un, vn)) = −2‖un‖
2 < 0. (3.5)

Using the implicit function theorem, we get a C1 function tn(s) : (−δn, δn)→ R such that tn(0) = 0 and

Fn(s, tn(s)) = 0, s ∈ (−δn, δn). (3.6)

Differentiating Fn(s, tn(s)) in s at s = 0, we have

∂Fn

∂s
(0, 0) +

∂Fn

∂t
(0, 0)t

′

n(0) = 0. (3.7)

From (2.4) and (2.7), it follows that

|
∂Fn

∂t
(0, 0)| = |(Ψ

′

(un, vn), (un, vn))| = 2||un‖
2 > 2ρ. (3.8)

By Hölder’s inequality and Sobolev type embedding theorem, it yields

|
∂Fn

∂s
(0, 0)| = |(Ψ

′

(un, vn), (y, z))|

≤ |2((un, vn), (y, z))| + |4
∫
RN

(u3
ny + v3

nz)| + |4β
∫
RN

(unv2
ny + u2

nvnz)|

≤ C1.

(3.9)

From (3.7)–(3.9), we obtain
|t
′

n(0)| ≤ C2. (3.10)

Let
(y, z)n,s = s(y, z) + tn(s)(un, vn), (y, z)n,s = (un, vn) + (y, z)n,s. (3.11)

In view of (3.1), we have

|Φ(y, z)n,s − Φ(un, vn)| ≤
1
n
‖(y, z)n,s‖. (3.12)

Applying a Taylor expansion on the left side of (3.12), we deduce that

Φ(y, z)n,s − Φ(un, vn) = (Φ
′

(un, vn), (y, z)n,s) + r(n, s)

= (Φ
′

(un, vn), s(y, z)) + (Φ
′

(un, vn), tn(s)(un, vn)) + r(n, s)

= s(Φ
′

(un, vn), (y, z)) + r(n, s),

(3.13)
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where r(n, s) = o‖(y, z)n,s‖ as s→ 0.
From (3.3), (3.10), (3.11) and tn(0) = 0, we have

lim sup
|s|→0

‖(y, z)n,s‖

|s|
≤ C3, (3.14)

where C3 is independent of n for small s. Actually, it follows from (3.10), (3.11) that r(n, s) = O(s) for
small s.

From (3.3), (3.12)–(3.14), we have

|(Φ
′

(un, vn), (y, z))| ≤
C3

n
. (3.15)

Hence Φ
′

(un, vn)→ 0 as n→ ∞. We complete the proof of the lemma. �

From the above lemma, we have a bounded PS sequence such that Φ
′

(un, vn) → 0 and Φ(un, vn) →
c. Then, there exists (u0, v0) ∈ H2(RN) × H2(RN) such that (un, vn) ⇀ (u0, v0).

Lemma 3.2. Assume that (un, vn) ⇀ (u0, v0) and Φ
′

(un, vn)→ 0 as n→ ∞. Then Φ
′

(u0, v0) = 0.

Proof. For any ν = (ϕ, ψ), ϕ, ψ ∈ C∞0 (RN), we have

Φ
′

(un, vn)ν = 〈(un, vn), (ϕ, ψ)〉 −
∫
RN

(u3
nϕ + v3

nψ) − β
∫
RN

(unv2
nϕ − u2

nvnψ). (3.16)

The weak convergence {un} implies that 〈(un, vn), (ϕ, ψ)〉 → 〈(u0, v0), (ϕ, ψ)〉. Let K ⊂ RN be a compact
set containing supports of ϕ, ψ, then it follows that

(un, vn)→ (u0, v0) in Lp(K) × Lp(K) for 2 ≤ p < 2∗,
(un, vn)→ (u0, v0) for a.e. x ∈ RN .

From [6], there exist aK and bK ∈ L4(K) such that

|un(x)| ≤ aK(x) and |vn(x)| ≤ bK(x) for a.e. x ∈ K.

Define cK(x) := aK(x) + bK(x) for x ∈ K. Then cK ∈ L4(K) and

|un(x)|, |vn(x)| ≤ |un(x)| + |vn(x)| ≤ aK(x) + bK(x) = cK(x) for a.e. x ∈ K.

It follows that, for a.e. x ∈ K,
unv2

nϕ ≤ c3
K |ϕ|,

u2
nvnψ ≤ c3

K |ψ|,

and hence ∫
K

c3
K |ϕ|dx ≤ |cKχK |

3
4|ϕχK |4,∫

K
c3

K |ψ|dx ≤ |cKχK |
3
4|ψχK |4.
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By Lebesgue’s dominated convergence theorem, we have∫
K

unv2
nϕdx→

∫
K

u0v2
0ϕdx,∫

K
u2

nvnψdx→
∫

K
v0u2

0ψdx.
(3.17)

Similarly, there exists dK(x) ∈ L4(K) such that |un| ≤ dK(x) for a.e. x ∈ K and

u3
nϕ ≤ |un|

3|ϕ| ≤ dK(x)3|ϕ| f or a.e. x ∈ K.

By Lebesgue’s dominated convergence theorem, it yields∫
K

u3
nϕdx→

∫
K

u3
0ϕdx. (3.18)

By (3.16)–(3.18), we obtain
Φ
′

(un, vn)(ϕ, ψ)→ Φ
′

(u0, v0)(ϕ, ψ) (3.19)

and Φ
′

(u0, v0) = 0. Thus (u0, v0) is a critical point of Φ. �

Lemma 3.3. ( [24, Lemma 1.21]) If un is bounded in H2(RN) and

sup
z∈RN

∫
B(z,1)
|un|

2dx→ 0 as n→ ∞, (3.20)

then un → 0 in Lp(RN) for 2 < p < 2∗.

Lemma 3.4. Assume that {un} is a PS sequence constrained on N and

sup
z∈RN

∫
B(z,1)
|un|

2dx = sup
z∈RN

(
∫

B(z,1)
|un|

2dx +

∫
B(z,1)
|vn|

2dx)→ 0. (3.21)

Then ‖un‖ → 0.

Proof. Since {un} ∈ N and thus

‖un‖ =

∫
RN

(u4
n + v4

n) + 2β
∫
RN

u2
nv2

n.

From Lemma 3.3, we have that un → 0, vn → 0 in Lp(RN) for 2 < p < 2∗. By Hölder’s inequality, it
follows that ∫

RN
(u4

n + v4
n) + 2β

∫
RN

u2
nv2

n → 0,

and hence ‖un‖ → 0. �
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4. Proof of main results

System (1.3) has two kinds of semi-trivial solutions of the form (u, 0) and (0, v). So we take u1 =

(U1, 0) and v2 = (0,V2), where U1 and V2 are respectively ground state solutions of the equations

42 f + λi f = f 3, i = 1, 2

in H2(RN) which are radially symmetric(see [15]). Moreover, if we denote w a ground state solution
of (4.1)

42w + w = w3, (4.1)

by scaling we have
U1(x) =

√
λ1 w( 4

√
λ1 x), V2(x) =

√
λ2 w( 4

√
λ2 x). (4.2)

Thus two kinds of semi-trivial solutions of (1.3) are respectively u1 = (U1, 0) and v2 = (0,V2).

Definition 4.1. We define the two constants related to U1 and V2 as follows:

S 2
1 := inf

ϕ∈H2(RN )\{0}

‖ϕ‖22∫
RN U2

1ϕ
2
, S 2

2 := inf
ϕ∈H2(RN )\{0}

‖ϕ‖21∫
RN V2

2ϕ
2
, (4.3)

and
Λ+ = max{S 2

1, S
2
2}, Λ− = min{S 2

1, S
2
2}.

Proposition 4.1. i). If 0 < β < Λ−, then u1, v2 are strict local minimum elements of Φ constrained
on N .

ii). If β > Λ+, then u1, v2 are saddle points of Φ constrained on N . Moreover

inf
N

Φ(u) < min{Φ(u1),Φ(v2)}, (4.4)

Proof. Since the proof is similar to [5], we omit it. �

Next, we will see that the infimum of Φ constrained on the Nehari manifold N is attained under
appropriate parameter conditions. We also give the existence of a mountain pass critical point.

Proof. We first give the proof of Theorem 2.1 (i).
By Lemma 3.1, there exists a bounded PS sequence {un} ⊂ N of Φ, i.e.

Φ(un)→ c := inf
N

Φ and Φ
′

N (un)→ 0.

We can assume that the sequence {un} possesses a subsequence such that

un ⇀ ũ in H,
un → ũ in Lp

loc(R
N) × Lp

loc(R
N) for 2 ≤ p < 2∗,

un → ũ for a.e. x ∈ RN .

Suppose that

sup
z∈RN

∫
B(z,1)
|un|

2dx = sup
z∈RN

(
∫

B(z,1)
|un|

2dx +

∫
B(z,1)
|vn|

2dx)→ 0.
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From Lemma 3.4, we have un → 0. This contradicts with un ∈ N . In view of Lions’ Lemma, there
exists yn ⊂ R

N such that

lim inf
n→∞

∫
B(yn,1)

|un|
2dx > δ or lim inf

n→∞

∫
B(yn,1)

|vn|
2dx > δ.

Without loss of generality, we assume that

lim inf
n→∞

∫
B(yn,1)

|un|
2dx > δ.

For each yn ⊂ R
N , we can find zn ⊂ Z

N such that B(yn, 1) ⊂ B(zn, 1 +
√

N), and thus

lim inf
n→∞

∫
B(zn,1+

√
N)
|un|

2dx ≥ lim inf
n→∞

∫
B(yn,1)

|un|
2dx > δ. (4.5)

If zn is bounded in ZN , by un → ũ in L2
loc(R

N), it follows that ũ , 0. We assume that zn is unbounded in
ZN . Define un = un(· + zn) and vn = vn(· + zn). For any compact set K, up to a subsequence, we have

un ⇀ u in H,
un → u in Lp(K) × Lp(K) for 2 ≤ p < 2∗,
un → u for a.e. x ∈ RN ,

where u = (u, v). From (4.5), we have that

lim inf
n→∞

∫
B(0,1+

√
N)
|un|

2dx > δ,

and thus u = (u, v) , (0, 0).
From Lemmas 3.1 and 3.2, we notice that un,u ∈ N and un is PS sequence for Φ on N . Moreover,

by Fatou’s Lemma, we obtain the following:

c = lim inf
n→∞

Φ(un) = lim inf
n→∞

ΦN (un) ≥ ΦN (u) = Φ(u).

Hence Φ(u, v) = c and (u, v) , (0, 0) is a ground state solution of the system (1.3).
In addition, we can conclude that both components of u are non-trivial. In fact, if the second

component v ≡ 0, then u = (u, 0). So u = (u, 0) is the non-trivial solution of the system (1.3). Hence,
we have

I1(u) = Φ(u) < Φ(u1) = I1(U1).

However, this is a contradiction due to the fact that U1 is a ground state solution of 42u + λu = u3.
Similarly, we conclude that the first component u , 0. From Proposition 4.1-(ii) and β > Λ+, we have

Φ(u) < min{Φ(u1),Φ(v2)}. (4.6)

Next we give the proof of Theorem 2.1 (ii).
From Proposition 4.1-(i), we obtain that u1, v2 are strict local minima Φ of on N . Under this

condition, we are able to apply the mountain pass theorem to Φ on N that provide us with a PS
sequence vn ∈ N such that

Φ(vn)→ c := inf
γ∈Γ

max
0≤t≤1

Φ(γ(t)),

where
Γ := {γ : [0, 1]→ N | γ is continuous and γ(0) = u1, γ(1) = v2}.

From Lemmas 3.1 and 3.2, we have that c = Φ(u∗) and thus u∗ is a critical point of Φ. �
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5. Conclusions

In this paper, using Nehari manifold method and concentration compactness theorem, we prove the
existence of ground state solution for a coupled system of biharmonic Schrödinger equations. Previous
results on ground state solutions are obtained in radially symmetric Sobolev space. We consider ground
state solutions in the space without radially symmetric restriction, which can be viewed as extension
of previous one.
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