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Abstract: A 3-connected graph is a brick if the graph obtained from it by deleting any two distinct
vertices has a perfect matching. The importance of bricks stems from the fact that they are building
blocks of the matching covered graphs. Lovász (Combinatorica, 3 (1983), 105-117) showed that
every brick is K4-based or C6-based. A brick is K4-free (respectively, C6-free) if it is not K4-
based (respectively, C6-based). Recently, Carvalho, Lucchesi and Murty (SIAM Journal on Discrete
Mathematics, 34(3) (2020), 1769-1790) characterised the PM-compact C6-free bricks. In this note,
we show that, by using the brick generation procedure established by Norine and Thomas (J Combin
Theory Ser B, 97 (2007), 769-817), the only PM-compact K4-free brick is C6, up to multiple edges.
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1. Introduction

Graphs considered in this paper are simple graphs. We will use generally Bondy and Murty [1] for
the notation and terminology not defined here.

A connected graph is called matching covered if it has at least one edge and each of its edges is
contained in some perfect matching. For the terminology that is specific to matching covered graphs,
we will generally follow Lovász and Plummer [9]. Edmonds et al. [6] (also see Lovász [8], Szigeti [11]
and Carvalho et al. [4]) showed that a graph G is a brick if and only if G is 3-connected and G − x − y
has a perfect matching for any two distinct vertices x, y ∈ V(G).

Let G be a matching covered graph, and let M1 and M2 be two perfect matchings of G. We denote by
PM(G) the perfect-matching graph of G, which is the graph whose vertices are the perfect matchings
of G, with two vertices M1 and M2 are adjacent in PM(G) if M1 ⊕ M2 is a cycle, where ⊕ denotes the
symmetric difference operation. We say that G is PM-compact if PM(G) is complete. Clearly, each
conformal subgraph of a PM-compact graph is also PM-compact. Since an even cycle contains two
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perfect matchings, the following simple observation is an immediate consequence.

Lemma 1. A matching covered graph G is PM-compact if and only if for any two vertex-disjoint even
cycles C1 and C2 of G, G − V(C1 ∪C2) has no perfect matchings.

Moreover, Wang et al. [12] characterized PM-compact bipartite and near-bipartite graphs. Wang
et al. [13] characterized all claw-free PM-compact cubic graphs. Wang et al. [14] characterized all
Hamiltonian PM-compact bipartite graphs.

A bisubdivision of a graph H is a graph obtained from H by inserting an even number of vertices
to some of its edges. A matching covered graph H is a conformal minor of a matching covered graph
G if there exists a bisubdivision J of H which is a subgraph of G such that G − V(J) has a perfect
matching. A matching covered graph is K4-free if it contains no K4 as a conformal minor, otherwise it
is K4-based. C6-free and C6-based graphs are analogously defined ( C6 is the complement graph of the
cycle with six vertices). Recently, Carvalho et al. [2] characterised the PM-compact C6-free bricks. In
this note, we characterize the PM-compact K4-free bricks as follows.

Theorem 2. Let G be a K4-free brick. If G is PM-compact, then G is isomorphic to C6, up to multiple
edges.

The proof of Theorem 2 will be given in Section 3 following some properties concerning matching
covered graphs given in Section 2.

2. Preliminaries

In this section, we present some properties of matching covered graphs which will be used in the
proof of the main result. We start with some basic definitions. Let G be a matching covered graph, v a
vertex of degree two of G. The bicontraction of v is the operation of contracting the two edges incident
with v. The retract of G is the graph obtained by bicontracting all its vertices of degree two. An edge
e in a brick G is thin if the retract of G − e is also a brick. A thin edge e of a simple brick G is strictly
thin if the retract of G − e is a simple brick. Carvalho, Lucchesi, and Murty [3] proved that every brick
distinct from K4,C6 and the Petersen graph has a thin edge. We say that a brick is a Norine-Thomas
brick if it is the Petersen graph or it belongs to any of the following described five well-defined infinite
families of graphs:

Odd Wheel W2k+1. For each integer k ≥ 1, W2k+1 is defined to be the join graph of an odd cycle C2k+1

and a new vertex. See Figure 1 (a).
Truncated biwheel T2k+2. For each integer k ≥ 2, let P = v1v2 · · · v2k be an odd path, u and v be two

new vertices. Let T2k+2 be obtained from P ∪ u ∪ v by adding edges uvi and vv j for i = 1, 2k and all
even i ∈ {1, 2, . . . , 2k} and j = 1, 2k and all odd j ∈ {1, 2, . . . , 2k}. See Figure 1 (b).

Möbius ladder M4k. For each integer k ≥ 1, let P1 = u1u2 · · · u2k and P2 = v1v2 · · · v2k be two odd
paths. Let M4k be obtained from P1 ∪ P2 by adding edges uivi for i = 1, 2, . . . , 2k and u1v2k and v1u2k.
See Figure 1 (c).

Prism Pr4k+2. For each integer k ≥ 1, let P1 = u1u2 · · · u2k+1 and P2 = v1v2 · · · v2k+1 be two odd
paths. Let Pr4k+2 be obtained from P1 ∪ P2 by adding edges uivi for i = 1, 2, . . . , 2k + 1 and u1u2k+1 and
v1v2k+1. See Figure 1 (d).
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Figure 1. (a) Odd wheel W2k+1, (k ≥ 1); (b) Truncated biwheel T2k+2, (k ≥ 2); (c) Möbius
ladder M4k, (k ≥ 1); (d) Prism Pr4k+2, (k ≥ 1); (e) Staircase S t2k+2, (k ≥ 2).

Staircase S t2k+2. For each integer k ≥ 2, let P1 = u1u2 · · · uk and P2 = v1v2 · · · vk be two paths, u and
v be two new vertices. Let S t2k+2 be obtained from P1∪P2∪u∪v by adding edges uivi for i = 1, 2, . . . , k
and uu1, uv1, vuk, vvk and uv. See Figure 1 (e).

Norine and Thomas [10] showed that every simple brick distinct from the Norine-Thomas bricks
has a strictly thin edge. This implies the following result.

Theorem 3. [5, 10] Given any brick G, there exists a sequence G1,G2, . . . ,Gr of simple bricks such
that (i) G1 is a Norine-Thomas brick; (ii) Gr := G; and (iii) for 2 ≤ i ≤ r, there exists a strictly thin
edge ei of Gi such that Gi−1 is the retract of Gi − ei.

Since a matching covered graph is PM-compact if and only if its retract is PM-compact [2], the
following consequence holds immediately.

Corollary 4. Let e be a thin edge of a brick G and let H be the retract of G − e. If G is PM-compact,
then H is also PM-compact.

Recently, Kothari and Murty [7] proved that, for any thin edge e of a brick G and any cubic brick J,
the retract of G − e is J-free if G is J-free. This implies the following simple observation immediately.

Lemma 5. [7] Let e be a thin edge of a brick G and let H be the retract of G − e. If G is K4-free, then
H is also K4-free.

3. Proof of Theorem 2

Suppose, to the contrary, that there exists a K4-free PM-compact brick that is not isomorphic to C6,
up to multiple edges. Among all such bricks, we choose a brick G containing minimum number of
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edges. If G contains multiple edges, then the underlying simple graph of G is also a counterexample
to Theorem 2. Thus, we may assume that G is a simple brick. By Theorem 3, there exists a sequence
G1,G2, . . . ,Gr of simple bricks such that (i) G1 is a Norine-Thomas brick; (ii) Gr := G; and (iii) for
2 ≤ i ≤ r, there exists a strictly thin edge ei of Gi such that Gi−1 is the retract of Gi − ei. Since G is
PM-compact, each brick Gi in the above sequence is PM-compact as well by Corollary 4. In particular,
the base brick G1 is PM-compact. Now, we will shall that G1 is C6, namely, G1 is the prism or the stair
case or the truncated biwheel, with order 6. Since each odd wheel, the staircase R8 with order 8 and
the Petersen graph P are K4-based, it suffices to consider the four possible alternatives separately, by
Lemma 5, as follows.

If G1 is a truncated biwheel T2k+2 with k ≥ 3, then C1 = vv1v2v3v and C2 = uv4v5v6u. Clearly, C1

and C2 are two disjoint even cycles of G1 and G1−V(C1∪C2) has a perfect matching {v2i−1v2i|4 ≤ i ≤ k}
(see Figure1 (b)). Thus, G1 is not PM-compact by Lemma 1.

If G1 is a Möbius ladder M4k with k ≥ 2, then let C1 = u1v1v2u2u1 and C2 = u3v3v4u4u3. Clearly, C1

and C2 are two disjoint even cycles of G1 and G1 − V(C1 ∪C2) has a perfect matching {uivi|5 ≤ i ≤ 2k}
(see Figure1 (c)). Thus, G1 is not PM-compact by Lemma 1.

If G1 is a prism Pr4k+2 with k ≥ 2, then let C1 = u1v1v2u2u1 and C2 = u3v3v4u4u3. Clearly, C1 and
C2 are two disjoint even cycles of G1 and G1 − V(C1 ∪C2) has a perfect matching {uivi|5 ≤ i ≤ 2k + 1}
(see Figure1 (d)). Thus, G1 is not PM-compact by Lemma 1.

If G1 is a staircase S t2k+2 with k ≥ 4, then let C1 = u1v1v2u2u1 and C2 = u3v3v4u4u3. Clearly, C1 and
C2 are two disjoint even cycles of G1 and G1 − V(C1 ∪ C2) has a perfect matching {uv, uivi|5 ≤ i ≤ 2k}
(see Figure1 (e)). Thus, G1 is not PM-compact by Lemma 1.

Finally, we claim that G is C6. Otherwise, the length r of the brick sequence greater than one. Since
G1 is cubic (i.e., 3-regular), G2 must be obtained from G1 by adding an edge. Hence, G2 is K4-based.
It is a contradiction by Lemma 5. Thus, G = G1. This completes the proof. �

4. Concluding remarks

In this work, we obtained a characterization of PM-compact K4-free bricks. Various similar or
analogous problems may also be of interest and worthy of study. We propose two problems as follows.

Problem 1. Characterize PM-compact K4-based bricks.

Problem 2. Characterize PM-compact K4-free matching covered graphs.
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