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1. Introduction

An important space in differential geometry is the m-sphere Sm(a). It is known for its elegant
geometry and topology. Characterizing m-spheres among complete connected m-dimensional
Riemannian manifolds is a challenging question in differential geometry. This question has been
addressed through several ways. One way is that the manifold admits a nontrivial solution of certain
differential equations (cf. [18, 19, 22–24]). Other way is that the manifold admits certain special
vector fields with certain additional conditions (cf. [1, 7–10, 12–17, 25–27]). An important vector field
among special vector fields is torse-forming vector field introduced by Yano (cf. [28]). These vector
fields have immense importance in physics and geometry (cf. [2–6, 11, 16, 20, 21, 24]). However, it is
not known whether a torse-forming vector field can be used to characterize an m-sphere Sm(a). In this
short note, we find a characterization of an m-sphere Sm(a) using a torse-forming vector field on a
compact and connected m-dimensional Riemannian manifold (N, g). It should be noted that there are
some specific torse-forming vector fields which do not exist on an m-sphere Sm(a) (cf. [11, 16]). A
torse-forming vector field ζ on a Riemannian manifold (N, g) satisfies

DXζ = hX + γ(X)ζ, X ∈ X(N), (1.1)
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where D is the Riemannian connection on (N, g), h a smooth function, γ a 1-form and X(M) Lie algebra
of smooth vector fields on N. We call h the torsed function and γ the torsed form of the torse-forming
vector field ζ. We shall abbreviate the torse-forming vector field ζ by TFVF ζ. Note that if the torsed
form γ = 0, then Eq (1.1) implies that TFVF ζ is a concircular vector field. We say a TFVF ζ on a
Riemannian manifold (N, g) a non-trivial TFVF if ζ , 0 and the torsed form γ , 0.

Now, we proceed to show that an m-sphere Sm(a) admits a non-trivial TFVF ζ. Note that the
Wiengarten map L of Sm(a) in the Euclidean space Em+1 is given by L = −

√
aI and denote the unit

normal of Sm(a) by ξ. Then for Euclidean coordinates u1, ..., um+1, we define a function σ =
〈

∂
∂u1 , ξ

〉
on

Sm(a), where 〈, 〉 is the Euclidean metric and we have

∂

∂u1 = v + σξ, (1.2)

where v ∈ X(Sm(a)) is the projection of ∂
∂u1 to Sm(a). Taking covariant derivative in (1.2) with respect

to Euclidean connection in the direction of X ∈ X(Sm(a)) while using Gauss and Wiengarten formulas
on equating tangential and normal components, we conclude

DXv = −
√

aσX, X (σ) =
√

ag (v, X) , (1.3)

where g is the induced metric and D is the Riemannian connection on Sm(a). Now, define a vector field
ζ = e−σv on (Sm(a), g), then using Eq (1.3) we have

DXζ = −
√

aσe−σX − X (σ) ζ, (1.4)

that is,
DXζ = hX + γ(X)ζ,

where h = −
√

aσe−σ and γ(X) = −
√

ag (v, X). This proves that ζ is a TFVF on Sm(a). We claim that
ζ is a non-trivial TFVF on Sm(a). To establish this claim, it is enough to show v , 0. We assume on
the contrary that v = 0. Then the second equation in (1.3) gives X (σ) = 0, that is, the function σ is a
constant. Moreover, the first equation in (1.3) implies σ = 0 (as v = 0). Consequently, Eq (1.2) implies
the constant unit vector field ∂

∂u1 = 0, a contradiction. Hence, ζ is a non-trivial TFVF on Sm(a).

2. Preliminaries

Let ζ be a TFVF on a Riemannian manifold (N, g) with torsed function h and torsed form γ. Then
using Eq (1.1), for X,Y ∈ X(N), we have

DXDYζ = X(h)Y + hDXY + X (γ (Y)) ζ + γ (Y) (hX + γ (X) ζ) ,

and using definition of curvature tensor field of (N, g), we get

R(X,Y)ζ = (X(h)Y − Y(h)X) + h (γ (Y) X − γ (X) Y) + dγ (X,Y) ζ, (2.1)

where dγ is the differential of γ. Let w be the dual vector field to torsed form γ, γ (X) = g (w, X),
X ∈ X(M). Define a skew-symmetric operator ϕ and a symmetric operator B associated to torsed form
γ by

dγ (X,Y) = 2g (ϕX,Y) , (£wg) (X,Y) = 2g (BX,Y) , X,Y ∈ X(N). (2.2)
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We denote by T the Ricci tensor and by S the Ricci operator of (N, g), that is,

T (X,Y) =

m∑
i=1

g (R(ui, X) Y, ui), T (X,Y) = g(S (X) ,Y),

where {u1, ..., um} is a local frame and dim N = m. Then Eqs (2.1) and (2.2) imply

T (Y, ζ) = −(m − 1)Y(h) + (m − 1)hγ (Y) + 2g (ϕζ,Y) , Y ∈ X(N), (2.3)

and
S (ζ) = −(m − 1)∇h + (m − 1)hw + 2ϕζ, (2.4)

where ∇h is gradient of h.

Lemma 2.1. Let ζ be a non-trivial TFVF on a connected Riemannian manifold (N, g) with torsed
function h and torsed form γ. If ζ annihilates the skew-symmetric operator ϕ associated to torsed form
γ, then there exists a function ρ on N such that ∇h = hw + ρζ, where w is vector field dual to γ and
ϕ = 0. Moreover, in this case

S (ζ) = −(m − 1)ρζ.

Proof. Suppose ζ annihilates ϕ. Then Eq (2.1) implies

R(X, ζ)ζ = (X(h)ζ − ζ(h)X) + h (γ (ζ) X − γ (X) ζ) , X ∈ X(N).

Using symmetry of the operator R(X, ζ)ζ, above equation implies

(X(h) − hγ (X)) g (ζ,Y) = (Y(h) − hγ (Y)) g (ζ, X) , X,Y ∈ X(N),

which gives,
g (∇h − hw, X) ζ = g (ζ, X) (∇h − hw) , X ∈ X(N).

Inserting X = ∇h − hw in above equation, we have

‖∇h − hw‖2 ζ = g (ζ,∇h − hw) (∇h − hw) .

On taking the inner product with ζ, we conclude

‖∇h − hw‖2 ‖ζ‖2 = g (ζ,∇h − hw)2 ,

and it implies ∇h − hw and ζ are parallel. This guarantees the existence of a smooth function ρ on N
with ∇h − hw = ρζ and it proves the first part.

Next observe that by virtue of (2.2), we have

dγ(ζ, X) = 0, X ∈ X(N). (2.5)

Let β be dual 1-form to ζ. Then, we have

dβ (X,Y) = g (DXζ,Y) − g (DYζ, X) ,
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which in view of Eq (1.1), gives

dβ (X,Y) = γ(X)β(Y) − γ(Y)β(X), X,Y ∈ X(N),

that is, dβ = 1
2γ∧β. Taking differential in this last equation we have dγ∧β = γ∧dβ = 1

2γ∧(γ ∧ β) = 0.
Choosing X,Y ∈ X(N) orthogonal to ζ and using (2.5) and dγ ∧ β = 0, we get

dγ (X,Y) ‖ζ‖2 = 0.

Since, ζ is non-trivial TFVF, we have ζ , 0 and N is connected, through above equation, we have
dγ (X,Y) = 0 for X,Y ∈ X(N) orthogonal to ζ. Observe that for any X ∈ X(N) the vector fields
‖ζ‖2 X − β(X)ζ and ζ are orthogonal and we conclude for any X,Y ∈ X(N)

dγ
(
‖ζ‖2 X − β(X)ζ, ‖ζ‖2 Y − β(Y)ζ

)
= 0.

and using Eq (2.5), we get
‖ζ‖4 dγ (X,Y) = 0, X,Y ∈ X(N).

Using ζ , 0 and N is connected in above equation to arrive at

dγ (X,Y) = 0, X,Y ∈ X(N),

which in view of Eq (2.2), we conclude ϕ = 0. Finally, using ϕ = 0 and ∇h − hw = ρζ in (2.4), we
conclude S (ζ) = −(m − 1)ρζ. �

Note that for a non-trivial TFVF ζ on a connected (N, g) with torsed function h and torsed form γ

that annihilates the skew-symmetric operator ϕ associated to γ, using Lemma 2.1, we have ϕ = 0, that
is, dγ = 0 and the vector field w dual to γ satisfies

g (DXw,Y) = g (DYw, X) , X,Y ∈ X(N).

Using above equation and Eq (2.2), we have

2g (BX,Y) = (£wg) (X,Y) = g (DXw,Y) + g (DYw, X) = 2g (DXw,Y) ,

that is,
DXw = BX, X ∈ X(N). (2.6)

Definition 2.1. If ζ is a non-trivial TFVF with torsed function h and torsed form γ on a Riemannian
manifold (N, g) that annihilates the skew-symmetric operator ϕ associated to the torsed form γ, then
the function ρ satisfying ∇h = hw + ρζ in the Lemma 2.1 is called the function associated to TFVF ζ.
Definition 2.2. We say that the Ricci operator S is invariant under ζ if S is invariant under the local
flow of ζ or equivalently

£ζS = 0,

where £ζ stands for the Lie differentiation with respect to ζ.
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Lemma 2.2. Let ζ be a non-trivial TFVF with torsed function h and torsed form γ on a connected
Riemannian manifold (N, g) that annihilates the skew-symmetric operator ϕ associated to the torsed
form γ. If the Ricci operator S is invariant under ζ, then the function ρ associated to ζ is a constant c
and the vector field w dual to γ satisfies

S (w) = −(m − 1)cw.

Proof. Suppose ζ annihilates ϕ and that the Ricci operator S is invariant under ζ. Then we have

∇h = hw + ρζ, (2.7)

and
(
£ζS

)
(X) = 0, that is, in view of Eq (1.1), we get(

DζS
)

(X) = γ (S (X)) ζ − γ(X)S (ζ) .

Using Lemma 2.1 we get (
DζS

)
(X) = γ (S (X) + (m − 1)ρX) ζ. (2.8)

Choosing X = ζ in above equation, while using S (ζ) = −(m − 1)ρζ, we have(
DζS

)
(ζ) = 0. (2.9)

Differentiating S (ζ) = −(m − 1)ρζ in the direction of ζ and using Eq (1.1), we arrive at

DζS (ζ) = −(m − 1)ζ (ρ) ζ − (m − 1)ρ (hζ + γ (ζ) ζ) .

Moreover, using Eq (1.1) and S (ζ) = −(m − 1)ρζ, we have

S
(
Dζζ

)
= hS (ζ) + γ (ζ) S (ζ) = −(m − 1)ρ (h + γ (ζ)) ζ.

Combining last two equations, we arrive at(
DζS

)
(ζ) = −(m − 1)ζ (ρ) ζ, (2.10)

which in view (2.9) and ζ , 0 on a connected N implies

ζ (ρ) = 0. (2.11)

We denote by Ah be the Hessian operator of the function h. Using Eqs (1.1), (2.6) and (2.7), we have

AhX = X(h)w + hBX + X(ρ)ζ + ρ (hX + γ(X)ζ) ,

that is,
AhX = hBX + ρhX +

[
X(h)w + (X(ρ) + ργ(X)) ζ

]
.

Using symmetry of Ah, we get

X(h)γ(Y) + (X(ρ) + ργ(X)) β(Y) = Y(h)γ(X) + (Y(ρ) + ργ(Y)) β(X),
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which in view of (2.7) in the form X(h) = hγ(X) + ρβ(X), X ∈ X(N) implies

X (ρ) β(Y) = Y(ρ)β(X), X,Y ∈ X(N).

Now, the above equation with Y = ζ while keeping in view Eq (2.11), gives

‖ζ‖2 X (ρ) = 0, X ∈ X(N).

As, ζ , 0 on connected N, we conclude ρ is a constant c.
Next, we take the inner product in Eq (2.8) with ζ and use symmetry of the operator S and Eq (2.9),

to arrive at
γ (S (X) + (m − 1)cX) ‖ζ‖2 = 0,

which on connected N with ζ , 0 implies

γ (S (X) + (m − 1)cX) = 0, X ∈ X(N).

This proves
S (w) = −(m − 1)cw. (2.12)

�

3. Characterizing spheres

Given a non-trivial TFVF ζ on a connected Riemannian manifold (N, g) with torsed function h and
torsed form γ, there is a dual vector field w to γ. We have observed that if ζ annihilates the skew-
symmetric operator ϕ associated to torsed form γ, then ϕ = 0 and there is a function ρ defined on N
that satisfies ∇h = hw + ρζ and S (ζ) = −(m − 1)ρζ. Furthermore, we have seen that if in addition
the Ricci operator S of (N, g) is invariant under the TFVF ζ, then the function ρ = c a constant and
that S (w) = −(m − 1)cw. These constraints on TFVF ζ are having an effect on the vector field w.
We also have an operator B associated to w satisfying Eq (2.6). We denote by f = trB and this is
the third function on N associated to a non-trivial TFVF ζ. As we are interested in seeking further
conditions so that (N, g) is isometric to an m-sphere Sm(a), naturally, we need to ask for the Ricci
curvature T (w,w) > 0. We prove the following characterization of the spheres using a non-trivial
TFVF ζ on a compact and connected Riemannian manifold (N, g).
Theorem 3.1. Let ζ be a non-trivial TFVF on an m-dimensional compact and connected Riemannian
manifold (N, g), with torsed function h, torsed form γ and Ricci curvature T (w,w) > 0. Then (N, g) is
isometric to Sm(a) if and only if, ζ annihilates the skew-symmetric operator ϕ associated to γ, the Ricci
operator S is invariant under ζ and the Ricci curvature T (w,w) satisfies∫

M
T (w,w) ≥

m − 1
m

∫
M

(divw)2 .

Proof. First notice that with condition T (w,w) > 0, in view of Eq (2.12), the constant c < 0 and we
put c = −a for a positive constant a. Note that Eq (2.6) implies

divw = f , f = trB. (3.1)
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Choose a local frame {u1, ..., um} on N and use Eq (2.6), to compute

divBw =
∑

i

g
(
Dui Bw, ui

)
=

∑
i

g
((

Dui B
)

(w) + B2ui, ui

)
.

Using symmetry of the operator B, we get

divBw = ‖B‖2 + g

w,∑
i

(
Dui B

)
(ui)

 . (3.2)

Now, using Eq (2.6), we have

R(X,Y)w = (DX B) (Y) − (DY B) (X) , X,Y ∈ X(N), (3.3)

which implies

T (Y,w) = g

Y,∑
i

(
Dui B

)
(ui)

 − Y( f ).

Thus,

T (w,w) = g

w,∑
i

(
Dui B

)
(ui)

 − w( f ).

Using this equation in (3.2), we arrive at

divBw = ‖B‖2 + T (w,w) + w( f ). (3.4)

Observe that div ( f w) = w( f ) + f divw and using (3.1), we have div ( f w) = w( f ) + (divw)2. Thus,
Eq (3.4) becomes

divBw = ‖B‖2 + T (w,w) + div ( f w) − (divw)2 ,

which on integration yields ∫
M
‖B‖2 =

∫
M

(
(divw)2

− T (w,w)
)

.

Using above equation in view of Eq (3.1), we have∫
M

(
‖B‖2 −

1
m

f 2
)

=

∫
M

(
m − 1

m
(divw)2

− T (w,w)
)

. (3.5)

Now, in view of the condition in the statement the right hand integral is non-positive and we have∫
M

(
‖B‖2 −

1
m

f 2
)
≤ 0. (3.6)

The Schwartz’s inequality ‖B‖2 ≥ 1
m f 2 and inequality (3.6) implies(

‖B‖2 −
1
m

f 2
)

= 0.
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Thus, we have the equality ‖B‖2 = 1
m f 2, and it holds if and only if

B =
f
m

I. (3.7)

Next, we see that Eq (3.7) implies

(DX B) (Y) =
1
m

X( f )Y , X,Y ∈ X(N)

and combining it with Eq (3.3), we get

R(X,Y)w =
1
m

(X( f )Y − Y( f )X) , X,Y ∈ X(N).

This equation implies

T (Y,w) = −
m − 1

m
Y( f ),

that is,

S (w) = −
m − 1

m
∇ f .

Using Lemma 2.2 and c = −a, we get
∇ f = −maw, (3.8)

where a is a positive constant. Note that if f is a constant, then Eq (3.8) will imply w = 0, that is, the
torsed form γ = 0 and it contradicts the fact that ζ is a non-trivial TFVF. Thus f is a not a constant.
Differentiating (3.8) with respect to X ∈ X(N) while using Eqs (2.6) and (3.7), we get

DX∇ f = −a f X, X ∈ X(N).

This proves that (N, g) is isometric to Sm(a) (cf. [22, 23]).
Conversely, we have already seen in the introduction that the sphere Sm(a) admits a non-trivial

TFVF ζ with torsed function h = −
√

aσe−σ and torsed form γ given by

γ(X) = −
√

ag (v, X) .

The vector field w = −
√

av. Then using Eq (1.3), we get that dγ = 0 and that the skew-symmetric
operator ϕ associated to γ has to be ϕ = 0. Thus, ζ annihilates ϕ. Furthermore, the Ricci operator S
for the sphere Sm(a) is given by S = (m − 1)aI and therefore is invariant under ζ. The Ricci curvature
T (w,w) > 0 and is given by

T (w,w) = (m − 1)a ‖w‖2 = (m − 1)a2 ‖v‖2 .

Using Eq (1.3), we have ∇σ =
√

av, which in view of above equation implies∫
Sm(a)

T (w,w) = (m − 1)a
∫

Sm(a)
‖∇σ‖2 . (3.9)

Note that on using Eq (1.3), we have divv = −
√

amσ and ∆σ = −amσ. This last equation implies∫
Sm(a)
‖∇σ‖2 = am

∫
Sm(a)

σ2. (3.10)
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Also, we have divw = −amσ, that is,

m − 1
m

∫
Sm(a)

(divw)2 = m(m − 1)a2
∫

Sm(a)
σ2.

Using Eq (3.10), we have

m − 1
m

∫
Sm(a)

(divw)2 = (m − 1)a
∫

Sm(a)
‖∇σ‖2 . (3.11)

Combining Eqs (3.9) and (3.11), we conclude that requirements in the statement are fulfilled. �

4. Conclusions

We have noticed in Theorem 3.1 that a TFVF ζ on a compact Riemannian manifold (M, g) with
torsed function h and torsed form γ that annihilates the operator ϕ associated to γ and the Ricci operator
invariant under ζ can be used to find a characterization of a sphere. Naturally, it will be of interest to
know whether we could use other conditions such as the operator ϕ is invariant under the TFVF ζ

instead of ϕ (ζ) = 0, keeping other conditions same to reach the same conclusion of Theorem 3.1.
Furthermore, one would be interested to find characterizations of Euclidean spaces and Hyperbolic
spaces using a TFVF on a complete Riemannian manifold.
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