Mathematics

Research article

Torse-forming vector fields on m-spheres

Amira Ishan ${ }^{1}$ and Sharief Deshmukh ${ }^{2, *}$
${ }^{1}$ Department of Mathematics, College of Science, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
${ }^{2}$ Department of Mathematics, College of Science, King Saud University, P.O.Box-2455, Riyadh-11451, Saudi Arabia

* Correspondence: Email: shariefd@ksu.edu.sa; Tel: +996502177041.

Abstract

A characterization of an m-sphere $\mathbf{S}^{m}(a)$ is obtained using a non-trivial torse-forming vector field ζ on an m-dimensional Riemannian manifold.

Keywords: torse-forming vector fields; Ricci operator; Ricci curvature
Mathematics Subject Classification: 53C25, 83F05

1. Introduction

An important space in differential geometry is the m-sphere $\mathbf{S}^{m}(a)$. It is known for its elegant geometry and topology. Characterizing m-spheres among complete connected m-dimensional Riemannian manifolds is a challenging question in differential geometry. This question has been addressed through several ways. One way is that the manifold admits a nontrivial solution of certain differential equations (cf. [18, 19, 22-24]). Other way is that the manifold admits certain special vector fields with certain additional conditions (cf. [1,7-10, 12-17, 25-27]). An important vector field among special vector fields is torse-forming vector field introduced by Yano (cf. [28]). These vector fields have immense importance in physics and geometry (cf. [2-6, 11, 16, 20, 21, 24]). However, it is not known whether a torse-forming vector field can be used to characterize an m-sphere $\mathbf{S}^{m}(a)$. In this short note, we find a characterization of an m-sphere $\mathbf{S}^{m}(a)$ using a torse-forming vector field on a compact and connected m-dimensional Riemannian manifold (N, g). It should be noted that there are some specific torse-forming vector fields which do not exist on an m-sphere $\mathbf{S}^{m}(a)$ (cf. [11, 16]). A torse-forming vector field ζ on a Riemannian manifold (N, g) satisfies

$$
\begin{equation*}
D_{X} \zeta=h X+\gamma(X) \zeta, \quad X \in \mathfrak{X}(N), \tag{1.1}
\end{equation*}
$$

where D is the Riemannian connection on $(N, g), h$ a smooth function, γ a 1-form and $\mathfrak{X}(M)$ Lie algebra of smooth vector fields on N. We call h the torsed function and γ the torsed form of the torse-forming vector field ζ. We shall abbreviate the torse-forming vector field ζ by TFVF ζ. Note that if the torsed form $\gamma=0$, then $\mathrm{Eq}(1.1)$ implies that $\mathrm{TFVF} \zeta$ is a concircular vector field. We say a $\mathrm{TFVF} \zeta$ on a Riemannian manifold (N, g) a non-trivial TFVF if $\zeta \neq 0$ and the torsed form $\gamma \neq 0$.

Now, we proceed to show that an m-sphere $\mathbf{S}^{m}(a)$ admits a non-trivial TFVF ζ. Note that the Wiengarten map L of $\mathbf{S}^{m}(a)$ in the Euclidean space \mathbf{E}^{m+1} is given by $L=-\sqrt{a} I$ and denote the unit normal of $\mathbf{S}^{m}(a)$ by ξ. Then for Euclidean coordinates u^{1}, \ldots, u^{m+1}, we define a function $\sigma=\left\langle\frac{\partial}{\partial u^{1}}, \xi\right\rangle$ on $\mathbf{S}^{m}(a)$, where \langle,$\rangle is the Euclidean metric and we have$

$$
\begin{equation*}
\frac{\partial}{\partial u^{1}}=\mathbf{v}+\sigma \xi \tag{1.2}
\end{equation*}
$$

where $\mathbf{v} \in \mathfrak{X}\left(\mathbf{S}^{m}(a)\right)$ is the projection of $\frac{\partial}{\partial u^{\prime}}$ to $\mathbf{S}^{m}(a)$. Taking covariant derivative in (1.2) with respect to Euclidean connection in the direction of $X \in \mathfrak{X}\left(\mathbf{S}^{m}(a)\right)$ while using Gauss and Wiengarten formulas on equating tangential and normal components, we conclude

$$
\begin{equation*}
D_{X} \mathbf{v}=-\sqrt{a} \sigma X, \quad X(\sigma)=\sqrt{a} g(\mathbf{v}, X), \tag{1.3}
\end{equation*}
$$

where g is the induced metric and D is the Riemannian connection on $\mathbf{S}^{m}(a)$. Now, define a vector field $\zeta=e^{-\sigma} \mathbf{v}$ on ($\left.\mathbf{S}^{m}(a), g\right)$, then using Eq (1.3) we have

$$
\begin{equation*}
D_{X} \zeta=-\sqrt{a} \sigma e^{-\sigma} X-X(\sigma) \zeta, \tag{1.4}
\end{equation*}
$$

that is,

$$
D_{X} \zeta=h X+\gamma(X) \zeta
$$

where $h=-\sqrt{a} \sigma e^{-\sigma}$ and $\gamma(X)=-\sqrt{a} g(\mathbf{v}, X)$. This proves that ζ is a TFVF on $\mathbf{S}^{m}(a)$. We claim that ζ is a non-trivial TFVF on $\mathbf{S}^{m}(a)$. To establish this claim, it is enough to show $\mathbf{v} \neq 0$. We assume on the contrary that $\mathbf{v}=0$. Then the second equation in (1.3) gives $X(\sigma)=0$, that is, the function σ is a constant. Moreover, the first equation in (1.3) implies $\sigma=0($ as $\mathbf{v}=0)$. Consequently, $\mathrm{Eq}(1.2)$ implies the constant unit vector field $\frac{\partial}{\partial u^{1}}=0$, a contradiction. Hence, ζ is a non-trivial TFVF on $\mathbf{S}^{m}(a)$.

2. Preliminaries

Let ζ be a TFVF on a Riemannian manifold (N, g) with torsed function h and torsed form γ. Then using Eq (1.1), for $X, Y \in \mathfrak{X}(N)$, we have

$$
D_{X} D_{Y} \zeta=X(h) Y+h D_{X} Y+X(\gamma(Y)) \zeta+\gamma(Y)(h X+\gamma(X) \zeta),
$$

and using definition of curvature tensor field of (N, g), we get

$$
\begin{equation*}
R(X, Y) \zeta=(X(h) Y-Y(h) X)+h(\gamma(Y) X-\gamma(X) Y)+d \gamma(X, Y) \zeta \tag{2.1}
\end{equation*}
$$

where $d \gamma$ is the differential of γ. Let \mathbf{w} be the dual vector field to torsed form $\gamma, \gamma(X)=g(\mathbf{w}, X)$, $X \in \mathfrak{X}(M)$. Define a skew-symmetric operator φ and a symmetric operator B associated to torsed form γ by

$$
\begin{equation*}
d \gamma(X, Y)=2 g(\varphi X, Y), \quad\left(£_{\mathrm{w}} g\right)(X, Y)=2 g(B X, Y), \quad X, Y \in \mathfrak{X}(N) . \tag{2.2}
\end{equation*}
$$

We denote by T the Ricci tensor and by S the Ricci operator of (N, g), that is,

$$
T(X, Y)=\sum_{i=1}^{m} g\left(R\left(u_{i}, X\right) Y, u_{i}\right), \quad T(X, Y)=g(S(X), Y),
$$

where $\left\{u_{1}, \ldots, u_{m}\right\}$ is a local frame and $\operatorname{dim} N=m$. Then Eqs (2.1) and (2.2) imply

$$
\begin{equation*}
T(Y, \zeta)=-(m-1) Y(h)+(m-1) h \gamma(Y)+2 g(\varphi \zeta, Y), \quad Y \in \mathfrak{X}(N), \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
S(\zeta)=-(m-1) \nabla h+(m-1) h \mathbf{w}+2 \varphi \zeta, \tag{2.4}
\end{equation*}
$$

where ∇h is gradient of h.
Lemma 2.1. Let ζ be a non-trivial TFVF on a connected Riemannian manifold (N, g) with torsed function h and torsed form γ. If ζ annihilates the skew-symmetric operator φ associated to torsed form γ, then there exists a function ρ on N such that $\nabla h=h \mathbf{w}+\rho \zeta$, where \mathbf{w} is vector field dual to γ and $\varphi=0$. Moreover, in this case

$$
S(\zeta)=-(m-1) \rho \zeta .
$$

Proof. Suppose ζ annihilates φ. Then Eq (2.1) implies

$$
R(X, \zeta) \zeta=(X(h) \zeta-\zeta(h) X)+h(\gamma(\zeta) X-\gamma(X) \zeta), \quad X \in \mathfrak{X}(N)
$$

Using symmetry of the operator $R(X, \zeta) \zeta$, above equation implies

$$
(X(h)-h \gamma(X)) g(\zeta, Y)=(Y(h)-h \gamma(Y)) g(\zeta, X), \quad X, Y \in \mathfrak{X}(N),
$$

which gives,

$$
g(\nabla h-h \mathbf{w}, X) \zeta=g(\zeta, X)(\nabla h-h \mathbf{w}), \quad X \in \mathfrak{X}(N) .
$$

Inserting $X=\nabla h-h \mathbf{w}$ in above equation, we have

$$
\|\nabla h-h \mathbf{w}\|^{2} \zeta=g(\zeta, \nabla h-h \mathbf{w})(\nabla h-h \mathbf{w}) .
$$

On taking the inner product with ζ, we conclude

$$
\|\nabla h-h \mathbf{w}\|^{2}\|\zeta\|^{2}=g(\zeta, \nabla h-h \mathbf{w})^{2},
$$

and it implies $\nabla h-h \mathbf{w}$ and ζ are parallel. This guarantees the existence of a smooth function ρ on N with $\nabla h-h \mathbf{w}=\rho \zeta$ and it proves the first part.

Next observe that by virtue of (2.2), we have

$$
\begin{equation*}
d \gamma(\zeta, X)=0, \quad X \in \mathfrak{X}(N) . \tag{2.5}
\end{equation*}
$$

Let β be dual 1 -form to ζ. Then, we have

$$
d \beta(X, Y)=g\left(D_{X} \zeta, Y\right)-g\left(D_{Y} \zeta, X\right),
$$

which in view of Eq (1.1), gives

$$
d \beta(X, Y)=\gamma(X) \beta(Y)-\gamma(Y) \beta(X), \quad X, Y \in \mathfrak{X}(N),
$$

that is, $d \beta=\frac{1}{2} \gamma \wedge \beta$. Taking differential in this last equation we have $d \gamma \wedge \beta=\gamma \wedge d \beta=\frac{1}{2} \gamma \wedge(\gamma \wedge \beta)=0$. Choosing $X, Y \in \mathfrak{Z}(N)$ orthogonal to ζ and using (2.5) and $d \gamma \wedge \beta=0$, we get

$$
d \gamma(X, Y)\|\zeta\|^{2}=0
$$

Since, ζ is non-trivial TFVF, we have $\zeta \neq 0$ and N is connected, through above equation, we have $d \gamma(X, Y)=0$ for $X, Y \in \mathfrak{X}(N)$ orthogonal to ζ. Observe that for any $X \in \mathfrak{X}(N)$ the vector fields $\|\zeta\|^{2} X-\beta(X) \zeta$ and ζ are orthogonal and we conclude for any $X, Y \in \mathfrak{X}(N)$

$$
d \gamma\left(\|\zeta\|^{2} X-\beta(X) \zeta,\|\zeta\|^{2} Y-\beta(Y) \zeta\right)=0
$$

and using Eq (2.5), we get

$$
\|\zeta\|^{4} d \gamma(X, Y)=0, \quad X, Y \in \mathfrak{X}(N)
$$

Using $\zeta \neq 0$ and N is connected in above equation to arrive at

$$
d \gamma(X, Y)=0, \quad X, Y \in \mathfrak{Z}(N),
$$

which in view of Eq (2.2), we conclude $\varphi=0$. Finally, using $\varphi=0$ and $\nabla h-h \mathbf{w}=\rho \zeta$ in (2.4), we conclude $S(\zeta)=-(m-1) \rho \zeta$.

Note that for a non-trivial TFVF ζ on a connected (N, g) with torsed function h and torsed form γ that annihilates the skew-symmetric operator φ associated to γ, using Lemma 2.1, we have $\varphi=0$, that is, $d \gamma=0$ and the vector field \mathbf{w} dual to γ satisfies

$$
g\left(D_{X} \mathbf{w}, Y\right)=g\left(D_{Y} \mathbf{w}, X\right), \quad X, Y \in \mathfrak{X}(N)
$$

Using above equation and Eq (2.2), we have

$$
2 g(B X, Y)=\left(£_{\mathbf{w}} g\right)(X, Y)=g\left(D_{X} \mathbf{w}, Y\right)+g\left(D_{Y} \mathbf{w}, X\right)=2 g\left(D_{X} \mathbf{w}, Y\right),
$$

that is,

$$
\begin{equation*}
D_{X} \mathbf{w}=B X, \quad X \in \mathfrak{X}(N) . \tag{2.6}
\end{equation*}
$$

Definition 2.1. If ζ is a non-trivial TFVF with torsed function h and torsed form γ on a Riemannian manifold (N, g) that annihilates the skew-symmetric operator φ associated to the torsed form γ, then the function ρ satisfying $\nabla h=h \mathbf{w}+\rho \zeta$ in the Lemma 2.1 is called the function associated to TFVF ζ. Definition 2.2. We say that the Ricci operator S is invariant under ζ if S is invariant under the local flow of ζ or equivalently

$$
£_{\zeta} S=0,
$$

where $£_{\zeta}$ stands for the Lie differentiation with respect to ζ.

Lemma 2.2. Let ζ be a non-trivial TFVF with torsed function h and torsed form γ on a connected Riemannian manifold (N, g) that annihilates the skew-symmetric operator φ associated to the torsed form γ. If the Ricci operator S is invariant under ζ, then the function ρ associated to ζ is a constant c and the vector field \mathbf{w} dual to γ satisfies

$$
S(\mathbf{w})=-(m-1) c \mathbf{w} .
$$

Proof. Suppose ζ annihilates φ and that the Ricci operator S is invariant under ζ. Then we have

$$
\begin{equation*}
\nabla h=h \mathbf{w}+\rho \zeta, \tag{2.7}
\end{equation*}
$$

and $\left(£_{\zeta} S\right)(X)=0$, that is, in view of $\mathrm{Eq}(1.1)$, we get

$$
\left(D_{\zeta} S\right)(X)=\gamma(S(X)) \zeta-\gamma(X) S(\zeta)
$$

Using Lemma 2.1 we get

$$
\begin{equation*}
\left(D_{\zeta} S\right)(X)=\gamma(S(X)+(m-1) \rho X) \zeta . \tag{2.8}
\end{equation*}
$$

Choosing $X=\zeta$ in above equation, while using $S(\zeta)=-(m-1) \rho \zeta$, we have

$$
\begin{equation*}
\left(D_{\zeta} S\right)(\zeta)=0 \tag{2.9}
\end{equation*}
$$

Differentiating $S(\zeta)=-(m-1) \rho \zeta$ in the direction of ζ and using Eq (1.1), we arrive at

$$
D_{\zeta} S(\zeta)=-(m-1) \zeta(\rho) \zeta-(m-1) \rho(h \zeta+\gamma(\zeta) \zeta) .
$$

Moreover, using Eq (1.1) and $S(\zeta)=-(m-1) \rho \zeta$, we have

$$
S\left(D_{\zeta} \zeta\right)=h S(\zeta)+\gamma(\zeta) S(\zeta)=-(m-1) \rho(h+\gamma(\zeta)) \zeta
$$

Combining last two equations, we arrive at

$$
\begin{equation*}
\left(D_{\zeta} S\right)(\zeta)=-(m-1) \zeta(\rho) \zeta \tag{2.10}
\end{equation*}
$$

which in view (2.9) and $\zeta \neq 0$ on a connected N implies

$$
\begin{equation*}
\zeta(\rho)=0 . \tag{2.11}
\end{equation*}
$$

We denote by A_{h} be the Hessian operator of the function h. Using Eqs (1.1), (2.6) and (2.7), we have

$$
A_{h} X=X(h) \mathbf{w}+h B X+X(\rho) \zeta+\rho(h X+\gamma(X) \zeta),
$$

that is,

$$
A_{h} X=h B X+\rho h X+[X(h) \mathbf{w}+(X(\rho)+\rho \gamma(X)) \zeta] .
$$

Using symmetry of A_{h}, we get

$$
X(h) \gamma(Y)+(X(\rho)+\rho \gamma(X)) \beta(Y)=Y(h) \gamma(X)+(Y(\rho)+\rho \gamma(Y)) \beta(X),
$$

which in view of (2.7) in the form $X(h)=h \gamma(X)+\rho \beta(X), X \in \mathfrak{X}(N)$ implies

$$
X(\rho) \beta(Y)=Y(\rho) \beta(X), \quad X, Y \in \mathfrak{X}(N) .
$$

Now, the above equation with $Y=\zeta$ while keeping in view Eq (2.11), gives

$$
\|\zeta\|^{2} X(\rho)=0, \quad X \in \mathfrak{X}(N) .
$$

As, $\zeta \neq 0$ on connected N, we conclude ρ is a constant c.
Next, we take the inner product in Eq (2.8) with ζ and use symmetry of the operator S and Eq (2.9), to arrive at

$$
\gamma(S(X)+(m-1) c X)\|\zeta\|^{2}=0,
$$

which on connected N with $\zeta \neq 0$ implies

$$
\gamma(S(X)+(m-1) c X)=0, \quad X \in \mathfrak{X}(N) .
$$

This proves

$$
\begin{equation*}
S(\mathbf{w})=-(m-1) c \mathbf{w} . \tag{2.12}
\end{equation*}
$$

3. Characterizing spheres

Given a non-trivial TFVF ζ on a connected Riemannian manifold (N, g) with torsed function h and torsed form γ, there is a dual vector field \mathbf{w} to γ. We have observed that if ζ annihilates the skewsymmetric operator φ associated to torsed form γ, then $\varphi=0$ and there is a function ρ defined on N that satisfies $\nabla h=h \mathbf{w}+\rho \zeta$ and $S(\zeta)=-(m-1) \rho \zeta$. Furthermore, we have seen that if in addition the Ricci operator S of (N, g) is invariant under the TFVF ζ, then the function $\rho=c$ a constant and that $S(\mathbf{w})=-(m-1) c \mathbf{w}$. These constraints on TFVF ζ are having an effect on the vector field \mathbf{w}. We also have an operator B associated to \mathbf{w} satisfying Eq (2.6). We denote by $f=\operatorname{tr} B$ and this is the third function on N associated to a non-trivial TFVF ζ. As we are interested in seeking further conditions so that (N, g) is isometric to an m-sphere $\mathbf{S}^{m}(a)$, naturally, we need to ask for the Ricci curvature $T(\mathbf{w}, \mathbf{w})>0$. We prove the following characterization of the spheres using a non-trivial TFVF ζ on a compact and connected Riemannian manifold (N, g).
Theorem 3.1. Let ζ be a non-trivial TFVF on an m-dimensional compact and connected Riemannian manifold (N, g), with torsed function h, torsed form γ and Ricci curvature $T(\mathbf{w}, \mathbf{w})>0$. Then (N, g) is isometric to $\mathbf{S}^{m}(a)$ if and only if, ζ annihilates the skew-symmetric operator φ associated to γ, the Ricci operator S is invariant under ζ and the Ricci curvature $T(\mathbf{w}, \mathbf{w})$ satisfies

$$
\int_{M} T(\mathbf{w}, \mathbf{w}) \geq \frac{m-1}{m} \int_{M}(d i v \mathbf{w})^{2} .
$$

Proof. First notice that with condition $T(\mathbf{w}, \mathbf{w})>0$, in view of Eq (2.12), the constant $c<0$ and we put $c=-a$ for a positive constant a. Note that Eq (2.6) implies

$$
\begin{equation*}
\operatorname{div} \mathbf{w}=f, \quad f=\operatorname{tr} B . \tag{3.1}
\end{equation*}
$$

Choose a local frame $\left\{u_{1}, \ldots, u_{m}\right\}$ on N and use Eq (2.6), to compute

$$
\operatorname{div} B \mathbf{w}=\sum_{i} g\left(D_{u_{i}} B \mathbf{w}, u_{i}\right)=\sum_{i} g\left(\left(D_{u_{i}} B\right)(\mathbf{w})+B^{2} u_{i}, u_{i}\right) .
$$

Using symmetry of the operator B, we get

$$
\begin{equation*}
\operatorname{div} B \mathbf{w}=\|B\|^{2}+g\left(\mathbf{w}, \sum_{i}\left(D_{u_{i}} B\right)\left(u_{i}\right)\right) . \tag{3.2}
\end{equation*}
$$

Now, using Eq (2.6), we have

$$
\begin{equation*}
R(X, Y) \mathbf{w}=\left(D_{X} B\right)(Y)-\left(D_{Y} B\right)(X), \quad X, Y \in \mathfrak{X}(N), \tag{3.3}
\end{equation*}
$$

which implies

$$
T(Y, \mathbf{w})=g\left(Y, \sum_{i}\left(D_{u_{i}} B\right)\left(u_{i}\right)\right)-Y(f) .
$$

Thus,

$$
T(\mathbf{w}, \mathbf{w})=g\left(\mathbf{w}, \sum_{i}\left(D_{u_{i}} B\right)\left(u_{i}\right)\right)-\mathbf{w}(f) .
$$

Using this equation in (3.2), we arrive at

$$
\begin{equation*}
\operatorname{div} B \mathbf{w}=\|B\|^{2}+T(\mathbf{w}, \mathbf{w})+\mathbf{w}(f) . \tag{3.4}
\end{equation*}
$$

Observe that $\operatorname{div}(f \mathbf{w})=\mathbf{w}(f)+f d i v \mathbf{w}$ and using (3.1), we have $\operatorname{div}(f \mathbf{w})=\mathbf{w}(f)+(\operatorname{div} \mathbf{w})^{2}$. Thus, Eq (3.4) becomes

$$
\operatorname{div} B \mathbf{w}=\|B\|^{2}+T(\mathbf{w}, \mathbf{w})+\operatorname{div}(f \mathbf{w})-(\operatorname{div} \mathbf{w})^{2},
$$

which on integration yields

$$
\int_{M}\|B\|^{2}=\int_{M}\left((d i v \mathbf{w})^{2}-T(\mathbf{w}, \mathbf{w})\right) .
$$

Using above equation in view of Eq (3.1), we have

$$
\begin{equation*}
\int_{M}\left(\|B\|^{2}-\frac{1}{m} f^{2}\right)=\int_{M}\left(\frac{m-1}{m}(d i v \mathbf{w})^{2}-T(\mathbf{w}, \mathbf{w})\right) \tag{3.5}
\end{equation*}
$$

Now, in view of the condition in the statement the right hand integral is non-positive and we have

$$
\begin{equation*}
\int_{M}\left(\|B\|^{2}-\frac{1}{m} f^{2}\right) \leq 0 . \tag{3.6}
\end{equation*}
$$

The Schwartz's inequality $\|B\|^{2} \geq \frac{1}{m} f^{2}$ and inequality (3.6) implies

$$
\left(\|B\|^{2}-\frac{1}{m} f^{2}\right)=0
$$

Thus, we have the equality $\|B\|^{2}=\frac{1}{m} f^{2}$, and it holds if and only if

$$
\begin{equation*}
B=\frac{f}{m} I . \tag{3.7}
\end{equation*}
$$

Next, we see that Eq (3.7) implies

$$
\left(D_{X} B\right)(Y)=\frac{1}{m} X(f) Y, \quad X, Y \in \mathfrak{X}(N)
$$

and combining it with Eq (3.3), we get

$$
R(X, Y) \mathbf{w}=\frac{1}{m}(X(f) Y-Y(f) X), \quad X, Y \in \mathfrak{Z}(N) .
$$

This equation implies

$$
T(Y, \mathbf{w})=-\frac{m-1}{m} Y(f)
$$

that is,

$$
S(\mathbf{w})=-\frac{m-1}{m} \nabla f
$$

Using Lemma 2.2 and $c=-a$, we get

$$
\begin{equation*}
\nabla f=-m a \mathbf{w}, \tag{3.8}
\end{equation*}
$$

where a is a positive constant. Note that if f is a constant, then $\mathrm{Eq}(3.8)$ will imply $\mathbf{w}=0$, that is, the torsed form $\gamma=0$ and it contradicts the fact that ζ is a non-trivial TFVF. Thus f is a not a constant. Differentiating (3.8) with respect to $X \in \mathfrak{X}(N)$ while using Eqs (2.6) and (3.7), we get

$$
D_{X} \nabla f=-a f X, \quad X \in \mathfrak{Z}(N) .
$$

This proves that (N, g) is isometric to $\mathbf{S}^{m}(a)$ (cf. [22,23]).
Conversely, we have already seen in the introduction that the sphere $\mathbf{S}^{m}(a)$ admits a non-trivial TFVF ζ with torsed function $h=-\sqrt{a} \sigma e^{-\sigma}$ and torsed form γ given by

$$
\gamma(X)=-\sqrt{a} g(\mathbf{v}, X)
$$

The vector field $\mathbf{w}=-\sqrt{a} \mathbf{v}$. Then using Eq (1.3), we get that $d \gamma=0$ and that the skew-symmetric operator φ associated to γ has to be $\varphi=0$. Thus, ζ annihilates φ. Furthermore, the Ricci operator S for the sphere $\mathbf{S}^{m}(a)$ is given by $S=(m-1) a I$ and therefore is invariant under ζ. The Ricci curvature $T(\mathbf{w}, \mathbf{w})>0$ and is given by

$$
T(\mathbf{w}, \mathbf{w})=(m-1) a\|\mathbf{w}\|^{2}=(m-1) a^{2}\|\mathbf{v}\|^{2} .
$$

Using Eq (1.3), we have $\nabla \sigma=\sqrt{a} \mathbf{v}$, which in view of above equation implies

$$
\begin{equation*}
\int_{\mathbf{S}^{m}(a)} T(\mathbf{w}, \mathbf{w})=(m-1) a \int_{\mathbf{S}^{m}(a)}\|\nabla \sigma\|^{2} \tag{3.9}
\end{equation*}
$$

Note that on using Eq (1.3), we have $d i v \mathbf{v}=-\sqrt{a} m \sigma$ and $\Delta \sigma=-a m \sigma$. This last equation implies

$$
\begin{equation*}
\int_{\mathbf{S}^{m}(a)}\|\nabla \sigma\|^{2}=a m \int_{\mathbf{S}^{m}(a)} \sigma^{2} \tag{3.10}
\end{equation*}
$$

Also, we have $d i v \mathbf{w}=-a m \sigma$, that is,

$$
\frac{m-1}{m} \int_{\mathbf{S}^{m}(a)}(d i v \mathbf{w})^{2}=m(m-1) a^{2} \int_{\mathbf{S}^{m}(a)} \sigma^{2}
$$

Using Eq (3.10), we have

$$
\begin{equation*}
\frac{m-1}{m} \int_{\mathbf{S}^{m}(a)}(d i v \mathbf{w})^{2}=(m-1) a \int_{\mathbf{S}^{m}(a)}\|\nabla \sigma\|^{2} . \tag{3.11}
\end{equation*}
$$

Combining Eqs (3.9) and (3.11), we conclude that requirements in the statement are fulfilled.

4. Conclusions

We have noticed in Theorem 3.1 that a TFVF ζ on a compact Riemannian manifold (M, g) with torsed function h and torsed form γ that annihilates the operator φ associated to γ and the Ricci operator invariant under ζ can be used to find a characterization of a sphere. Naturally, it will be of interest to know whether we could use other conditions such as the operator φ is invariant under the TFVF ζ instead of $\varphi(\zeta)=0$, keeping other conditions same to reach the same conclusion of Theorem 3.1. Furthermore, one would be interested to find characterizations of Euclidean spaces and Hyperbolic spaces using a TFVF on a complete Riemannian manifold.

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

1. I. Al-Dayel, S. Deshmukh, O. Belova, A remarkable property of concircular vector fields on a Riemannian manifold, Mathematics, 8 (2020), 469. doi: 10.3390/math8040469.
2. A. L. Besse, Einstein manifolds, Springer-Verlag, 1987.
3. S. Capozziello, C. A. Mantica, L. G. Molinari, Cosmological perfect fluids in higher-order gravity, Gen. Relativ. Gravit., 52 (2020), 36. doi: 10.1007/s10714-020-02690-2.
4. M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297306.
5. B. Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relativ. Gravit., 46 (2014), 1833. doi: 10.1007/s10714-014-1833-9.
6. B. Y. Chen, Rectifying submanifolds of Riemannian manifolds and torqued vector fields, Kragujev. J. Math., 41 (2017), 93-103. doi: 10.5937/KgJMath1701093C.
7. S. Deshmukh, Characterizing spheres and Euclidean spaces by conformal vector fields, Ann. Mat. Pur. Appl., 196 (2017), 2135-2145. doi: 10.1007/s10231-017-0657-0.
8. S. Deshmukh, Geometry of conformal vector fields, Arab. J. Math. Sci., 23 (2017), 44-73. doi: 10.1016/j.ajmsc.2016.09.003.
9. S. Deshmukh, Conformal vector fields and eigenvectors of Laplace operator, Math. Phys. Anal. Geom., 15 (2012), 163-172. doi: 10.1007/s11040-012-9106-x.
10. S. Deshmukh, Characterizing spheres by conformal vector fields, Ann. Univ. Ferrara, 56 (2010), 231-236. doi: 10.1007/s11565-010-0101-5.
11. S. Deshmukh, I. Al-Dayel, D. M. Naik, On an anti-torqued vector field on Riemannian, Mathematics, 9 (2021), 2201. doi: 10.3390/math9182201.
12. S. Deshmukh, Jacobi-type vector fields on Ricci solitons, B. Math. Soc. Sci. Math., 55 (2012), 41-50.
13. S. Deshmukh, F. Al-Solamy, Conformal gradient conformal vector fields on a compact Riemannian manifold, Colloq. Math., 112 (2008), 157-161. doi: 10.4064/cm112-1-8.
14. S. Deshmukh, F. Al-Solamy, A note on conformal vector fields on a Riemannian manifold, Colloq. Math., 136 (2014), 65-73. doi: 10.4064/cm136-1-7.
15. S. Deshmukh, F. Al-Solamy, Conformal vector fields on a Riemannian manifold, Balk. J. Geom. Appl., 19 (2014), 86-93.
16. S. Deshmukh, N. Turki, H. Alodan, On the differential equation governing torqued vector fields on a Riemannian manifold, Symmetry, 12 (2020), 1941. doi: 10.3390/sym12121941.
17. F. Erkekoglu, E. García-Río, D. N. Kupeli, B. Ünal, Characterizing specific Riemannian manifolds by differential equations, Acta Appl. Math., 76 (2003), 195-219. doi: 10.1023/A:1022987819448.
18. E. García-Río, D.N. Kupeli, B. Ünal, Some conditions for Riemannian manifolds to be isometric with Euclidean spheres, J. Differ. Equ., 194 (2003), 287-299.
19. C. A. Mantica, L. G. Molinari, U. C. De, A note on generalized Robertson-Walker spacetimes, Int. J. Geom. Methods M., 13 (2016), 1650079. doi: 10.1142/S0219887816500791.
20. C. A. Mantica, L. G. Molinari, Generalized Robertson-Walker spacetimes-A survey, Int. J. Geom. Methods M., 14 (2017), 1730001. doi: 10.1142/S021988781730001X.
21. A. Mihai, I. Mihai, Torse forming vector fields and exterior concurrent vector fields on Riemannian manifolds and applications, J. Geom. Phys., 23 (2013), 200-208. doi: 10.1016/j.geomphys.2013.06.002.
22. M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Jpn., 14 (1962), 333-340. doi: 10.2969/jmsj/01430333.
23. M. Obata, Conformal transformations of Riemannian manifolds, J. Differ. Geom., 4 (1970), 311333. doi: $10.4310 / \mathrm{jdg} / 1214429505$.
24. R. Rosca, On Lorentzian manifolds, Atti Accad. Pelorit. Pericolanti Cl. Sci. Fis. Mat. Natur, 69 (1993), 15-30.
25. S. Tanno, Some differential equations on Riemannian manifolds, J. Math. Soc. Jpn., 30 (1978), 509-531. doi: $10.2969 / \mathrm{jmsj} / 03030509$.
26. S. Tanno, W. C. Weber, Closed conformal vector fields, J. Differ. Geom., 3 (1969), 361-366. doi: $10.4310 / \mathrm{jdg} / 1214429058$.
27. Y. Tashiro, Complete Riemannian manifolds and some vector fields, T. Am. Math. Soc., 117 (1965), 251-275. doi: 10.2307/1994206.
28. K. Yano, On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo, 20 (1944), 340-345. doi:10.3792/pia/1195572958.
© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
