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1. Introduction and preliminary definitions

In his survey-cum-expository review article, Srivastava [1] presented and motivated about brief
expository overview of the classical q-analysis versus the so-called (p, q)-analysis with an obviously
redundant additional parameter p. We also briefly consider several other families of such extensively
and widely-investigated linear convolution operators as (for example) the Dziok-Srivastava,
Srivastava-Wright and Srivastava-Attiya linear convolution operators, together with their extended
and generalized versions. The theory of (p, q)-analysis has important role in many areas of
mathematics and physics. Our usages here of the q-calculus and the fractional q-calculus in geometric
function theory of complex analysis are believed to encourage and motivate significant further
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developments on these and other related topics (see Srivastava and Karlsson [2, pp. 350–351],
Srivastava [3, 4]). Our main objective in this survey-cum-expository article is based chiefly upon the
fact that the recent and future usages of the classical q-calculus and the fractional q-calculus in
geometric function theory of complex analysis have the potential to encourage and motivate
significant further researches on many of these and other related subjects. Jackson [5, 6] was the first
that gave some application of q-calculus and introduced the q-analogue of derivative and integral
operator (see also [7, 8]), we apply the concept of q-convolution in order to introduce and study the
general Taylor-Maclaurin coefficient estimates for functions belonging to a new class of normalized
analytic in the open unit disk, which we have defined here.

LetA denote the class of analytic functions of the form

f (z) := z +
∞∑

m=2

amzm, z ∈ ∆ := {z ∈ C : |z| < 1} (1.1)

and let S ⊂ A consisting on functions that are univalent in ∆. If the function h ∈ A is given by

h(z) := z +
∞∑

m=2

bmzm, (z ∈ ∆) . (1.2)

The Hadamard product (or convolution) of f and h, given by (1.1) and (1.2), respectively, is
defined by

( f ∗ h)(z) := z +
∞∑

m=2

ambmzm, z ∈ ∆. (1.3)

If f and F are analytic functions in ∆, we say that f is subordinate to F, written as f (z) ≺ F(z), if
there exists a Schwarz function s, which is analytic in ∆, with s(0) = 0, and |s(z)| < 1 for all z ∈ ∆, such
that f (z) = F(s(z)), z ∈ ∆. Furthermore, if the function F is univalent in ∆, then we have the following
equivalence ( [9, 10])

f (z) ≺ F(z)⇔ f (0) = F(0) and f (∆) ⊂ F(∆).

The Koebe one-quarter theorem (see [11]) prove that the image of ∆ under every univalent function

f ∈ S contains the disk of radius
1
4

. Therefore, every function f ∈ S has an inverse f −1 that satisfies

f ( f −1(w)) = w,
(
|w| < r0 ( f ) , r0 ( f ) ≥

1
4

)
,

where

g(w) = f −1(w) = w − a2w2 +
(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · .

= w +
∞∑

m=2

Amwm

A function f ∈ A is said to be bi-univalent in ∆ if both f and f −1 are univalent in ∆. Let Σ represent
the class of bi-univalent functions in ∆ given by (1.1). The class of analytic bi-univalent functions
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was first familiarised by Lewin [12], where it was shown that |a2| < 1.51. Brannan and Clunie [13]
enhanced Lewin’s result to |a2| <

√
2 and later Netanyahu [14] proved that |a2| <

4
3 .

Note that the functions

f1(z) =
z

1 − z
, f2(z) =

1
2

log
1 + z
1 − z

, f3(z) = − log(1 − z)

with their corresponding inverses

f −1
1 (w) =

w
1 + w

, f −1
2 (w) =

e2w − 1
e2w + 1

, f −1
3 (w) =

ew − 1
ew

are elements of Σ (see [15, 16]). For a brief history and exciting examples in the class Σ (see [17]).
Brannan and Taha [18] (see also [16]) presented certain subclasses of the bi-univalent functions class
Σ similar to the familiar subclasses S ∗ (α) and K (α) of starlike and convex functions of order α
(0 ≤ α < 1), respectively (see [17, 19, 20]). Ensuing Brannan and Taha [18], a function f ∈ A is said
to be in the class S ∗

Σ
(α) of bi-starlike functions of order α (0 < α ≤ 1), if each of the following

conditions are satisfied:

f ∈ Σ, with
∣∣∣∣∣arg

z f ′(z)
f (z)

∣∣∣∣∣ < απ

2
(z ∈ ∆) ,

and ∣∣∣∣∣arg
wg′(w)
g(w)

∣∣∣∣∣ < απ

2
(w ∈ ∆) ,

where the function g is the analytic extension of f −1 to ∆, given by

g(w) = w − a2w2 +
(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · (w ∈ ∆) . (1.4)

A function f ∈ A is said to be in the class KΣ (α) of bi-convex functions of order α (0 < α ≤ 1), if
each of the following conditions are satisfied:

f ∈ Σ, with

∣∣∣∣∣∣arg
(
1 +

z f ′′(z)
f ′(z)

)∣∣∣∣∣∣ < απ

2
(z ∈ ∆) ,

and ∣∣∣∣∣∣arg
(
1 +

wg′′(w)
g′(w)

)∣∣∣∣∣∣ < απ

2
(w ∈ ∆) .

The classes S ∗
Σ

(α) and KΣ (α) of bi-starlike functions of order α and bi-convex functions of order α
(0 < α ≤ 1), corresponding to the function classes S ∗ (α) and K (α), were also introduced analogously.
For each of the function classes S ∗

Σ
(α) and KΣ (α), they found non-sharp estimates on the first two

Taylor-Maclaurin coefficients |a2| and |a3| ( [16, 18] ).

1.1. Faber polynomial expansion of functions f ∈ A

The Faber polynomials introduced by Faber [21] play an important role in various areas of
mathematical sciences, especially in Geometric Function Theory of Complex Analysis (see, for
details, [22]). In 2013, Hamidi and Jahangiri [23–25] took a new approach to show that the initial
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coefficients of classes of bi- starlike functions e as well as provide an estimate for the general
coefficients of such functions subject to a given gap series condition.Recently,their idea of application
of Faber polynomials triggered a number of related publications by several authors (see, for
example, [26–28] and also references cited threin) investigated some interesting and useful properties
for analytic functions. Using the Faber polynomial expansion of functions f ∈ A has the form (1.1),
the coefficients of its inverse map may be expressed as

g(w) = f −1(w) = w +
∞∑

m=2

1
m

K−m
m−1(a2, a3, ...)wm, (1.5)

where

K−m
m−1(a2, a3, ...) =

(−m)!
(−2m+1)! (m−1)!a

m−1
2 +

(−m)!
(2(−m+1))! (m−3)!a

m−3
2 a3

+
(−m)!

(−2m+3)! (m−4)!a
m−4
2 a4 +

(−m)!
(2(−m+2))! (m−5)!a

m−5
2

[
a5 + (−m + 2) a2

3

]
+

(−m)!
(−2m+5)! (m−6)!a

m−6
2 [a6 + (−2m + 5) a3a4] +

∑
i≥7

am−i
2 Ui, (1.6)

such that Ui with 7 ≤ i ≤ m is a homogeneous polynomial in the variables a2, a3, ..., am, In particular,
the first three terms of K−m

m−1 are

K−2
1 = −2a2,

K−3
2 = 3

(
2a2

2 − a3

)
,

K−4
3 = −4

(
5a3

2 − 5a2a3 + a4

)
.

In general, an expansion of K−n
m (n ∈ N) is (see [29–33])

K−n
m = nam +

n (n − 1)
2

D2
m +

n!
3! (n − 3)!

D3
m + ... +

n!
m! (n − m)!

Dm
m,

whereDn
m = D

n
m(a2, a3, ...) and

Dp
m(a1, a2, ...am) =

∞∑
m=1

p!
i1!...im!

ai1
1 ...a

im
m ,

while a1 = 1 and the sum is taken over all non-negative integers i1...im satisfying

i1 + i2 + ... + im = p

i1 + 2i2 + ... + mim = m.

Evidently

Dm
m(a1, a2, ...am) = am

1 .
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1.2. Quantum calculus operator

Srivastava [1] made use of several operators of q-calculus and fractional q-calculus and recollecting
the definition and representations. The q-shifted factorial is defined for κ, q ∈ C and n ∈ N0 = N ∪ {0}
as follows

(κ; q)m =

 1 , m = 0
(1 − κ) (1 − κq) . . .

(
1 − κqk−1

)
, m ∈ N

.

By using the q-Gamma function Γq(z), we get

(qκ; q)m =
(1 − q)m Γq (κ + m)

Γq (κ)
(m ∈ N0) ,

where (see [34])

Γq(z) = (1 − q)1−z (q; q)∞
(qz; q)∞

(|q| < 1) .

Also, we note that

(κ; q)∞ =
∞∏

m=0

(1 − κqm) (|q| < 1) ,

and, the q-Gamma function Γq(z) is known

Γq(z + 1) = [z]q Γq(z),

where [m]q symbolizes the basic q-number defined as follows

[m]q :=


1−qm

1−q , m ∈ C

1 +
m−1∑
j=1

q j , m ∈ N
. (1.7)

Using the definition formula (1.7) we have the next two products:
(i) For any non-negative integer m, the q-shifted factorial is given by

[m]q! :=


1, if m = 0,
m∏

n=1
[n]q, if m ∈ N.

(ii) For any positive number r, the q-generalized Pochhammer symbolis defined by

[r]q,m :=


1, if m = 0,
r+m−1∏

n=r
[n]q, if m ∈ N.

It is known in terms of the classical (Euler’s) Gamma function Γ (z), that

Γq (z)→ Γ (z) as q→ 1−.
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Also, we observe that

lim
q→1−

{
(qκ; q)m

(1 − q)m

}
= (κ)m ,

where (κ)m is the familiar Pochhammer symbol defined by

(κ)m =

{
1, if m = 0,
κ (κ + 1) ... (κ + m − 1) , if m ∈ N.

For 0 < q < 1, the q-derivative operator (or, equivalently, the q- difference operator) El-Deeb
et al. [35] defined Dq for f ∗ h given by (1.3) is defined by (see [5, 6])

Dq ( f ∗ h) (z) : = Dq

z + ∞∑
m=2

ambmzm


=

( f ∗ h) (z) − ( f ∗ h) (qz)
z(1 − q)

= 1 +
∞∑

m=2

[m]qambmzm−1 (z ∈ ∆) ,

where, as in the definition (1.7)

[m]q :=


1−qm

1−q = 1 +
m−1∑
j=1

q j (m ∈ N),

0 (m = 0).
(1.8)

For κ > −1 and 0 < q < 1, El-Deeb et al. [35] (see also) defined the linear operatorH κ,q
h : A → A

by
H

κ,q
h f (z) ∗Mq,κ+1(z) = z Dq ( f ∗ h) (z) (z ∈ ∆) ,

where the functionMq,κ+1 is given by

Mq,κ+1(z) := z +
∞∑

m=2

[κ + 1]q,m−1

[m − 1]q!
zm (z ∈ ∆) .

A simple computation shows that

H
κ,q
h f (z) := z +

∞∑
m=2

[m]q!
[κ + 1]q,m−1

ambm zm (κ > −1, 0 < q < 1, z ∈ ∆). (1.9)

From the definition relation (1.9), we can easily verify that the next relations hold for all f ∈ A:

(i) [κ + 1]qH
κ,q
h f (z) = [κ]qH

κ+1,q
h f (z) + qκ z Dq

(
H

κ+1,q
h f (z)

)
(z ∈ ∆) ;

(ii) Iκh f (z) := lim
q→1−
H

κ,q
h f (z) = z +

∞∑
m=2

m!
(κ + 1)m−1

ambmzm (z ∈ ∆) . (1.10)
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Remark 1. Taking precise cases for the coefficients bm we attain the next special cases for the operator
H

κ,q
h :

(i) For bm = 1, we obtain the operator Iκq defined by Srivastava [32] and Arif et al. [36] as follows

Iκq f (z) := z +
∞∑

m=2

[m]q!
[κ + 1]q,m−1

amzm (κ > −1, 0 < q < 1, z ∈ ∆); (1.11)

(ii) For bm =
(−1)m−1Γ(υ + 1)

4m−1(m − 1)!Γ(m + υ)
, υ > 0, we obtain the operator N κ

υ,q defined by El-Deeb and

Bulboacă [37] and El-Deeb [38] as follows

N κ
υ,q f (z) := z +

∞∑
m=2

(−1)m−1Γ(υ + 1)
4m−1(m − 1)!Γ(m + υ)

·
[m]q!

[κ + 1]q,m−1
amzm

= z +
∞∑

m=2

[m]q!
[κ + 1]q,m−1

ψmamzm (υ > 0, κ > −1, 0 < q < 1, z ∈ ∆), (1.12)

where

ψm :=
(−1)m−1Γ(υ + 1)

4m−1(m − 1)!Γ(m + υ)
; (1.13)

(iii) For bm =

(
n + 1
n + m

)α
, α > 0, n ≥ 0, we obtain the operator Mκ,α

n,q defined by El-Deeb and

Bulboacă [39] and Srivastava and El-Deeb [40] as follows

Mκ,α
n,q f (z) := z +

∞∑
m=2

(
n + 1
n + m

)α
·

[m]q!
[κ + 1]q,m−1

amzm (z ∈ ∆) ; (1.14)

(iv) For bm =
ρm−1

(m − 1)!
e−ρ, ρ > 0, we obtain the q-analogue of Poisson operator defined by El-Deeb

et al. [35] (see [41]) as follows

Iκ,ρq f (z) := z +
∞∑

m=2

ρm−1

(m − 1)!
e−ρ ·

[m]q!
[κ + 1]q,m−1

amzm (z ∈ ∆) . (1.15)

(v) For bm =

[
1 + ℓ + µ(m − 1)

1 + ℓ

]n

, n ∈ Z, ℓ ≥ 0, µ ≥ 0, we obtain the q-analogue of Prajapat operator

defined by El-Deeb et al. [35] (see also [42]) as follows

J
κ,n
q,ℓ,µ f (z) := z +

∞∑
m=2

[
1 + ℓ + µ(m − 1)

1 + ℓ

]n

·
[m, q]!

[κ + 1, q]m−1
amzm (z ∈ ∆) ; (1.16)

(vi) For bm =

(
n + m − 2

m − 1

)
θm−1 (1 − θ)n , n ∈ N, 0 ≤ θ ≤ 1, we obtain the q-analogue of the Pascal

distribution operator defined by Srivastava and El-Deeb [28] (see also [35, 43, 44]) as follows

⊖
κ,n
q,θ f (z) := z +

∞∑
m=2

(
n + m − 2

m − 1

)
θm−1 (1 − θ)n

·
[m, q]!

[κ + 1, q]m−1
amzm (z ∈ ∆) . (1.17)
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The purpose of the paper is to present a new subclass of functions Lq,κ
Σ

(η; h;Φ) of the class Σ, that
generalize the previous defined classes. This subclass is defined with the aid of a general H κ,q

h linear
operator defined by convolution products composed with the aid of q-derivative operator. This new
class extend and generalize many preceding operators as it was presented in Remark 1, and the main
goal of the paper is find estimates on the coefficients |a2|, |a3|, and for the Fekete-Szegö functional for
functions in these new subclasses. These classes will be introduced by using the subordination and the
results are obtained by employing the techniques used earlier by Srivastava et al. [16]. This last work
represents one of the most important study of the bi-univalent functions, and inspired many
investigations in this area including the present paper, while many other recent papers deals with
problems initiated in this work, like [33, 44–48], and many others. Inspired by the work of Silverman
and Silvia [49] (also see [50]) and recent study by Srivastava et al [51], in this article, we define the
following new subclass of bi-univalent functionsMq,κ

Σ
(ϖ,ϑ, h) as follows:

Definition 1. Let ϖ ∈ (−π, π] and let the function f ∈ Σ be of the form (1.1) and h is given by (1.2),
the function f is said to be in the classMq,κ

Σ
(ϖ,ϑ, h) if the following conditions are satisfied:

ℜ

((
H

κ,q
h f (z)

)′
+

(1 + eiϖ)
2

z
(
H

κ,q
h f (z)

)′′)
> ϑ, (1.18)

and

ℜ

((
H

κ,q
h g(w)

)′
+

(1 + eiϖ)
2

w
(
H

κ,q
h g(w)

)′′)
> ϑ (1.19)

with κ > −1, 0 < q < 1, 0 ≤ ϑ < 1 and z,w ∈ ∆, where the function g is the analytic extension of f −1

to ∆, and is given by (1.4).

Definition 2. Let ϖ = 0 and let the function f ∈ Σ be of the form (1.1) and h is given by (1.2), the
function f is said to be in the classMq,κ

Σ
(ϑ, h) if the following conditions are satisfied:

ℜ

((
H

κ,q
h f (z)

)′
+ z

(
H

κ,q
h f (z)

)′′)
> ϑ, (1.20)

and
ℜ

((
H

κ,q
h g(w)

)′
+ w

(
H

κ,q
h g(w)

)′′)
> ϑ (1.21)

with κ > −1, 0 < q < 1, 0 ≤ ϑ < 1 and z,w ∈ ∆, where the function g is the analytic extension of f −1

to ∆, and is given by (1.4).

Definition 3. Let ϖ = π and let the function f ∈ Σ be of the form (1.1) and h is given by (1.2), the
function f is said to be in the classHMq,κ

Σ
(ϑ, h) if the following conditions are satisfied:

ℜ

((
H

κ,q
h f (z)

)′)
> ϑ and ℜ

((
H

κ,q
h g(w)

)′)
> ϑ (1.22)

with κ > −1, 0 < q < 1, 0 ≤ ϑ < 1 and z,w ∈ ∆, where the function g is the analytic extension of f −1

to ∆, and is given by (1.4).
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Remark 2. (i) Putting q → 1− we obtain that lim
q→1−
M

q,κ
Σ

(ϖ,ϑ; h) =: Gκ
Σ

(ϖ,ϑ; h), where Gκ
Σ

(ϖ,ϑ; h)

represents the functions f ∈ Σ that satisfy (1.18) and (1.19) forH κ,q
h replaced with Iκh (1.10).

(ii) Fixing bm =
(−1)m−1Γ(υ + 1)

4m−1(m − 1)!Γ(m + υ)
, υ > 0, we obtain the class Bq,κ

Σ
(ϖ,ϑ, υ), that represents the

functions f ∈ Σ that satisfy (1.18) and (1.19) forH κ,q
h replaced with N κ

υ,q (1.12).

(iii) Taking bm =

(
n + 1
n + m

)α
, α > 0, n ≥ 0, we obtain the class Lq,κ

Σ
(ϖ,ϑ, n, α), that represents the

functions f ∈ Σ that satisfy (1.18) and (1.19) forH κ,q
h replaced withMκ,α

n,q (1.14).

(iv) Fixing bm =
ρm−1

(m − 1)!
e−ρ, ρ > 0, we obtain the classMq,κ

Σ
(ϖ,ϑ, ρ), that represents the functions

f ∈ Σ that satisfy (1.18) and (1.19) forH κ,q
h replaced with Iκ,ρq (1.15).

(v) Choosing bm =

[
1 + ℓ + µ(m − 1)

1 + ℓ

]n

, n ∈ Z, ℓ ≥ 0, µ ≥ 0, we obtain the classMq,κ
Σ

(ϖ,ϑ, n, ℓ, µ),

that represents the functions f ∈ Σ that satisfy (1.18) and (1.19) forH κ,q
h replaced with J κ,n

q,ℓ,µ (1.16).

2. Coefficient bounds for f ∈ Mq,κ
Σ

(ϖ,ϑ; h)

Throughout this paper, we assume that

ϖ ∈ (−π; π], κ > −1, 0 ≤ ϑ < 1, 0 < q < 1.

Recall the following Lemma which will be needed to prove our results.

Lemma 1. (Caratheodory Lemma [11]) If ϕ ∈ P and ϕ(z) = 1+
∑∞

n=1 cnzn then |cn| ≤ 2 for each n, this
inequality is sharp for all n where P is the family of all functions ϕ analytic and having positive real
part in ∆ with ϕ(0) = 1.

We firstly introduce a bound for the general coefficients of functions belong to the class
M

q,κ
Σ

(ϖ,ϑ; h) .

Theorem 2. Let the function f given by (1.1) belongs to the classMq,κ
Σ

(ϖ,ϑ; h). If ak = 0 for 2 ≤ k ≤
m − 1, then

|am| ≤
4 (1 − ϑ) [κ + 1, q]m−1

m |2 + (1 + eiϖ) (m − 1)| [m, q]! bm
.

Proof. If f ∈ Mq,κ
Σ

(ϖ,ϑ; h), from (1.18), (1.19), we have((
H

κ,q
h f (z)

)′
+

(1 + eiϖ)
2

z
(
H

κ,q
h f (z)

)′′)
= 1 +

∞∑
m=2

m
2

[
2 +

(
1 + eiϖ

)
(m − 1)

] [m, q]!
[κ + 1, q]m−1

bmamzm−1 (z ∈ ∆) , (2.1)
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and ((
H

κ,q
h g(w)

)′
+

(1 + eiϖ)
2

z
(
H

κ,q
h g(w)

)′′)
= 1 +

∞∑
m=2

m
2

[
2 +

(
1 + eiϖ

)
(m − 1)

]
[m,q]!

[κ+1,q]m−1
bm Amwm−1

= 1 +
∞∑

m=2

m
2

[
2 +

(
1 + eiϖ

)
(m − 1)

]
[m,q]!

[κ+1,q]m−1
bm

1
mK

−m
m−1(a2, ..., am)wm−1 (w ∈ ∆) . (2.2)

Since
f ∈ Mq,κ

Σ
(ϖ,ϑ; h) and g = f −1 ∈ M

q,κ
Σ

(γ, η, ϑ; h) ,

we know that there are two positive real part functions:

U(z) = 1 +
∞∑

m=1

cmzm,

and

V(w) = 1 +
∞∑

m=1

dmwm,

where
ℜ (U(z)) > 0 and ℜ (V(w)) > 0 (z,w ∈ ∆) ,

so that (
H

κ,q
h f (z)

)′
+

(1 + eiθ)
2

z
(
H

κ,q
h f (z)

)′′
= ϑ + (1 − ϑ) U(z)

= 1 + (1 − ϑ)
∞∑

m=1

cmzm, (2.3)

and (
H

κ,q
h g(w)

)′
+

(1 + eiθ)
2

z
(
H

κ,q
h g(w)

)′′
= ϑ + (1 − ϑ) V(w)

= 1 + (1 − ϑ)
∞∑

m=1

dmwm. (2.4)

Using (2.1) and comparing the corresponding coefficients in (2.3), we obtain

m
2

[
2 +

(
1 + eiϖ

)
(m − 1)

]
[m,q]!

[κ+1,q]m−1
bmam = (1 − ϑ) cm−1, (2.5)

and similarly, by using (2.2) in the equality (2.4), we have

m
2

[
2 +

(
1 + eiϖ

)
(m − 1)

]
[m,q]!

[κ+1,q]m−1
bm

1
m
K−m

m−1(a2, a3, ...am) = (1 − ϑ) dm−1, (2.6)

under the assumption ak = 0 for 0 ≤ k ≤ m − 1, we obtain Am = −am and so

m
2

[
2 +

(
1 + eiϖ

)
(m − 1)

] [m, q]!
[κ + 1, q]m−1

bmam = (1 − ϑ) cm−1, (2.7)
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and
−

m
2

[
2 +

(
1 + eiϖ

)
(m − 1)

] [m, q]!
[κ + 1, q]m−1

bmam = (1 − ϑ) dm−1, (2.8)

Taking the absolute values of (2.7) and (2.8), we conclude that

|am| =

∣∣∣∣∣∣ 2 (1 − ϑ) [κ + 1, q]m−1cm−1

m
[
2 + (1 + eiϖ) (m − 1)

]
[m, q]! bm

∣∣∣∣∣∣
=

∣∣∣∣∣∣ −2 (1 − ϑ) [κ + 1, q]m−1dm−1

m
[
2 + (1 + eiϖ) (m − 1)

]
[m, q]! bm

∣∣∣∣∣∣ .
Applying the Caratheodory Lemma 1, we obtain

|am| ≤
4 (1 − ϑ) [κ + 1, q]m−1

m |2 + (1 + eiϖ) (m − 1)| [m, q]! bm
,

which completes the proof of Theorem.
□

Theorem 3. Let the function f given by (1.1) belongs to the classMq,κ
Σ

(ϖ,ϑ; h), then

|a2| ≤


2(1−ϑ)[κ+1,q]
|3+eiϖ|[2,q]!b2

, 0 ≤ ϑ < 1 − |3+eiϖ|
2 ([2,q]!)2 [κ+2,q]b2

2

3|2+eiϖ| [3,q]! [κ+1,q]b3√
2(1−ϑ)[κ+1,q]2

3|2+eiϖ| [3,q]! b3
, 1 − |3+eiϖ|

2 ([2,q]!)2 [κ+2,q]b2
2

3|2+eiϖ| [3,q]! [κ+1,q]b3
≤ ϑ < 1

, (2.9)

|a3| ≤
2 (1 − ϑ) [κ + 1, q]2

3 |2 + eiϖ| [3, q]!b3
, (2.10)

and ∣∣∣a3 − 2a2
2

∣∣∣ ≤ 2 (1 − ϑ) [κ + 1, q]2

3 |2 + eiϖ| [3, q]! b3
. (2.11)

Proof. Fixing m = 2 and m = 3 in (2.5), (2.6), we have(
3 + eiϖ

) [2, q]!
[κ + 1, q]

b2a2 = (1 − ϑ) c1, (2.12)

3
(
2 + eiϖ

) [3, q]!
[κ + 1, q]2

b3a3 = (1 − ϑ) c2, (2.13)

−
(
3 + eiϖ

) [2, q]!
[κ + 1, q]

b2a2 = (1 − ϑ) d1, (2.14)

and
− 3

(
2 + eiϖ

) [3, q]!
[κ + 1, q]2

b3

(
2a2

2 − a3

)
= (1 − ϑ) d2. (2.15)

From (2.12) and (2.14), by using the Caratheodory Lemma1, we obtain
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|a2| =
(1 − ϑ) [κ + 1, q] |c1|

|3 + eiϖ| [2, q]!b2
=

(1 − ϑ) [κ + 1, q] |d1|

|3 + eiϖ| [2, q]!b2

≤
2 (1 − ϑ) [κ + 1, q]
|3 + eiϖ| [2, q]!b2

. (2.16)

Also, from (2.13) and (2.15), we have

6
(
2 + eiϖ

) [3, q]!
[κ + 1, q]2

b3a2
2 = (1 − ϑ) (c2 + d2) ,

a2
2 =

(1 − ϑ) [κ + 1, q]2

6 (2 + eiϖ) [3, q]! b3
(c2 + d2) , (2.17)

and by using the Caratheodory Lemma 1, we obtain

|a2| ≤

√
2 (1 − ϑ) [κ + 1, q]2

3 |2 + eiϖ| [3, q]! b3
. (2.18)

From (2.16) and (2.18), we obtain the desired estimate on the coefficient as asserted in (2.9).
To find the bound on the coefficient |a3| , we subtract (2.15) from (2.13). we get

6
(
2 + eiϖ

) [3, q]!
[κ + 1, q]2

b3

(
a3 − a2

2

)
= (1 − ϑ) (c2 − d2) ,

or
a3 = a2

2 +
(1 − ϑ) (c2 − d2) [κ + 1, q]2

6 (2 + eiϖ) [3, q]!b3
, (2.19)

substituting the value of a2
2 from (2.12) into (2.19), we obtain

a3 =
(1 − ϑ)2 [κ + 1, q]2c2

1

(3 + eiϖ)2 ([2, q]!)2 b2
2

+
(1 − ϑ) (c2 − d2) [κ + 1, q]2

6 (2 + eiϖ) [3, q]!b3
.

Using the Caratheodory Lemma 1, we find that

|a3| ≤
4 (1 − ϑ)2 [κ + 1, q]2

|3 + eiϖ|
2 ([2, q]!)2 b2

2

+
2 (1 − ϑ) [κ + 1, q]2

3 |2 + eiϖ| [3, q]!b3
, (2.20)

and from (2.13), we have

a3 =
(1 − ϑ) [κ + 1, q]2 c2

3 (2 + eiϖ) [3, q]!b3
.

Appling the Caratheodory Lemma 1, we obtain

|a3| ≤
2 (1 − ϑ) [κ + 1, q]2

3 |2 + eiϖ| [3, q]!b3
. (2.21)

Combining (2.20) and (2.21), we have the desired estimate on the coefficient |a3| as asserted in (2.10).
Finally, from (2.15), we deduce that∣∣∣a3 − 2a2

2

∣∣∣ ≤ (1 − ϑ) [κ + 1, q]2 |d2|

3 |2 + eiϖ| [3, q]! b3
=

2 (1 − ϑ) [κ + 1, q]2

3 |2 + eiϖ| [3, q]! b3
.

Thus the proof of Theorem 3 was completed.
□

AIMS Mathematics Volume 7, Issue 2, 2989–3005.



3001

3. Fekete-Szegö inequality for f ∈ Mq,κ
Σ

(ϖ,ϑ; h)

Fekete and Szegö [52] introduced the generalized functional |a3 − ℵa2
2|, where ℵ is some real

number. Due to Zaprawa [53], (also see [54]) in the following theorem we determine the
Fekete-Szegö functional for f ∈ Mq,κ

Σ
(ϖ,ϑ; h).

Theorem 4. Let the function f given by (1.1) belongs to the classMq,κ
Σ

(ϖ,ϑ; h) and ℵ ∈ R. Then we
have

|a3 − ℵa2
2| ≤

(
(1 − ϑ) [κ + 1, q]2

3 |2 + eiϖ| [3, q]! b3

)
{|2 − ℵ| + |ℵ|}.

Proof. From (2.17) and (2.19)we obtain

a3 − ℵa2
2 =

(1 − ℵ) (1 − ϑ) [κ + 1, q]2

6 (2 + eiϖ) [3, q]! b3
(c2 + d2)

+
(1 − ϑ) [κ + 1, q]2

6 (2 + eiϖ) [3, q]!b3
(c2 − d2) ,

=

(
(1 − ϑ) [κ + 1, q]2

6 (2 + eiϖ) [3, q]! b3

)
{[(1 − ℵ) + 1]c2 + [(1 − ℵ) − 1]d2}.

So we have

a3 − ℵa2
2 =

(
(1 − ϑ) [κ + 1, q]2

6 (2 + eiϖ) [3, q]! b3

)
{(2 − ℵ)c2 + (−ℵ)d2}. (3.1)

Then, by taking modulus of (3.1), we conclude that

|a3 − ℵa2
2| ≤

(
(1 − ϑ) [κ + 1, q]2

3 |2 + eiϖ| [3, q]! b3

)
{|2 − ℵ| + |ℵ|}

□

Taking ℵ = 1, we have the following result.

|a3 − a2
2| ≤

2 (1 − ϑ) [κ + 1, q]2

3 |2 + eiϖ| [3, q]! b3
.

4. Conclusions and observations

In the current paper, we mainly get upper bounds of the initial Taylors coefficients of bi-univalent
functions related with q− calculus operator. By fixing bm as demonstrated in Remark 1, one can
effortlessly deduce results correspondents to Theorems 2 and 3 associated with various operators listed
in Remark 1. Further allowing q → 1− as itemized in Remark 2 we can outspread the results for
new subclasses stated in Remark 2. Moreover by fixing ϖ = 0 and ϖ = π in Theorems 2 and 3, we
can easily state the results for f ∈ Mq,κ

Σ
(ϑ; h) and f ∈ HMq,κ

Σ
(ϑ; h). Further by suitably fixing the

parameters in Theorem 4, we can deduce Fekete-Szegö functional for these function classes.
By using the subordination technique, we can extend the study by defining a new class[(

H
κ,q
h f (z)

)′
+

(
1 + eiϖ

2

)
z
(
H

κ,q
h f (z)

)′′]
≺ Ψ(z)

AIMS Mathematics Volume 7, Issue 2, 2989–3005.



3002

where Ψ(z) the function Ψ is an analytic univalent function such that ℜ (Ψ) > 0 in ∆ with Ψ(0) =
1, Ψ′(0) > 0 and Ψ maps ∆ onto a region starlike with respect to 1 and symmetric with respect to
the real axis and is given by Ψ(z) = z + B1z + B2z2 + B3z3 + · · · , (B1 > 0). Also, motivating further
researches on the subject-matter of this,we have chosen to draw the attention of the interested readers
toward a considerably large number of related recent publications (see, for example, [1, 2, 4]). and
developments in the area of mathematical analysis. In conclusion,we choose to reiterate an important
observation, which was presented in the recently-published review-cum-expository review article by
Srivastava ( [1], p. 340), who pointed out the fact that the results for the above-mentioned or new
q− analogues can easily (and possibly trivially) be translated into the corresponding results for the
so-called (p; q)−analogues(with 0 < |q| < p ≤ 1)by applying some obvious parametric and argument
variations with the additional parameter p being redundant.
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39. S. M. El-Deeb, T. Bulboacă, Differential sandwich-type results for symmetric functions connected
with a q-analog integral operator, Mathematics, 7 (2019), 1–17. doi: 10.3390/math7121185.

40. H. M. Srivastava, S. M. El-Deeb, A certain class of analytic functions of complex order
with a q-analogue of integral operators, Miskolc Math. Notes, 21 (2020), 417–433. doi:
10.18514/MMN.2020.3102.

41. S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex
Anal., 2014 (2014), 1–3. doi: 10.1155/2014/984135.

AIMS Mathematics Volume 7, Issue 2, 2989–3005.



3005

42. J. K. Prajapat, Subordination and superordination preserving properties for generalized
multiplier transformation operator, Math. Comput. Model., 55 (2012), 1456–1465. doi:
10.1016/j.mcm.2011.10.024.

43. S. M. El-Deeb, T. Bulboaca, Differential sandwich-type results for symmetric functions
associated with Pascal distribution series, J. Contemp. Math. Anal., 56 (2021), 214–224. doi:
10.3103/S1068362321040105.

44. H. Aldweby, M. Darus, On a subclass of bi-univalent functions associated with the q-derivative
operator, J. Math. Comput. Sci., 19 (2019), 58–64. doi: 10.22436/jmcs.019.01.08.
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