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Abstract: Jaya algorithm is a highly effective recent metaheuristic technique. This article presents a 

simple, precise, and faster method to estimate stress strength reliability for a two-parameter, Weibull 

distribution with common scale parameters but different shape parameters. The three most widely used 

estimation methods, namely the maximum likelihood estimation, least squares, and weighted least 

squares have been used, and their comparative analysis in estimating reliability has been presented. 

The simulation studies are carried out with different parameters and sample sizes to validate the 

proposed methodology. The technique is also applied to real-life data to demonstrate its 

implementation. The results show that the proposed methodology's reliability estimates are close to 

the actual values and proceeds closer as the sample size increases for all estimation methods. Jaya 

algorithm with maximum likelihood estimation outperforms the other methods regarding the bias and 

mean squared error. 
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1. Introduction 

Reliability of the form P[X>Y] is used in cases of stress strength interference [1]. Stress and 

strength are important properties of a material. These properties do not have a fixed single value 

because of the uncertainties present in the environment like temperature, humidity, etc. So, they can 

be considered to follow a certain distribution. According to the interference theory, if stress and 
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strength follow a certain distribution, then their interference area gives the probability of failure. The 

concept of stress strength interference in evaluating reliability has been used by many researchers in 

their studies. Liu et al. [2] evaluated the reliability of automotive seat adjuster by using the stress 

strength interference model. The finite element model of the seat-adjuster was constructed and the 

analysis was verified with the bench test. The theory has also been used in medical applications by 

Miller and Freivalds [3] to obtain the probability of failure of tendons in carpel tunnel syndrome. 

Weibull distribution has been widely used by researchers in their study as it is capable of fitting 

large data types [4–6]. If x and y are the random variables following Weibull distribution W(𝜎, 𝑝1) and 

W(𝜎, 𝑝2) respectively then their pdf can be given as: 

𝑓(𝑥; 𝜎, 𝑝1) =
𝑝1

𝜎𝑝1
(𝑥)𝑝1−1 exp {− (

𝑥

𝜎
)

𝑝1

} , 𝑥 > 0, 𝜎 > 0, 𝑝1 > 0    (1) 

And 

𝑓(𝑦; 𝜎, 𝑝2) =
𝑝2

𝜎𝑝2
(𝑦)𝑝2−1 exp {− (

𝑦

𝜎
)

𝑝2

} , 𝑦 > 0, 𝜎 > 0, 𝑝2 > 0   (2) 

respectively. The corresponding cumulative distribution function (cdf) for strength and stress is given by 

𝐹(𝑥; 𝜎, 𝑝1) = 1 − exp {− (
𝑥

𝜎
)

𝑝1

}        (3) 

And 

𝐹(𝑦; 𝜎, 𝑝2) = 1 − exp {− (
𝑦

𝜎
)

𝑝2

}        (4) 

where 𝑝1 & 𝑝2 are shape parameters for strength and stress respectively and 𝜎 is the common scale 

parameter. It is difficult to evaluate the stress strength reliability model when both parameters of 

Weibull distribution are different. The purpose of the present study is to show the effectiveness of Jaya 

algorithm in the estimation of reliability for Weibull distribution. Hence, it has been assumed that the 

scale parameter for stress and strength distribution remains the same. Stress strength Weibull 

distribution with common scale parameter has been used in estimating the reliability for strength of 

carbon fibers [7]. 

2. Estimation methods 

In this study, some of the most widely used estimation methods are implemented namely 

maximum likelihood estimation, least squares estimation, and weighted least squares estimation. 

Louzada et al. [8] used these methods in estimating the parameters of extended exponential geometric 

distribution for medical data. Datsiou and Overend [9] presented a comparison of various methods 

including MLE and LSE in the estimation of parameters for Weibull distribution applied to a data of 

strength of glass fibers by evaluating the fitness of the parameters using Anderson Darling goodness 

of fit test. The above estimation methods are simple and easy to evaluate. 
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2.1. Maximum likelihood estimation (MLE) 

Maximum likelihood estimation is one of the common and effective methods in the estimation of 

parameters [10–12]. Chacko and Mohan [13] used the MLE method in estimating the parameters of 

two-parameter Kumaraswamy-exponential distribution for progressive type-II censored samples. 

Tzavelas [14] proposed estimation of parameters of three-parameter gamma distribution using MLE 

via reparameterization of function and predictor-corrector method. MLE method has also been used 

by Aggarwala and Balakrishnan [15] in the estimation of scale and location parameters of Laplace 

distribution. Ng et al. [16] discussed estimating the parameters of three-parameter Weibull distribution 

for type II progressively censored samples using MLE and weighted MLE. Abushal [17] applied MLE 

technique to estimate the unknown parameters and reliability characteristics for Akash distribution.  

Let x1, x2, x3 …xn be a random sample of size n drawn from W(𝜎, 𝑝1) and y1, y2, y3, …., yn be the 

random sample of size m from W(𝜎, 𝑝2). Then the likelihood function can be given as: 

𝐿 = ∏ 𝑓(𝑥𝑖)

𝑛

𝑖=1

∏ 𝑓(𝑦𝑗)

𝑚

𝑗=1

 

         (5) 

𝐿 = ∏
𝑝1

𝜎𝑝1
(𝑥𝑖)𝑝1−1 exp {− (

𝑥𝑖

𝜎
)

𝑝1

}

𝑛

𝑖=1

. ∏
𝑝2

𝜎𝑝2
(𝑦𝑗)𝑝2−1 exp {− (

𝑦𝑗

𝜎
)

𝑝2

}

𝑚

𝑗=1

 

  (6) 

ln 𝐿 = 𝑛 ln 𝑝1 + 𝑚 ln 𝑝2 − 𝑛𝑝1 ln 𝜎 − 𝑚𝑝2 ln 𝜎 

+(𝑝1 − 1) ∑ ln (𝑥𝑖) +

𝑛

𝑖=1

(𝑝2 − 1) ∑ ln(𝑦𝑗)

𝑚

𝑗=1

 

−
1

𝜎𝑝1
∑(𝑥𝑖)𝑝1 −

1

𝜎𝑝2
∑(𝑦𝑗)

𝑝2

m

j=1

𝑛

𝑖=1

 

       (7) 

The log-likelihood function (7) is to be maximized in order to obtain the best estimates of parameters. 

2.2.  Least squares estimation (LSE) and weighted least squares estimation (WLSE) 

The least squares estimation technique was used by Swain et al. [18] in Johnson’s translation 

system for modeling glucose levels in diabetes, in the analysis of statistical models, and structural 

reliability. Ashour and Eltehiwy [19] proposed the application of the technique in estimation of 

parameters of exponentiated power Lindley distribution. Weighted least squares which is a 

modification of least squares estimation method has been used in many applications [20]. The method 

was used by Wu et al. [21] in moving identification and found the suitability of the application in time-

varying systems. The technique has also been used in estimation of parameters of multiplicative 

generalization of binomial distribution [22]. Benchiha et al. [23] used LSE and WLSE techniques in 

estimating the parameters of weighted generalized Quasi Lindley distribution. The method of least 
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square and weighted least square have a property of unbiased estimation for large number of 

observations and have been used in estimating stress-strength reliability for various distributions 

including Weibull distribution [24–27]. 

Consider x1, x2, x3, …, xn is the random sample in ascending order of size n following Weibull 

distribution W(σ, p1) and y1, y2, y3, …, ym is the random sample in ascending order of size m following 

Weibull distribution W(σ, p2). Then the least squares criterion can be obtained as [28] 

𝑄 = ∑ (ln (ln (
1

1 − 𝐹(𝑥𝑖)̂
)) − 𝑝1 ln(𝑥𝑖) + 𝑝1 ln(𝜎))

2𝑛

𝑖=1

 

+ ∑ (ln (ln (
1

1 − 𝐹(𝑦𝑗)̂
)) − 𝑝2 ln(𝑦𝑗) + 𝑝2 ln(𝜎))

2𝑚

𝑗=1

 

     (8) 

The estimates of parameters can be obtained by minimizing function (8). The estimate values of 

F(x) and F(y) can be obtained by mean rank as 

𝐹(𝑥𝑖)̂ =
𝑖

𝑛+1
 and 𝐹(𝑦𝑗)̂ =

𝑗

𝑚+1
. 

Similarly, the criterion to be minimized for weighted least squares can be given as 

𝑄 = ∑ 𝑤𝑖 (ln (ln (
1

1 − 𝐹(𝑥𝑖)̂
)) − 𝑝1 ln(𝑥𝑖) + 𝑝1 ln(𝜎))

2𝑛

𝑖=1

 

+ ∑ 𝑤𝑗 (ln (ln (
1

1 − 𝐹(𝑦𝑗)̂
)) − 𝑝2 ln(𝑦𝑗) + 𝑝2 ln(𝜎))

2𝑚

𝑗=1

 

     (9) 

where 𝑤𝑖 = (1 − 𝐹(𝑥𝑖)̂)𝑙𝑛(1 − 𝐹(𝑥𝑖)̂) 2and 𝑤𝑗 = (1 − 𝐹(𝑦𝑗)̂) 𝑙𝑛 (1 − 𝐹(𝑦𝑗)̂)
2

. 

The estimates of parameters using weighted least squares method can be obtained by minimizing 

Eq (9). 

Equations (7)–(9) discussed above are optimization problems. Solutions to these equations using 

numerical computation do not yield precise results. It also has problems of slow convergence and non-

convergence to real roots. So, these methods have to be assisted with a suitable optimization technique 

in order to improve their effectiveness. In this case, Jaya algorithm is used to optimize these functions. 

3. Jaya algorithm 

The application of metaheuristic techniques in optimization problems has seen increasing 

importance in modern times [29,30]. Jaya algorithm is a recent metaheuristic technique capable of 

solving a vast number of optimization problems with high effectiveness [31]. The researchers have 

used the technique in a number of applications and found satisfactory results. Meshram et al. [32] 

carried out electrical discharge machining with around eight control variables and two responses. 
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Taguchi’s L12 orthogonal array was used in designing the experiment. The regression equations were 

taken as objective functions and Jaya algorithm was used in optimization observing improvement in 

response variables. Caldeira and Gnanavelbabu [33] presented the implementation of Jaya algorithm 

for effectively solving the flexible job-shop scheduling problem. Gupta et al. [34] discussed the 

superiority of Jaya algorithm over other similar metaheuristic techniques in optimizing standard 

functions for the application of workflow scheduling in cloud computing. Jin et al. [35] identified the 

parameters of wind turbine power models using Jaya algorithm and monitoring with multivariate 

control charts. Du et al. [36] proposed a hybrid objective function for identifying the sites and extent 

of damage in a damage identification problem wherein Jaya algorithm was used to optimize the 

function in obtaining the parameters with good accuracy. Similarly, the algorithm has been used by 

many other researchers in such optimization problems [37–40]. In Jaya algorithm, the initial population 

with sets of parameters is randomly generated using upper and lower bounds. Then, each candidate in 

the population is updated based on the equation: 

Z'j,k,i=Zj,k,i+r1,j,i(Zj,best,i-│Zj,k,i│)-r2,j,i(Zj,worst,i-│Zj,k,i│)     (10) 

where Z'j,k,i is the updated value of variable k for candidate solution j, Zj,k,i is the previous value of 

variable k for candidate solution j and i is the iteration number. r1,j,i and r2,j,i are the random variables 

between 0 and 1. The significance of the algorithm is that it continuously takes the candidate solution 

towards the best solution by the term (Zj,best,i-│Zj,k,i│) and away from the worst solution by the term 

(Zj,worst,i-│Zj,k,i│). Depending on the best and worst function value, the candidate solutions are updated. 

Figure 1 shows the flowchart of Jaya algorithm: 

 

Figure 1. Flowchart of Jaya algorithm. 
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4. Reliability estimation 

If X and Y denote the strength and stress distribution with common scale parameter but different 

shape parameter then according to interference theory the reliability can be given as 

𝑅 = 𝑃(𝑋 > 𝑌) = ∫ (𝑓(𝑥; 𝜎, 𝑝1) ∫ 𝑓(𝑦; 𝜎, 𝑝2)𝑑𝑦
𝑥

0
)𝑑𝑥

∞

0
, 

𝑅 = 𝑃(𝑋 > 𝑌) = ∫ (

𝑝1

𝜎𝑝1
(𝑥)𝑝1−1 exp {− (

𝑥

𝜎
)

𝑝1

} .

∫
𝑝2

𝜎𝑝2
(𝑦)𝑝2−1 exp {− (

𝑦

𝜎
)

𝑝2

} 𝑑𝑦
𝑥

0

) 𝑑𝑥
∞

0
, 

𝑅 = 𝑃(𝑋 > 𝑌) = ∫ (

𝑝1

𝜎𝑝1
(𝑥)𝑝1−1 exp {− (

𝑥

𝜎
)

𝑝1

} .

{1 − exp {− (
𝑥

𝜎
)

𝑝2

}}
) 𝑑𝑥

∞

0
, 

𝑅 = 𝑃(𝑋 > 𝑌) = 1 − ∫
𝑝1

𝜎𝑝1
(𝑥)𝑝1−1 exp {− ((

𝑥

𝜎
)

𝑝1

+ (
𝑥

𝜎
)

𝑝2

)} 𝑑𝑥
∞

0
. 

If 𝑝1̂, 𝑝2̂ and σ̂ are the estimated parameters of Weibull distribution then the estimated reliability 

𝑅̂ can be given as 

𝑅̂ = 1 − ∫
𝑝1̂

𝜎̂𝑝1̂
(𝑥)𝑝1̂−1 exp {− ((

𝑥

𝜎̂
)

𝑝1̂

+ (
𝑥

𝜎̂
)

𝑝2̂

)} 𝑑𝑥
∞

0
. 

The detailed steps in using Jaya algorithm in estimation of reliability are as follows: 

(1) Specify the population size and number of design variables. 

(2) Set the boundary conditions. 

(3) Generate a random set of parameters with the number of sets equal to population size and the 

number of parameters equal to the number of design variables.  

(4) Trim the generated set as per boundary conditions. 

(5) Calculate function value for each set based on the objective function (7)–(9) for MLE, LSE 

and WLSE respectively. 

(6) Identify the best and the worst function value.  

(7) Update the parameter set based on Eq (10) within the boundary conditions. Calculate the 

updated function value and identify the best & worst function values for the parameter sets. 

(8) If the updated function value of a set is better than the earlier function value of the respective 

set, replace the earlier set of the design parameters with the updated parameter set. This 

completes the first iteration. 

(9) The iteration number can be considered as the termination criteria. 

5. Simulation studies 

Random numbers were generated with shape parameters for strength, shape parameter for stress, 

and common scale parameter (p1, p2, σ) taken as (1.5, 2, 1), (2, 2, 1), (2.5, 2, 1) and (2.5, 2, 2). The 

sample sizes taken were (25, 25), (50, 50), (100, 100) and (500, 500). Total 500 experiments were 
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conducted to check the repeatability of the estimation method. The parameters were estimated using 

the proposed methodology for MLE, LSE, and WLSE methods. The reliability was evaluated along 

with bias and mean squared error. The results of simulation studies are presented in Tables 1–3. The 

estimation using proposed methodology gives very good results with reliability estimates close to the 

actual reliability. It can be noted that the accuracy of estimation increases with increase in sample size. 

The trend is strongly followed by MLE method compared to the other two. But as the sample size 

increases, the time taken for compilation also increases. Another fact that can be observed is that if the 

shape parameter for strength increases in comparison to that of stress, the reliability increases. Also, 

the reliability decreases with an increase in common scale parameter. Figures 2–4 shows the box plots 

in estimation of reliability for 500 experiments across the sample sizes for considered different sets of 

parameters. It can be seen that the accuracy of the estimation increases as the sample size increases. 

For example, all the estimates of 500 experiments are very close to the actual reliability values in case 

of sample size (500, 500) whereas the spread increases with a decrease in sample size. Though the 

spread is observed to be more in case of a smaller sample size, the mean of reliability estimate is close 

to the actual reliability values. Also, the values for bias and MSE are lesser as compared to the other 

estimation methods in the literature. A notable observation can be made of many outliers wide away 

from the actual reliability in case of estimation with LSE and WLSE. Figures 5–7 shows the 

convergence behavior of Jaya algorithm for different sample sizes using MLE, LSE, and WLSE 

respectively. It can be noted that the algorithm converges to real roots after around 40 to 60 iterations 

for MLE, 80 to 100 iterations for LSE, and around 80–120 for WLSE. Figures 8–11 shows comparative 

graphs of bias and mean squared error (MSE) for the three estimation methods. It can be seen that the 

algorithm with MLE gives lesser bias and MSE in almost all the cases. This shows that Jaya algorithm 

with MLE is superior as compared to the other two estimation methods. 

 Table 1. Simulation results of 500 experiments for MLE using Jaya algorithm. 

(p1, p2, σ) R (n,m) 𝑅̂ Bias MSE T(s) 

(1.5, 2, 1) 0.48063 (25,25) 0.481730 0.001100 0.000214321 12.79 

(50,50) 0.481418 0.000788 0.000103129 21.26 

(100,100) 0.480968 0.000338 0.000042815 39.67 

(500,500) 0.480770 0.000140 0.000009908 191.6 

(2, 2, 1) 0.5 (25,25) 0.498637 - 0.00136 0.000204486 12.38 

(50,50) 0.500416 0.000416 0.000114916 21.64 

(100,100) 0.499798 - 0.00020 0.000050960 40.26 

(500,500) 0.500074 0.000074 0.000008967 198.1 

(2.5, 2, 1) 0.5151 (25,25) 0.516159 0.001059 0.000206911 12.48 

(50,50) 0.515342 0.000242 0.000109094 23.14 

(100,100) 0.515160 0.000060 0.000048278 39.50 

(500,500) 0.515126 0.000026 0.000010192 188.5 

(2.5, 2, 2) 0.515049 (25,25) 0.515432 0.000383 0.000217130 12.64 

(50,50) 0.514981 - 0.00007 0.000103620 21.85 

(100,100) 0.515108 0.000059 0.000051235 38.13 

(500,500) 0.515019 - 0.00003 0.000009259 186.9 
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Table 2. Simulation results of 500 experiments for LSE using Jaya algorithm. 

(p1, p2, σ) R (n,m) 𝑅̂ Bias MSE T(s) 

(1.5, 2, 1) 0.48063 (25,25) 0.483988 0.003358 0.000374892 8.208 

(50,50) 0.482671 0.002041 0.000296409 13.72 

(100,100) 0.480902 0.000272 0.000120576 24.11 

(500,500) 0.481391 0.000761 0.000033845 116.5 

(2, 2, 1) 0.5 (25,25) 0.501092 0.001092 0.000709956 8.773 

(50,50) 0.500238 0.000238 0.000227603 13.44 

(100,100) 0.500839 0.000839 0.000243236 23.76 

(500,500) 0.500048 0.000048 0.000022361 107.9 

(2.5, 2, 1) 0.5151 (25,25) 0.515538 0.000438 0.000568429 8.163 

(50,50) 0.517007 0.001907 0.000734081 13.48 

(100,100) 0.515227 0.000127 0.000108498 23.93 

(500,500) 0.514984 - 0.00012 0.000023476 118.8 

(2.5, 2, 2) 0.515049 (25,25) 0.517451 0.002402 0.001412757 8.760 

(50,50) 0.517467 0.002418 0.000708432 13.92 

(100,100) 0.515638 0.000589 0.000117623 23.84 

(500,500) 0.515736 0.000687 0.000178473 119.2 

Table 3. Simulation results of 500 experiments for WLSE using Jaya algorithm. 

(p1, p2, σ) R (n,m) 𝑅̂ Bias MSE T(s) 

(1.5, 2, 1) 0.48063 (25,25) 0.484014 0.003384 0.001492711 10.32 

(50,50) 0.481896 0.001266 0.000637294 18.11 

(100,100) 0.481325 0.000695 0.000666559 30.80 

(500,500) 0.482667 0.002037 0.000730472 143.5 

(2, 2, 1) 0.5 (25,25) 0.502422 0.002422 0.001433974 10.61 

(50,50) 0.503042 0.003042 0.001274580 18.11 

(100,100) 0.502669 0.002669 0.001481735 31.15 

(500,500) 0.503678 0.003678 0.001585831 143.5 

(2.5, 2, 1) 0.5151 (25,25) 0.516737 0.001637 0.001899504 11.19 

(50,50) 0.518774 0.003674 0.001496135 17.10 

(100,100) 0.517434 0.002334 0.001370110 31.35 

(500,500) 0.517283 0.002183 0.000599416 143.0 

(2.5, 2, 2) 0.515049 (25,25) 0.517838 0.002789 0.002217398 10.46 

(50,50) 0.516697 0.001648 0.000536541 17.38 

(100,100) 0.519082 0.004033 0.001620499 32.25 

(500,500) 0.516500 0.001451 0.000401925 143.3 
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Figure 2. Box plots for reliability estimates across different sample sizes with MLE. 

 

Figure 3. Box plots for reliability estimates across different sample sizes with LSE. 
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Figure 4. Box plots for reliability estimates across different sample sizes with WLSE. 

 

Figure 5. Convergence behavior of Jaya algorithm for different sample sizes with MLE. 
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Figure 6. Convergence behavior of Jaya algorithm for different sample sizes with LSE. 

 

Figure 7. Convergence behavior of Jaya algorithm for different sample sizes with WLSE. 
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Figure 8. Comparison of bias and MSE for estimation methods using Jaya algorithm for (p1, p2, 

σ)=(1.5, 2, 1). 

 

Figure 9. Comparison of bias and MSE for estimation methods using Jaya algorithm for (p1, p2, σ)=(2, 

2, 1). 

 

Figure 10. Comparison of bias and MSE for estimation methods using Jaya algorithm for (p1, p2, σ) 

=(2.5, 2, 1). 
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Figure 11. Comparison of bias and MSE for estimation methods using Jaya algorithm for (p1, p2, σ) 

=(2.5, 2, 2). 

6. Application to real life data 

The methodology has been applied to real-life data of strength of carbon fibers of gauge length 

10 mm and 20 mm first studied by Badar and Priest [41] and then transformed by Valiollahi et al. [7] 

to fit for a common scale parameter. The transformed data sets are shown in Tables 4 and 5. Using the 

proposed methodology, the estimated parameters (𝑝1̂, 𝑝2̂, σ̂) are obtained as (5.5061, 5.0514, 0.9999) 

using MLE, (5.5647, 5.7374, 0.9982) using LSE and (5.6584, 4.9353, 0.9880) using WLSE method. 

The Kolmogorov-Smirnov test was used to check the fit of the estimated Weibull model to the data 

sets. The K-S statistic, p-value, and estimated reliability using the three methods are given in Table 6. 

Figures 12–17 shows the fitted pdf and probability plot with estimated parameters using various 

methods for data sets I & II. The proposed methodology gives rapid results in a very short time 

compared to other common estimation methods using metaheuristic techniques [42–45]. The Akaike 

information criterion was used to find the best fit model for the given data among MLE, LSE and 

WLSE. The results are displayed in Table 7. It can be seen that the minimum value for AIC is obtained 

with MLE and the maximum value is obtained for LSE. Thus, it can be inferred that the proposed 

methodology using MLE gives the best fit model and LSE gives the worst fit model for the given data 

sets. 

Table 4. Data of gauge length 20 mm (Data set I). 

0.495 0.496 0.558 0.585 0.641 0.68 0.702 0.704 0.733 0.739 

0.742 0.753 0.757 0.762 0.765 0.775 0.778 0.791 0.807 0.822 

0.839 0.845 0.85 0.856 0.857 0.858 0.868 0.868 0.89 0.899 

0.899 0.915 0.918 0.919 0.935 0.939 0.947 0.948 0.956 0.963 

0.968 0.97 0.976 0.992 0.993 0.997 0.999 1.013 1.017 1.028 

1.045 1.046 1.056 1.06 1.063 1.064 1.074 1.086 1.114 1.136 

1.157 1.163 1.166 1.168 1.18 1.22 1.295 1.352 1.352  
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Table 5. Data of gauge length 10 mm (Data set II). 

0.573 0.643 0.665 0.672 0.681 0.709 0.712 0.723 0.723 0.738 

0.74 0.746 0.76 0.761 0.762 0.764 0.777 0.789 0.789 0.79 

0.792 0.802 0.807 0.826 0.827 0.862 0.88 0.883 0.886 0.886 

0.898 0.904 0.914 0.943 0.947 0.949 0.971 0.972 0.976 0.978 

0.985 0.987 0.994 1.005 1.009 1.019 1.028 1.036 1.054 1.056 

1.067 1.072 1.074 1.094 1.162 1.168 1.172 1.198 1.214 1.215 

1.274 1.326 1.514        

Table 6. Comparison of MLE, LSE and WLSE in data fit and estimation of reliability. 

Estimation 

method 

𝑝1̂ 𝑝2̂ σ̂ K-S p-value Reliability Compilation 

time(s) 

MLE 5.5061 5.0514 0.9999 0.0564 (DS I) 

0.0881 (DS II) 

0.9773 (DS I) 

0.6929 (DS II) 

0.505824 0.079715 

LSE 5.5647

  

5.7374 0.9982 0.0513 (DS I) 

0.1096 (DS II) 

0.9920 (DS I) 

0.4145 (DS II) 

0.497935 0.888459 

WLSE 5.6584 4.9353 0.9880 0.0523 (DS I) 

0.1002 (DS II) 

0.9900 (DS I) 

0.5295 (DS II) 

0.509234 1.359188 

Table 7. Model comparison based on AIC. 

 No. of estimated 

parameters 

Log Likelihood AIC Delta AIC 

MLE 3 -40861.12 81728.24 0 

LSE 3 -81588.05 163182.1 81453.86 

WLSE 3 -42321.46 84648.92 2920.68 

 

Figure 12. The fitted pdf and probability plot for Data set I with MLE. 
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Figure 13. The fitted pdf and probability plot for Data set II with MLE. 

 

Figure 14. The fitted pdf and probability plot for Data set I with LSE. 

 

Figure 15. The fitted pdf and probability plot for Data set II with LSE. 
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Figure 16. The fitted pdf and probability plot for Data set I with WLSE. 

 

Figure 17. The fitted pdf and probability plot for Data set II with WLSE. 

7. Conclusions 

This study deals with estimation P(X>Y) for X and Y following Weibull distribution with 

different shape parameters and same scale parameters. The estimation methods used are maximum 

likelihood estimation, least squares estimation, and weighted least squares estimation. Jaya algorithm 

has been used in optimizing the estimation functions. The reliability estimate equation has been 

presented and simulation studies are carried out in order to validate the model and compare the 

performance of the algorithm with the above estimation methods. Box plots showed the increasing 

accuracy of estimation with an increase in sample size. Jaya algorithm shows a consistent convergence 

towards the real roots. It was observed that the algorithm with maximum likelihood estimation 

outperforms the other two techniques studied with respect to the bias and mean squared error. The 

technique was applied to real-life data and it was observed that the estimated models with the proposed 

methodology give a very good fit for all the three estimation methods which were confirmed by the 

Kolmogorov-Smirnov test. The proposed methodology using MLE gives the best fit followed by 

WLSE and then LSE for the real-life data of strength of carbon fibers. There are many methods for 

estimating the parameters via various optimization techniques. But the proposed methodology gives 

highly accurate results with faster compilation time compared to most of these methods. Further studies 
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can be carried out using the proposed methodology considering the location parameter and 

investigating its effects on reliability calculation. Also, the methodology can be applied to X & Y 

values following other distributions like gamma, exponential, Laplace, etc. 

Conflict of interest 

The authors confirm that there are no known conflicts of interest associated with this publication. 

References 

1. M. A. H. Sabry, E. M. Almetwally, O. A. Alamri, M. Yusuf, H. M. Almongy, A. S. Eldeeb, 

Inference of fuzzy reliability model for inverse rayleigh distribution, AIMS Math., 6 (2021), 

9770–9785. doi: 10.3934/math.2021568. 

2. X. Liu, L. Liu, Q. Wu, X. Yuan, H. Huang, Reliability analysis and evaluation of automotive 

seat angle-adjuster, Aust. J. Mech. Eng., 18 (2020), 481–489. doi: 

10.1080/14484846.2018.1548720. 

3. S. A. Miller, A. Freivalds, A stress-strength interference model for predicting CTD 

probabilities, Int. J. Ind. Ergon., 15 (1995), 447–457. doi: 10.1016/0169-8141(94)00063-9. 

4. A. Kumar, M. Ram, System reliability analysis based on Weibull distribution and Hesitant 

fuzzy set, Int. J. Math. Eng. Manag. Sci., 3 (2018), 513–521. doi: 

10.33889/IJMEMS.2018.3.4-037. 

5. Q. Ramzan, M. Amin, A. Elhassanein, M. Ikram, The extended generalized inverted 

kumaraswamy weibull distribution: Properties and applications, AIMS Math., 6 (2021), 9955–

9980. doi: 10.3934/math.2021579. 

6. E. Ramos, P. L. Ramos, F. Louzada, Posterior properties of the Weibull distribution for 

censored data, Stat. Probabil. Lett., 166 (2020), 108873. doi: 10.1016/j.spl.2020.108873. 

7. R. Valiollahi, A. Asgharzadeh, M. Z. Raqab, Estimation of P (Y < X) for weibull distribution 

under progressive type-II censoring, Commun. Stat.-Theory Methods., 42 (2013), 4476–4498. 

doi: 10.1080/03610926.2011.650265. 

8. F. Louzada, P. L. Ramos, G. S. C. Perdoná, Different estimation procedures for the parameters 

of the extended exponential geometric distribution for medical data, Comput. Math. Methods 

Med., 2016 (2016), 8727951. doi: 10.1155/2016/8727951. 

9. K. C. Datsiou, M. Overend, Weibull parameter estimation and goodness-of-fit for glass 

strength data, Struct. Saf., 73 (2018) 29–41. doi: 10.1016/j.strusafe.2018.02.002. 

10. F. Louzada, L. F. A. Alegria, D. Colombo, D. E. A. Martins, H. F. L. Santos, J. A. Cuminato, 

et al., A repairable system subjected to hierarchical competing risks: Modeling and 

applications, IEEE Access, 7 (2019), 171707–171723. doi: 10.1109/ACCESS.2019.2954767. 

11. F. Louzada, J. A. Cuminato, O. M. H. Rodriguez, V. L. D. Tomazella, P. H. Ferreira, P. L. 

Ramos, et al., Improved objective Bayesian estimator for a PLP model hierarchically 

represented subject to competing risks under minimal repair regime, PLoS One, 16 (2021), 1–

25. doi: 10.1371/journal.pone.0255944. 

12. M. P. Almeida, R. S. Paixão, P. L. Ramos, V. Tomazella, F. Louzada, R. S. Ehlers, Bayesian 

non-parametric frailty model for dependent competing risks in a repairable systems 

framework, Reliab. Eng. Syst. Safe., 204 (2020), 107145. doi: 10.1016/j.ress.2020.107145. 

https://www.aimspress.com/article/doi/10.3934/math.2021568
https://www.tandfonline.com/doi/abs/10.1080/14484846.2018.1548720
https://pennstate.pure.elsevier.com/en/publications/a-stress-strength-interference-model-for-predicting-ctd-probabili
https://www.semanticscholar.org/paper/System-Reliability-Analysis-Based-On-Weibull-and-Kumar-Ram/1a5db6b154fe3fe52bdfff9bc880b31945a26460
https://www.aimspress.com/article/doi/10.3934/math.2021579
https://www.sciencedirect.com/science/article/abs/pii/S0167715220301760
https://www.tandfonline.com/doi/abs/10.1080/03610926.2011.650265
https://www.hindawi.com/journals/cmmm/2016/8727951/
https://www.researchgate.net/publication/323557027_Weibull_parameter_estimation_and_goodness-of-fit_for_glass_strength_data
https://www.researchgate.net/publication/337405190_A_Repairable_System_Subjected_to_Hierarchical_Competing_Risks_Modeling_and_Applications
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0255944
https://www.sciencedirect.com/science/article/abs/pii/S0951832020306463


2837 

AIMS Mathematics  Volume 7, Issue 2, 2820–2839. 

13. M. Chacko, R. Mohan, Estimation of parameters of Kumaraswamy-Exponential distribution 

under progressive type-II censoring, J. Stat. Comput. Simul., 87 (2017), 1951–1963. doi: 

10.1080/00949655.2017.1300662. 

14. G. Tzavelas, Maximum likelihood parameter estimation in the three-parameter gamma 

distribution with the use of Mathematica, J. Stat. Comput. Sim., 79 (2009), 1457–1466. doi: 

10.1080/00949650802403663. 

15. R. Aggarwala, N. Balakrishnan, Maximum likelihood estimation of the Laplace parameters 

based on progressive type-II censored samples, In: Advances on methodological and applied 

aspects of probability and statistics, CRC Press, 2002. 

16. H. K. T. Ng, L. Luo, Y. Hu, F. Duan, Parameter estimation of three-parameter Weibull 

distribution based on progressively Type-II censored samples, J. Stat. Comput. Sim., 82 (2012), 

1661–1678. doi: 10.1080/00949655.2011.591797. 

17. T. A. Abushal, Parametric inference of akash distribution for type-ii censoring with analyzing 

of relief times of patients, AIMS Math., 6 (2021), 12911–12912. doi: 10.3934/math.2021627. 

18. J. J. Swain, S. Venkatraman, J. R. Wilson, Least-squares estimation of distribution functions 

in Johnson’s translation system, J. Stat. Comput. Sim., 29 (1988), 271–297. doi: 

10.1080/00949658808811068. 

19. S. K. Ashour, M. A. Eltehiwy, Exponentiated power Lindley distribution, J. Adv. Res., 6 (2015) 

895–905. doi: 10.1016/j.jare.2014.08.005. 

20. C. B. Read, Weighted least squares, In: Encyclopedia of statistical sciences, Wiley, 2006, 179–

196. doi: 10.1002/0471667196.ess2909.pub2. 

21. W. T. Wu, Y. T. Chu, K. C. Chen, Moving identification via weighted least-squares estimation, 

Int. J. Syst. Sci., 18 (1987), 477–486. doi: 10.1080/00207728708963981. 

22. S. G. From, A weighted least-squares procedure for estimating the parameters of Altham’s 

multiplicative generalization of the binomial distribution, Stat. Probabil. Lett., 25 (1995), 

193–199. doi: 10.1016/0167-7152(94)00222-t. 

23. S. Benchiha, A. I. Al-Omari, N. Alotaibi, M. Shrahili, Weighted generalized quasi lindley 

distribution: Different methods of estimation, applications for covid-19 and engineering data, 

AIMS Math., 6 (2021), 11850–11878. doi: 10.3934/math.2021688. 

24. A. M. Almarashi, A. Algarni, M. Nassar, On estimation procedures of stress-strength 

reliability for Weibull distribution with application, PLoS One, 15 (2020), 1–23. doi: 

10.1371/journal.pone.0237997. 

25. W. S. Abu El Azm, E. M. Almetwally, A. S. Alghamdi, H. M. Aljohani, A. H. Muse, O. E. 

Abo-Kasem, Stress-strength reliability for exponentiated inverted Weibull distribution with 

application on breaking of Jute fiber and Carbon fibers, Comput. Intel. Neurosc., 2021 (2021), 

1–21. doi: 10.1155/2021/4227346. 

26. A. M. Hamad, B. B. Salman, Different estimation methods of the stress-strength reliability 

restricted exponentiated Lomax distribution, Math. Model. Eng. Probl., 8 (2021), 477–484. 

doi: 10.18280/mmep.080319. 

27. R. M. Alotaibi, Y. M. Tripathi, S. Dey, H. R. Rezk, Bayesian and non-Bayesian reliability 

estimation of multicomponent stress–strength model for unit Weibull distribution, J. Taibah 

Univ. Sci., 14 (2020), 1164–1181. doi: 10.1080/16583655.2020.1806525. 

 

 

https://www.tandfonline.com/doi/abs/10.1080/00949655.2017.1300662
https://www.tandfonline.com/doi/abs/10.1080/00949650802403663
https://www.tandfonline.com/doi/abs/10.1080/00949655.2011.591797
https://www.aimspress.com/article/doi/10.3934/math.2021627
https://www.tandfonline.com/doi/abs/10.1080/00949658808811068
https://www.sciencedirect.com/science/article/pii/S2090123214000927
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471667196.ess2909.pub2
https://www.tandfonline.com/doi/abs/10.1080/00207728708963981
https://www.sciencedirect.com/science/article/abs/pii/016771529400222T
https://aimspress.com/article/doi/10.3934/math.2021688
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0237997
https://www.hindawi.com/journals/cin/2021/4227346/
https://www.iieta.org/journals/mmep/paper/10.18280/mmep.080319
https://www.tandfonline.com/doi/full/10.1080/16583655.2020.1806525


2838 

AIMS Mathematics  Volume 7, Issue 2, 2820–2839. 

28. I. Pobočíková, Z. Sedliačková, Comparison of four methods for estimating the Weibull 

distribution parameters, Appl. Math. Sci., 8 (2014), 4137–4149. doi: 

10.12988/ams.2014.45389. 

29. S. Pant, A. Kumar, S. Bhan, M. Ram, A modified particle swarm optimization algorithm for 

nonlinear optimization, Nonlinear Stud., 24 (2017), 127–138. 

30. L. Sahoo, A. K. Bhunia, D. Roy, Reliability optimization in stochastic domain via genetic 

algorithm, Int. J. Qual. Reliab. Manage., 31 (2014), 698–717. doi: 10.1108/IJQRM-06-2011-

0090. 

31. R. V. Rao, Jaya: An advanced optimization algorithm and its engineering applications, 

Springer International Publishing, 2019. doi: 10.1007/978-3-319-78922-4. 

32. D. B. Meshram, Y. M. Puri, N. K. Sahu, Multi-objective optimization for improving 

performance characteristics of novel curved EDM process using Jaya algorithm, In: Nature-

inspired optimization in advanced manufacturing processes and systems , CRC Press, 2020. 

33. R. H. Caldeira, A. Gnanavelbabu, Solving the flexible job shop scheduling problem using an 

improved Jaya algorithm, Comput. Ind. Eng., 137 (2019), 106064. doi: 

10.1016/j.cie.2019.106064. 

34. S. Gupta, I. Agarwal, R. S. Singh, Workflow scheduling using Jaya algorithm in cloud, 

Concurr. Comput., 31 (2019), 1–13. doi: 10.1002/cpe.5251. 

35. R. Jin, L. Wang, C. Huang, S. Jiang, Wind turbine generation performance monitoring with 

Jaya algorithm, Int. J. Energy Res., 43 (2019), 1604–1611. doi: 10.1002/er.4382. 

36. D. C. Du, H. H. Vinh, V. D. Trung, N. T. Hong Quyen, N. T. Trung, Efficiency of Jaya 

algorithm for solving the optimization-based structural damage identification problem based 

on a hybrid objective function, Eng. Optim., 50 (2018), 1233–1251. doi: 

10.1080/0305215X.2017.1367392. 

37. D. Ezzat, S. Amin, H. A. Shedeed, M. F. Tolba, Directed jaya algorithm for delivering nano-

robots to cancer area, Comput. Methods Biomech. Biomed. Eng., 23 (2020), 1306–1316. doi: 

10.1080/10255842.2020.1797698. 

38. W. H. El-Ashmawi, A. F. Ali, A. Slowik, An improved Jaya algorithm with a modified swap 

operator for solving team formation problem, Soft Comput., 24 (2020), 16627–16641. doi: 

10.1007/s00500-020-04965-x. 

39. R. V. Rao, D. P. Rai, Optimization of submerged arc welding process parameters using quasi-

oppositional based Jaya algorithm, J. Mech. Sci. Technol., 31 (2017), 2513–2522. doi: 

10.1007/s12206-017-0449-x. 

40. S. P. Singh, T. Prakash, V. P. Singh, M. G. Babu, Analytic hierarchy process based automatic 

generation control of multi-area interconnected power system using Jaya algorithm, Eng. Appl. 

Artif. Intell., 60 (2017), 35–44. doi: 10.1016/j.engappai.2017.01.008. 

41. M. G. Badar, A. M. Priest, Statistical aspects of fibre and bundle strength in hybrid composites , 

In: T. Hayashi, K. Kawata, S. Umekawa, Progress in science and engineering composites, 

Tokyo: ICCM-IV, 1982, 1129–1136. 

42. H. H. Örkcü, E. Aksoy, M. I. Dogan, Estimating the parameters of 3-p Weibull distribution 

through differential evolution, Appl. Math. Comput., 251 (2015), 211–224. doi: 

10.1016/j.amc.2014.10.127. 

 

 

http://www.m-hikari.com/ams/ams-2014/ams-81-84-2014/sedliackovaAMS81-84-2014.pdf
https://www.emerald.com/insight/content/doi/10.1108/IJQRM-06-2011-0090/full/html
https://www.emerald.com/insight/content/doi/10.1108/IJQRM-06-2011-0090/full/html
https://link.springer.com/chapter/10.1007/978-3-319-78922-4_2
https://www.sciencedirect.com/science/article/abs/pii/S0360835219305236
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5251
https://onlinelibrary.wiley.com/doi/abs/10.1002/er.4382
https://www.tandfonline.com/doi/abs/10.1080/0305215X.2017.1367392
https://www.tandfonline.com/doi/abs/10.1080/10255842.2020.1797698
https://www.researchgate.net/publication/341313236_An_improved_Jaya_algorithm_with_a_modified_swap_operator_for_solving_team_formation_problem
https://link.springer.com/article/10.1007/s12206-017-0449-x
https://www.sciencedirect.com/science/article/abs/pii/S0952197617300088
https://www.sciencedirect.com/science/article/abs/pii/S0096300314015021


2839 

AIMS Mathematics  Volume 7, Issue 2, 2820–2839. 

43. H. H. Örkcü, V. S. Özsoy, E. Aksoy, M. I. Dogan, Estimating the parameters of 3-p Weibull 

distribution using particle swarm optimization: A comprehensive experimental comparison, 

Appl. Math. Comput., 268 (2015), 201–226. doi: 10.1016/j.amc.2015.06.043. 

44. B. Abbasi, A. H. Eshragh Jahromi, J. Arkat, M. Hosseinkouchack, Estimating the parameters 

of Weibull distribution using simulated annealing algorithm, Appl. Math. Comput., 183 (2006), 

85–93. doi: 10.1016/j.amc.2006.05.063. 

45. S. Acitas, C. H. Aladag, B. Senoglu, A new approach for estimating the parameters of Weibull 

distribution via particle swarm optimization: An application to the strengths of glass fibre data, 

Reliab. Eng. Syst. Saf., 183 (2019), 116–127. doi: 10.1016/j.ress.2018.07.024. 

© 2022 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://www.sciencedirect.com/science/article/abs/pii/S0096300315008243
https://www.sciencedirect.com/science/article/abs/pii/S0096300306005406
https://www.sciencedirect.com/science/article/abs/pii/S0951832017314655

