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Abstract: In this paper, we introduce and study a new subclass of normalized analytic functions,
denoted by

F(β,γ)

(
α, δ, µ,H

(
z,C(λ)

n (t)
))
,

satisfying the following subordination condition and associated with the Gegenbauer (or ultraspherical)
polynomials C(λ)

n (t) of order λ and degree n in t:

α

(
zG

′ (z)
G (z)

)δ
+ (1 − α)

(
zG

′ (z)
G (z)

)µ (
1 +

zG
′′ (z)

G′ (z)

)1−µ

≺ H
(
z,C(λ)

n (t)
)
,

where

H
(
z,C(λ)

n (t)
)
=

∞∑
n=0

C(λ)
n (t) zn =

(
1 − 2tz + z2

)−λ
,

G (z) = γβz2 f
′′

(z) + (γ − β) z f
′

(z) + (1 − γ + β) f (z) ,
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0 ≦ α ≦ 1, 1 ≦ δ ≦ 2, 0 ≦ µ ≦ 1, 0 ≦ β ≦ γ ≦ 1, λ ≧ 0 and t ∈
(

1
√

2
, 1

]
. For functions

in this function class, we first derive the estimates for the initial Taylor-Maclaurin coefficients |a2|

and |a3| and then examine the Fekete-Szegö functional. Finally, the results obtained are applied to
subclasses of normalized analytic functions satisfying the subordination condition and associated with
the Legendre and Chebyshev polynomials. The basic or quantum (or q-) calculus and its so-called
trivially inconsequential (p, q)-variations have also been considered as one of the concluding remarks.

Keywords: analytic functions; univalent functions; principle of subordination; Gegenbauer (or
ultraspherical) polynomials; coefficient estimates; Fekete-Szegö functional; Legendre and Chebyshev
polynomials; Horadam and related polynomials; basic or quantum (or q-) calculus and its so-called
trivially inconsequential (p, q)-variation
Mathematics Subject Classification: Primary 30C45; Secondary 11M35, 30C50, 33C45

1. Introduction, definitions and motivation

LetA denote the family of all analytic functions, which are defined on the open unit disk

U = {z : z ∈ C and |z| < 1}

and normalized by the following condition:

f (0) = f
′

(0) − 1 = 0.

Such functions f ∈ A have the Taylor-Maclaurin series expansion given by

f (z) = z +
∞∑

n=2

anzn (z ∈ U). (1.1)

Furthermore, by S we denote the class of all functions f ∈ A that are also univalent in U.
With a view to recalling the principle of subordination between analytic functions, let the functions

f (z) and g (z) be analytic in U.We then say that the function f (z) is subordinate to g (z) in U, if there
exists a Schwarz function w (z) , analytic in U with

w (0) = 0 and |w (z)| < 1 (z ∈ U) ,

such that
f (z) = g

(
w (z)

)
(z ∈ U) .

We denote this subordination by
f (z) ≺ g (z) (z ∈ U) .

If the function g is univalent function in U, then

f (z) ≺ g (z) ⇐⇒ f (0) = g (0) and f (U) ⊂ g (U) .
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The concept of arithmetic means of functions and other entities is frequently used in mathematics,
especially in geometric function theory of complex analysis. Making use of the concept of arithmetic
means, Mocanu [12] introduced the class of α-convex functions (0 ≦ α ≦ 1) as follows:

Mα =
{

f : f ∈ A and ℜ
[
(1 − α)

(
z f
′ (z)

f (z)

)
+ α

(
1 +

z f
′′ (z)

f ′ (z)

)]
> 0 (z ∈ U)

}
, (1.2)

which, in some case, corresponds to the class of starlike functions and, in another case, to the class of
convex functions. In general, the class of α-convex functions determines the arithmetic bridge between
starlikeness and convexity.

By using the geometric means, Lewandowski et al. [9] defined the class of µ-starlike functions
(0 ≦ µ ≦ 1) consisting of functions f ∈ A that satisfy the following inequality:

ℜ

(z f
′ (z)

f (z)

)µ (
1 +

z f
′′ (z)

f ′ (z)

)1−µ > 0 (z ∈ U) . (1.3)

We note that the class of µ-starlike functions constitutes the geometric bridge between starlikeness and
convexity.

We now recall that a function f ∈ A maps U onto a starlike domain with respect to w0 = 0 if and
only if

z f
′ (z)

f (z)
≺

1 − z
1 + z

(z ∈ U) (1.4)

On the other hand, a function f ∈ A maps U onto a convex domain if and only if

1 +
z f
′′ (z)

f ′ (z)
≺

1 − z
1 + z

(z ∈ U) . (1.5)

It is well known that, if a function f ∈ A satisfies (1.4), then f is univalent and starlike in U.
Let β ∈ [0, 1) . A function f ∈ A is said to be starlike of order β and convex of order β, if

z f
′ (z)

f (z)
≺

1 − (1 − 2β) z
1 + z

(z ∈ U) (1.6)

and

1 +
z f
′′ (z)

f ′ (z)
≺

1 − (1 − 2β) z
1 + z

(z ∈ U) , (1.7)

respectively.
In the year 1933, Fekete and Szegö [6] obtained a sharp bound of the functional a3 − νa2

2, with
real ν (0 ≦ ν ≦ 1) for a univalent function f . Since then, the problem of finding the sharp bounds for
the Fekete-Szegö functional of any compact family of functions or for f ∈ A with any complex ν is
known as the classical Fekete-Szegö problem (see, for details, [14, 21]). More recently, in the year
1994. Szynal [25] introduced and investigated the class T (λ) (λ ≧ 0) as a subclass of A consisting
of functions of the form

f (z) =
∫ 1

−1
k (z, t) dσ (t) , (1.8)
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where
k (z, t) =

z(
1 − 2tz + z2)λ (z ∈ U; −1 ≦ t ≦ 1) (1.9)

and σ is a probability measure on the interval [−1, 1] . The collection of such measures on [a, b] is
denoted by P[a,b]. The function k (z, t) has the following Taylor-Maclaurin series expansion:

k (z, t) = z +C(λ)
1 (t) z2 +C(λ)

2 (t) z3 +C(λ)
3 (t) z4 + · · · , (1.10)

where C(λ)
n (t) denotes the Gegenbauer (or ultraspherical) polynomials of order λ and degree n in t,

which are generated by (see, for details, [18])

H
(
z,C(λ)

n (t)
)
=

∞∑
n=0

C(λ)
n (t) zn =

(
1 − 2tz + z2

)−λ
. (1.11)

If a function f ∈ T (λ) is given by (1.8) , then the coefficients of this function can be written as
follows:

an =

∫ 1

−1
C(λ)

n−1 (t) dσ (t) . (1.12)

We note that T (1) =: T is the well-known class of typically real functions.
The Gengenbauer (or ultraspherical) polynomials C(λ)

n (t) as well as their relatively more familiar
special or limit cases such as the Legendre (or spherical) polynomials Pn(t), the Chebyshev
polynomials Tn(t) of the first kind, and the Chebyshev polynomials Un(t) of the second kind, are
orthogonal over the interval [−1, 1]. In fact, we have

Pn(t) = C( 1
2 )

n (t), Tn(t) =
1
2

n lim
λ→∞

{
C(λ)

n (t)
λ

}
and Un(t) = C(1)

n (t). (1.13)

The subject of Geometric Function Theory of Complex Analysis has been a fast-growing area of
research in recent years. Noteworthy developments and studies involving various old (or traditional)
as well as newly-introduced subclasses of the class of normalized analytic or meromorphic functions,
together with the multivalent analogues in each case, can be found in the remarkably vast literature
on this subject. A good source for some recent researches and developments in Geometric Function
Theory of Complex Analysis is the 888-page edited volume by Milovanović and Rassias [11].

Our present investigation is motivated by the above-mentioned developments as well as by many
recent works on the Fekete-Szegö functional and other coefficient estimate problems by (for example)
Dziok et al. [5], Ałtinkaya and Yalçin [2], Srivastava et al. [20], Szatmari and Ałtinkaya [24], and
Çağlar et al. [4] (see also [1, 3, 8, 10, 13, 14, 17, 19, 21]). Here, in this paper, we introduce and study a
new subclass of normalized analytic functionsA in U, which we denote by

F(β,γ)

(
α, δ, µ,H

(
z,C(λ)

n (t)
))
.

We say that a function f ∈ A of the form (1.1) is in the following class:

F(β,γ)

(
α, δ, µ,H

(
z,C(λ)

n (t)
))
,
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if it satisfies the following subordination condition associated the Gegenbauer (or ultraspherical)
polynomials C(λ)

n (t) of order λ and degree n in t:

α

(
zG

′ (z)
G (z)

)δ
+ (1 − α)

(
zG

′ (z)
G (z)

)µ (
1 +

zG
′′ (z)

G′ (z)

)1−µ

≺ H
(
z,C(λ)

n (t)
)
, (1.14)

where H
(
z,C(λ)

n (t)
)

is given by the generating relation (1.11),

G (z) = γβz2 f
′′

(z) + (γ − β) z f
′

(z) + (1 − γ + β) f (z) , (1.15)

and

0 ≦ α ≦ 1, 1 ≦ δ ≦ 2, 0 ≦ µ ≦ 1, 0 ≦ β ≦ γ ≦ 1, λ ≧ 0 and t ∈
(

1
√

2
, 1

]
.

For functions in this subclass, we first derive the estimates for the initial Taylor-Maclaurin coefficients
|a2| and |a3| and then examine the corresponding Fekete-Szegö inequality. Finally, the results obtained
are applied to subclasses of normalized analytic functions satisfying the subordination condition and
associated with the Legendre and Chebyshev polynomials. In the concluding section, we have
indicated the possibility of using the basic or quantum (or q-) calculus and we have also exposed the
so-called trivial and inconsequential (p, q)-variations by forcing-in an obviously redundant (or
superfluous) parameter p in the familiar q-calculus.

2. Initial coefficient bounds for the function class F(β,γ)

(
α, δ, µ,H

(
z,C(λ)

n (t)
))

Our first result (Theorem 1 below) provides bounds for the initial Taylor-Maclaurin coefficients a2

and a3 in (1.1).

Theorem 1. Let the function f (z) given by (1.1) be in the following class:

F(β,γ)

(
α, δ, µ,H

(
z,C(λ)

n (t)
))
.

Then

|a2| ≦
2λt

{αδ + (1 − α) (2 − µ)} (2γβ + γ − β + 1)
(2.1)

and

|a3| ≦

(
λ (λ + 1)

[
αδ + (1 − α) (2 − µ)

]2
−

[
α
(
δ2 − 3δ

)
+ (1 − α)

(
µ2 + 5µ − 8

)]
λ2

)
2t2

2
[
αδ + (1 − α) (2 − µ)

]2 [
αδ + (1 − α) (3 − 2µ)

]
·
[
2 (3γβ + γ − β) + 1

]
−

λ

2
[
αδ + (1 − α) (3 − 2µ)

]
·
[
2 (3γβ + γ − β) + 1

] , (2.2)

provided that

0 ≦ α ≦ 1, 1 ≦ δ ≦ 2, 0 ≦ µ ≦ 1, 0 ≦ β ≦ γ ≦ 1, λ ≧ 0 and t ∈
(

1
√

2
, 1

]
.

AIMS Mathematics Volume 7, Issue 2, 2568–2584.



2573

Proof. Under the hypotheses of Theorem 1, we find from (1.1) and (1.15) that

G (z) = γβz2 f
′′

(z) + (γ − β) z f
′

(z) + (1 − γ + β) f (z)

=
[
γ − β + (1 − γ + β)

]
z +

∞∑
n=2

[
γβn (n − 1) + (γ − β) n + (1 − γ + β)

]
anzn

= z +
∞∑

n=2

[
(n − 1) (γβn + γ − β) + 1

]
anzn

= z +
[
(2γβ + γ − β) + 1

]
a2z2 +

[
2 (3γβ + γ − β) + 1

]
a3z3 + · · · . (2.3)

Now, upon setting ∇ := 2γβ + γ − β in (2.3), we can write

G (z) = z + (∇ + 1) a2z2 +
[
2 (∇ + γβ) + 1

]
a3z3 + · · · ,

which readily yields

zG
′ (z)

G (z)
=

z + 2 (∇ + 1) a2z2 + 3
[
2 (∇ + γβ) + 1

]
a3z3 + · · ·

z + (∇ + 1) a2z2 +
[
2 (∇ + γβ) + 1

]
a3z3 + · · ·

= 1 + (∇ + 1) a2z +
([

4 (∇ + γβ) + 2
]
a3 − (∇ + 1)2 a2

2

)
z2 + · · · ,

(
zG

′ (z)
G (z)

)δ
= 1 + δ (∇ + 1) a2z +

(
δ2 − 3δ

)
(∇ + 1)2 a2

2 + 4δ
[
2 (∇ + γβ) + 1

]
a3

2
z2 + · · · ,

1 +
zG

′′ (z)
G′ (z)

= 1 + 2 (∇ + 1) a2z +
(
6
[
2 (∇ + γβ) + 1

]
a3 − 4 (∇ + 1)2 a2

2

)
z2 + · · · ,

(
1 +

zG
′′ (z)

G′ (z)

)1−µ

= 1 + 2 (1 − µ) (∇ + 1) a2z +
[
2µ (µ − 1) (∇ + 1)2 a2

2 + (1 − µ)
]

·
(
6
[
2 (∇ + γβ) + 1

]
a3 − 4 (∇ + 1)2 a2

2

)
z2 + · · · ,

(
zG

′ (z)
G (z)

)µ (
1 +

zG
′′ (z)

G′ (z)

)1−µ

= 1 + (2 − µ) (∇ + 1) a2z

+

[
µ2 + 5µ − 8

2
(∇ + 1)2 a2

2 + 2 (3 − 2µ)
[
2 (∇ + γβ) + 1

]
a3

]
z2 + · · ·

and

(1 − α)
(
zG

′ (z)
G (z)

)µ (
1 +

zG
′′ (z)

G′ (z)

)1−µ

= (1 − α) + (1 − α) (2 − µ) (∇ + 1) a2z

+
1 − α

2

[(
µ2 + 5µ − 8

)
(∇ + 1)2 a2

2 + 4 (3 − 2µ)
[
2 (∇ + γβ) + 1

]
a3

]
z2 + · · · .
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If we make use of the above expressions and apply (1.14), we see that

α

(
zG

′ (z)
G (z)

)δ
+ (1 − α)

(
zG

′ (z)
G (z)

)µ (
1 +

zG
′′ (z)

G′ (z)

)1−µ

= 1 +C(λ)
1 (t) p (z) +C(λ)

2 (t) (p (z))2 +C(λ)
3 (t) (p (z))3 + · · · (2.4)

for some analytic function p(z) given by

p (z) = p1z + p2z2 + p3z3 + · · · (z ∈ U) ,

such that
p (0) = 0 and |p (z)| < 1 (z ∈ U).

Then, for all j ∈ N, we have ∣∣∣p j

∣∣∣ ≦ 1. (2.5)

Also, for all ξ ∈ R, we obtain ∣∣∣p2 − ξp2
1

∣∣∣ ≦ max {1, |ξ|} . (2.6)

It follows from (2.4) that

α

(
zG

′ (z)
G (z)

)δ
+ (1 − α)

(
zG

′ (z)
G (z)

)µ (
1 +

zG
′′ (z)

G′ (z)

)1−µ

= 1 +C(λ)
1 (t) p1z +

[
C(λ)

1 (t) p2 +C(λ)
2 (t) p2

1

]
z2 + · · · , (2.7)

which leads us to the following consequences:

{αδ + (1 − α) (2 − µ)} (∇ + 1) a2 = C(λ)
1 (t) p1 (2.8)

and [
α

2

(
δ2 − 3δ

)
+

1 − α
2

(
µ2 + 5µ − 8

)]
(∇ + 1)2 a2

2

+
[
2αδ + 2 (1 − α) (3 − 2µ)

] [
2 (∇ + γβ) + 1

]
a3

= C(λ)
1 (t) p2 +C(λ)

2 (t) p2
1. (2.9)

Now, from (1.11) , (2.5) and (2.8), we can write[
αδ + (1 − α) (2 − µ)

]
(∇ + 1) a2 = C(λ)

1 (t) p1

=⇒ {αδ + (1 − α) (2 − µ)} (∇ + 1) a2 = 2λtp1.

We thus obtain the first coefficient bound (2.1) asserted by Theorem 1:

|a2| ≦
2λt

{αδ + (1 − α) (2 − µ)} (∇ + 1)
. (2.10)

Similarly, from (1.11), (2.5) and (2.9), we can show that
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[
2αδ + 2 (1 − α) (3 − 2µ)

] [
2 (3γβ + γ − β) + 1

]
a3

= 2λtp2 +


λ (λ + 1)

[
αδ + (1 − α) (2 − µ)

]2
−

[
αδ (δ − 3) + (1 − α)

(
µ2 + 5µ − 8

)]
λ2[

αδ + (1 − α) (2 − µ)
]2

 2t2 − λ

 p2
1

= 2λt

p2 −
1
2t

1 −
 (λ + 1)

[
αδ + (1 − α) (2 − µ)

]2
−

[
αδ (δ − 3) + (1 − α)

(
µ2 + 5µ − 8

)]
λ[

αδ + (1 − α) (2 − µ)
]2

 2t2

 p2
1

 ,
which, in conjunction with (2.6), yields

|a3| ≦
2λt

2
[
αδ + (1 − α) (3 − 2µ)

] [
2 (3γβ + γ − β) + 1

]
·max

1,
1
2t

∣∣∣∣∣∣∣∣
(λ + 1)

[
αδ + (1 − α) (2 − µ)

]2
−

[
αδ (δ − 3) + (1 − α)

(
µ2 + 5µ − 8

)]
λ[

αδ + (1 − α) (2 − µ)
]2 2t2 − 1

∣∣∣∣∣∣∣∣
 .

Finally, by making use of the parametric constraints given with Theorem 1, we find eventually that

|a3| ≦

(
λ (λ + 1)

[
αδ + (1 − α) (2 − µ)

]2
−

[
α
(
δ2 − 3δ

)
+ (1 − α)

(
µ2 + 5µ − 8

)]
λ2

)
2t2

2
[
αδ + (1 − α) (2 − µ)

]2 [
αδ + (1 − α) (3 − 2µ)

] [
2 (3γβ + γ − β) + 1

]
−

λ

2
[
αδ + (1 − α) (3 − 2µ)

] [
2 (3γβ + γ − β) + 1

] ,
which is precisely the coefficient bound (2.2) of Theorem 1. This completes our proof of Theorem 1.

□

The following corollaries and consequences of Theorem 1 are worthy of note.

I. If we set α = δ = 1 or α = µ − 1 = 0 in Theorem 1, we obtain the following corollary.

Corollary 1. Let the function f (z) given by (1.1) be in the following class:

F(β,γ)

(
1, 1, µ,H

(
z,C(λ)

n (t)
))
≡ F(β,γ)

(
0, δ, 1,H

(
z,C(λ)

n (t)
))
.

Then
|a2| ≦

2λt
2γβ + γ − β + 1

and
|a3| ≦

λ

2
[
2 (3γβ + γ − β) + 1

] {
(3λ + 1) 2t2 − 1

}
,

provided that

0 ≦ β ≦ γ ≦ 1, λ ≧ 0 and t ∈
(

1
√

2
, 1

]
.

II. Taking β = γ = 0 in Theorem 1, we obtain the following corollary.
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Corollary 2. Let the function f (z) given by (1.1) be in the following class:

F(0,0)

(
α, δ, µ,H

(
z,C(λ)

n (t)
))
.

Then
|a2| ≦

2λt
αδ + (1 − α) (2 − µ)

and

|a3| ≦
λ

2
[
αδ + (1 − α) (3 − 2µ)

]
·

 (λ + 1)
[
αδ + (1 − α) (2 − µ)

]2
−

[
α
(
δ2 − 3δ

)
+ (1 − α)

(
µ2 + 5µ − 8

)]
λ[

αδ + (1 − α) (2 − µ)
]2 2t2 − 1

 ,
provided that

0 ≦ α ≦ 1, 1 ≦ δ ≦ 2, 0 ≦ µ ≦ 1, λ ≧ 0 and t ∈
(

1
√

2
, 1

]
.

III. If we put δ − 1 = µ = 0 in Theorem 1, we obtain the following corollary.

Corollary 3. Let the function f (z) given by (1.1) be in the following class:

F(β,γ)

(
α, 1, 0,H

(
z,C(λ)

n (t)
))
.

Then
|a2| ≦

2λt
(2 − α) (2γβ + γ − β + 1)

and

|a3| ≦
λ

(6 − 4α)
[
2 (3γβ + γ − β) + 1

] (
(λ + 1) (2 − α)2

− (6α − 8) λ
(2 − α)2 2t2 − 1

)
,

provided that

0 ≦ α ≦ 1, 0 ≦ β ≦ γ ≦ 1, λ ≧ 0 and t ∈
(

1
√

2
, 1

]
.

IV. Taking δ − 1 = µ = 0 and β = γ = 0 in Theorem 1, we obtain the following corollary.

Corollary 4. Let the function f (z) given by (1.1) be in the following class:

F(0,0)

(
α, 1, 0,H

(
z,C(λ)

n (t)
))
.

Then
|a2| ≦

2λt
(2 − α)

and

|a3| ≦
λ

(6 − 4α)

(
(λ + 1) (2 − α)2

− (6α − 8) λ
(2 − α)2 2t2 − 1

)
,

provided that

0 ≦ α ≦ 1, λ ≧ 0 and t ∈
(

1
√

2
, 1

]
.
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V. If we set α = β = γ = 0 in Theorem 1, we obtain the following corollary .

Corollary 5. Let the function f (z) given by (1.1) be in the following class:

F(0,0)

(
0, δ, µ,H

(
z,C(λ)

n (t)
))
.

Then
|a2| ≦

2λt
(2 − µ)

and

|a3| ≦
λ

(6 − 4µ)

([
(2 − µ)2 + (12 − 9µ) λ

(2 − µ)2

]
2t2 − 1

)
,

provided that

0 ≦ µ ≦ 1, λ ≧ 0 and t ∈
(

1
√

2
, 1

]
.

3. Fekete-Szegö inequality for the function class F(β,γ)

(
α, δ, µ,H

(
z,C(λ)

n (t)
))

In this section, we find the sharp bounds of the Fekete-Szegö functional a3−ξa2
2 defined for functions

f ∈ F(β,γ)

(
α, δ, µ,H

(
z,C(λ)

n (t)
))
, which are given by (1.1).

Theorem 2. Let the function f (z) given by (1.1) be in the following class:

F(β,γ)

(
α, δ, µ,H

(
z,C(λ)

n (t)
))
.

Then, for some ξ ∈ R,

∣∣∣a3 − ξa2
2

∣∣∣ ≦


2λt
K

(
ξ ∈

[
ξ1, ξ2

])
2λt
K

∣∣∣∣2λ(λ+1)t2−λ
2λt − Rλt

B − ξ
2λtK

B(∇+1)2

∣∣∣∣ (
ξ <

[
ξ1, ξ2

])
,

(3.1)

where

ξ1 =

(
2 [(λ + 1) B − λR] t2 − (1 + 2t) B

4λKt2

)
(∇ + 1)2

and

ξ2 =

(
2 [(λ + 1) B − λR] t2 − (1 − 2t) B

4λKt2

)
(∇ + 1)2

such that [
2αδ + 2 (1 − α) (3 − 2µ)

] [
2 (∇ + γβ) + 1

]
=: K,[

αδ + (1 − α) (2 − µ)
]2
=: B

and
α
(
δ2 − 3δ

)
+ (1 − α)

(
µ2 + 5µ − 8

)
=: R,

δ being given by
δ := 2γβ + γ − β.
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Proof. If the above expressions for K, B and R are used for those in the Eqs (2.1) and (2.2), we get[
αδ + (1 − α) (2 − µ)

]
(∇ + 1) a2 = C(λ)

1 (t) p1

=⇒ a2 =
C(λ)

1 (t) p1[
αδ + (1 − α) (2 − µ)

]
(∇ + 1)

=⇒ a2
2 =

[
C(λ)

1 (t)
]2

p2
1[

αδ + (1 − α) (2 − µ)
]2 (∇ + 1)2

=⇒ a2
2 =

[
C(λ)

1 (t)
]2

p2
1

B (∇ + 1)2 (3.2)

and [
2αδ + 2 (1 − α) (3 − 2µ)

] [
2 (∇ + γβ) + 1

]
a3

= C(λ)
1 (t) p2 +C(λ)

2 (t) p2
1 −

[
α

2

(
δ2 − 3δ

)
+

1 − α
2

(
µ2 + 5µ − 8

)]
· (∇ + 1)2

 C(λ)
1 (t) p1[

αδ + (1 − α) (2 − µ)
]
(∇ + 1)

2

=⇒ Ka3 = C(λ)
1 (t) p2 +C(λ)

2 (t) p2
1 −

( R
2B

[
C(λ)

1 (t)
]2
)

p2
1

=⇒ a3 =
C(λ)

1 (t)
K

p2 +
C(λ)

2 (t)
K

p2
1 −

( R
2BK

[
C(λ)

1 (t)
]2
)

p2
1. (3.3)

Now, from (3.2) and (3.3), we can easily see that

a3 − ξa2
2 =

C(λ)
1 (t)
K

p2 +
C(λ)

2 (t)
K

p2
1 −

( R
2BK

[
C(λ)

1 (t)
]2
)

p2
1 − ξ

[
C(λ)

1 (t)
]2

p2
1

B (∇ + 1)2

=⇒ a3 − ξa2
2 =

C(λ)
1 (t)
K

p2 +

C(λ)
2 (t)
K
−

( R
2BK

[
C(λ)

1 (t)
]2
)
− ξ

[
C(λ)

1 (t)
]2

B (∇ + 1)2

 p2
1

=⇒ a3 − ξa2
2 =

C(λ)
1 (t)
K

p2 +

C(λ)
2 (t)

C(λ)
1 (t)

−
R·C(λ)

1 (t)
2B

− ξ
K·C(λ)

1 (t)

B (∇ + 1)2

 p2
1


and ∣∣∣a3 − ξa2

2

∣∣∣ = C(λ)
1 (t)
K

∣∣∣∣∣∣∣p2 +

C(λ)
2 (t)

C(λ)
1 (t)

−
R·C(λ)

1 (t)
2B

− ξ
K·C(λ)

1 (t)

B (∇ + 1)2

 p2
1

∣∣∣∣∣∣∣ .
Therefore, in view of (2.6), we conclude that

∣∣∣a3 − ξa2
2

∣∣∣ ≦ C(λ)
1 (t)
K

max

1,

∣∣∣∣∣∣∣C
(λ)
2 (t)

C(λ)
1 (t)

−
R·C(λ)

1 (t)
2B

− ξ
K·C(λ)

1 (t)

B (∇ + 1)2

∣∣∣∣∣∣∣
 . (3.4)

Finally, by using the generating function (1.11) in (3.4), we get∣∣∣a3 − ξa2
2

∣∣∣ ≦ 2λt
K

max
{

1,

∣∣∣∣∣∣2 (λ + 1) t2 − 1
2t

−
Rλt
B
− ξ

2λtK
B (∇ + 1)2

∣∣∣∣∣∣
}
.
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Moreover, since t > 0, we have

∣∣∣∣∣∣2 (λ + 1) t2 − 1
2t

−
Rλt
B
− ξ

2λtK
B (∇ + 1)2

∣∣∣∣∣∣ ≦ 1

⇐⇒ −1 −
2 (λ + 1) t2 − 1

2t
+

Rλt
B

≦ −ξ
2λtK

B (∇ + 1)2

≦ 1 −
2 (λ + 1) t2 − 1

2t
+

Rλt
B

⇐⇒
(∇ + 1)2

2λtK

(
2 [(λ + 1) B − λR] t2 − (1 + 2t) B

2t

)
≦ ξ

≦
(∇ + 1)2

2λtK

(
2 [(λ + 1) B − λR] t2 − (1 − 2t) B

2t

)
⇐⇒

(
2 [(λ + 1) B − λR] t2 − (1 + 2t) B

4λKt2

)
(∇ + 1)2 ≦ ξ

≦

(
2 [(λ + 1) B − λR] t2 − (1 − 2t) B

4λKt2

)
(∇ + 1)2

⇐⇒ ξ1 ≦ ξ ≦ ξ2,

which evidently completes the proof of Theorem 2. □

Just as we deduced several consequences of Theorem 1 in the preceding section, here we deduce
the following analogous corollaries of Theorem 2.

I. Taking α = δ = 1 or α = µ − 1 = 0 in Theorem 2, we obtain the following corollary.

Corollary 6. Let the function f (z) given by (1.1) be in the following class:

F(β,γ)

(
1, 1, µ,H

(
z,C(λ)

n (t)
))
≡ F(β,γ)

(
0, δ, 1,H

(
z,C(λ)

n (t)
))
.

Then, for some ξ ∈ R,

∣∣∣a3 − ξa2
2

∣∣∣ ≦


λt
[2(∇+γβ)+1]

(
ξ ∈

[
ξ1, ξ2

])
λt

[2(∇+γβ)+1]

∣∣∣∣2λ(λ+1)t2−λ
2λt + 2λt − ξ 4λt[2(∇+γβ)+1]

(∇+1)2

∣∣∣∣ (
ξ <

[
ξ1, ξ2

])
,

where

ξ1 =

(
2 (3λ + 1) t2 − (1 + 2t)
8λ

[
2 (∇ + γβ) + 1

]
t2

)
(∇ + 1)2

and

ξ2 =

(
2 (3λ + 1) t2 − (1 − 2t)
8λ

[
2 (∇ + γβ) + 1

]
t2

)
(∇ + 1)2 ,

δ being given by
δ := 2γβ + γ − β.
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II. Upon setting β = γ = 0 in Theorem 2, we are led to the following corollary.

Corollary 7. Let the function f (z) given by (1.1) be in the following class:

F(0,0)

(
α, δ, µ,H

(
z,C(λ)

n (t)
))
.

Then, for some ξ ∈ R,

∣∣∣a3 − ξa2
2

∣∣∣ ≦


2λt
K1

(
ξ ∈

[
ξ1, ξ2

])
2λt
K1

∣∣∣∣2λ(λ+1)t2−λ
2λt − Rλt

B − ξ
2λtK1

B

∣∣∣∣ (
ξ <

[
ξ1, ξ2

])
,

where

ξ1 =
2 [(λ + 1) B − λR] t2 − (1 + 2t) B

4λK1t2

and

ξ2 =
2 [(λ + 1) B − λR] t2 − (1 − 2t) B

4λK1t2

such that [
2αδ + 2 (1 − α) (3 − 2µ)

]
=: K1,[

αδ + (1 − α) (2 − µ)
]2
=: B

and
α
(
δ2 − 3δ

)
+ (1 − α)

(
µ2 + 5µ − 8

)
=: R.

III. Putting δ − 1 = µ = 0 in Theorem 2, we get the following corollary.

Corollary 8. Let the function f (z) given by (1.1) be in the following class:

F(β,γ)

(
α, 1, 0,H

(
z,C(λ)

n (t)
))
.

Then, for some ξ ∈ R,

∣∣∣a3 − ξa2
2

∣∣∣ ≦


2λt
K2

(
ξ ∈

[
ξ1, ξ2

])
2λt
K2

∣∣∣∣2λ(λ+1)t2−λ
2λt −

R1λt
B1
− ξ 2λtK2

B1(∇+1)2

∣∣∣∣ (
ξ <

[
ξ1, ξ2

])
,

where

ξ1 =

(
2 [(λ + 1) B1 − λR1] t2 − (1 + 2t) B1

4λK2t2

)
(∇ + 1)2

and

ξ2 =

(
2 [(λ + 1) B1 − λR1] t2 − (1 − 2t) B1

4λK2t2

)
(∇ + 1)2

such that
∇ := 2γβ + γ − β, (6 − 4α)

[
2 (∇ + γβ) + 1

]
=: K2,

(2 − α)2 =: B1 and 6α − 8 =: R1.
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4. Applications associated with the Legendre and Chebyshev polynomials

In order to apply our main results in Section 2 and Section 2 to the corresponding function classes
associated with the Legendre polynomials Pn(t), the Chebyshev polynomials Tn(t) of the first kind and
the Chebyshev polynomials Un(t) of the second kind, we can make use of their relationships in (1.13)
with the Gegenbauer (or ultraspherical) polynomials C(λ)

n (t). For example, if we set λ = 1
2 , Theorem 1

and its Corollaries 1 to 5, as well as Theorem 2 and its Corollaries 6 to 8, would readily yield the
corresponding results for the function classes associated with the Legendre polynomials Pn(t). In
a similar manner, upon setting λ = 1, we can easily derive the corresponding results for the function
classes associated with the Chebyshev polynomials Un(t) of the second kind. The analogous derivations
in respect of the Chebyshev polynomials Tn(t) of the first kind would obviously involve limit processes.
Thus, except possibly in the case of the function class associated with the Chebyshev polynomials Tn(t)
of the first kind, it is fairly straightforward to set λ = 1

2 and λ = 1 in Theorem 1 and its Corollaries 1
to 5, as well as Theorem 2 and its Corollaries 6 to 8, in order to deduce the corresponding assertions for
the function classes associated, respectively, with the Legendre polynomials Pn(t) and the Chebyshev
polynomials Un(t) of the second kind. We, therefore, choose to leave all such applications of Theorem 1
and its Corollaries 1 to 5, as well as Theorem 2 and its Corollaries 6 to 8, as an exercise for the interested
reader.

Some of the known special cases of Theorem 1 and its Corollaries 1 to 5, as well as Theorem 2 and
its Corollaries 6 to 8, are being listed below.

I. The special case of Theorem 1 when λ = 1 was given in [7].
II. If we further put λ = 1 in Corollary 2, we can derive a known result (see [24]).
III. Upon setting λ = 1 in Corollary 5, we are led to a known result (see [2]).
IV. In the special case of Theorem 1 when λ = α = δ = 1, we get a known result (see [4]).
V. The special case of Theorem 2 when λ = 1 yields a known result (see [7]).
VI. For λ = 1, Corollary 7 yields a known result (see [24]).
VII. In its special case when λ = 1, if we further set α = 0, we are led to a known result (see [2]).
VIII. For λ = α = δ = 1, Theorem 2 reduces to a known result (see [4]).

Other (known or new) special cases and consequences of our main results asserted by Theorem 1
and its Corollaries 1 to 5, as well as Theorem 2 and its Corollaries 6 to 8, can be deduced fairly easily.
We omit the details involved in these derivations.

5. Conclusions and observations

Motivated by several interesting developments on the subjects, here we have introduced and
investigated the following new subclass of normalized analytic functions in the open unit disk U:

F(β,γ)

(
α, δ, µ,H

(
z,C(λ)

n (t)
))
,

which satisfy a certain subordination condition and are associated with the Gegenbauer (or
ultraspherica) polynomials C(λ)

n (t) of order λ and degree n in t. For functions belonging to this
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function class, we have derived the estimates for the initial Taylor-Maclaurin coefficients |a2| and |a3|

and we have also examined the Fekete-Szegö functional. Our main results are asserted by Theorem 1
and its Corollaries 1 to 5, as well as Theorem 2 and its Corollaries 6 to 8. It is also shown how some
of these main results can be applied to (known or new) subclasses of normalized analytic functions
satisfying the corresponding subordination condition and associated with the Legendre polynomials
Pn(t), the Chebyshev polynomials Tn(t) of the first kind, and the Chebyshev polynomials Un(t) of the
first kind.

In several recent developments on the Taylor-Maclaurin coefficient estimate problem and the
Fekete-Szegö coefficient inequality problem, use has been made successfully of the Horadam
polynomials hn(t) which are given by the following recurrence relation:

hn(t) = pthn−1(t) + qhn−2(t) (t ∈ R)

with
h1(t) = a and h2(t) = bt,

for some real constants a, b, p and q (see, for details, [16, 22, 23]; see also the references to the earlier
works which are cited in each of these references). Indeed, as its special cases, the Horadam
polynomials hn(t) contain a remarkably large number of other relatively more familiar polynomials
including (for example) the Fibonacci polynomials, the Lucas polynomials, and the Pell-Lucas
polynomials, as well as the Chebyshev polynomials Tn(t) of the first kind and the Chebyshev
polynomials Un(t) of the first kind. Most (if not all) of these recent developments also apply the basic
or quantum (or q-) calculus as well. A possible presumably open problem for future researches
emerging from our present investigation would involve the analogous usage of the Horadam
polynomials hn(t) instead of the Gegenbauer (or ultraspherical) polynomials C(λ)

n (t) which we have
used in our investigation.

In concluding this paper, we recall a recently-published survey-cum-expository review article in
which Srivastava [14] explored the mathematical applications of the q-calculus, the fractional
q-calculus and the fractional q-derivative operators in Geometric Function Theory of Complex
Analysis, especially in the study of Fekete-Szegö functional. Srivastava [14] also exposed the
not-yet-widely-understood fact that the so-called (p, q)-variation of the classical q-calculus is, in fact,
a rather trivial and inconsequential variation of the classical q-calculus, the additional parameter p
being redundant or superfluous (see, for details, [14, p. 340]; see also [15, pp. 1511–1512]).

Conflicts of interest

The authors declare that they have no conflicts of interest.

References
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4. M. Çağlar, H. Orhan, M. Kamali, Fekete-Szegö problem for a subclass of analytic functions
associated with Chebyshev polynomials, Bol. Soc. Paran. Mat. (BSPM), in press.
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