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1. Introduction

This paper is concerned with the following stochastic differential equations in infinite dimensional
Hilbert space

dX(t) = [A(t)X(t) + b(t, X(t))]dt + [B(t)X(t) + g(t, X(t))]dW(t) +

∞∑
i=1

σi(t, X(t−))dHi(t),

X(0) = x, t ∈ [0,T ]

(1.1)

in the framework of a Gelfand triple V ⊂ H = H∗ ⊂ V∗, where H and V are two given Hilbert spaces.
Here on a given filtrated probability space (Ω,F , {Ft}0≤t≤T , P), W is a one-dimensional Brownian
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motion and {Hi(t), 0 ≤ t ≤ T }∞i=1 is a Teugels martingale associated with a one-dimensional Lévy
process {L(t), 0 ≤ t ≤ T }, A : [0,T ] × Ω −→ L (V,V∗), B : [0,T ] × Ω −→ L (V,H), b : [0,T ] ×
Ω × H −→ H, g : [0,T ] × Ω × H −→ H and σi : [0,T ] × Ω × E × H −→ H are given random
mappings. Here we denote by L (V,V∗) the space of bounded linear transformations of V into V∗,
by L (V,H) the space of bounded linear transformations of H into V. An adapted solution of (1.1) is
a V-valued, {Ft}0≤t≤T -adapted process X(·) which satisfies (1.1) under some appropriate sense. Such
a model as (1.1) represents a large classes of stochastic partial differential equations, for instance the
nonlinear filtering equation and other stochastic parabolic PDEs (cf. [6]), but it is by no means the
largest one. Partial differential equation are too diverse to be covered by a single model, like ordinary
equations.

In 2000, Nualart and Schoutens [21] got a martingale representation theorem for a type of Lévy
processes through Teugels martingales which are a family of pairwise strongly orthonormal
martingales associated with Lévy processes. Later, they proved in [22] the existence and uniqueness
theory of BSDE driven by Teugels martingales. The above results are further extended to the
one-dimensional BSDE driven by Teugels martingales and an independent multi-dimensional
Brownian motion by Bahlali et al. [2]. One can refer to [10, 11, 28, 29] for more results on such kind
of BSDEs.

In the mean time, the stochastic optimal control problems related to Teugels martingales were
studied for example [33]. In 2008, a stochastic linear-quadratic problem with Lévy processes was
considered by Mitsui and Tabata [20], in which they established the closeness property of a
multi-dimensional backward stochastic Riccati differential equation (BSRDE) with Teugels
martingales and proved the existence and uniqueness of the solution to such kind of one-dimensional
BSRDE, moreover, in their paper an application of BSDE to a financial problem with full and partial
observations was demonstrated. Motivated by [20], Meng and Tang [19] studied the general
stochastic optimal control problem for the forward stochastic systems driven by Teugels martingales
and an independent multi-dimensional Brownian motion, of which the necessary and sufficient
optimality conditions in the form of stochastic maximum principle with the convex control domain
are obtained. In 2012, Tang and Zhang [35] studied the optimal control problem of backward
stochastic systems driven by Teugels martingales and an independent multi-dimensional Brownian
motion and obtained the corresponding stochastic maximum principle.

Due to the interesting analytical contents and wide applications in various sciences such as
physics, mechanical engineering, control theory and economics, the theory of SPDEs driven by
Wiener processes or Gaussian random processes now has been investigated extensively and has
already achieved fruitful results on the existence uniqueness, stability, invariant measure other
quantitative and qualitative properties of solution and so on. There are a great amount of literature on
this topic, for example [6, 7, 30] and references therein. On the one hand, non-Gaussian random
processes play an increasing role in modeling stochastic dynamical systems. Typical examples of
non-Gaussian stochastic processes are Lévy processes and processes arising by Poisson random
measures. In neurophysiology the driving noise of the cable equation is basically impulsive e.g., of a
Poisson type (see [36] ) or, on the other hand, Woyczyński describes in [37] a number of phenomena
from fluid mechanics, solid state physics, polymer chemistry, economic science etc., for which
non-Gaussian Lévy processes can be used as their mathematical model in describing the related
stochastic behavior. Thus, from the point of view of applications one might feel that the restriction to
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Wiener processes or Gaussian noise is unsatisfactory; to handle such cases one can replace Wiener
processes or Gaussian noise by a Poisson random measure. Most recently, thanks to comprehensive
practical applications, many attentions have been paid to SPDEs driven by jump processes, (cf., for
example [1, 27, 30–32, 38–40] and the references therein). It is worth mentioning that Röcker and
Zhang [30] established the existence and uniqueness theory for solutions of stochastic evolution
equations of type (1.1) by a successive approximations, in which case the operator B does not exist.

One of the purposes of this paper is to establish the continuous dependence of the solution on the
coefficients and the existence and uniqueness of solutions to the stochastic evolution equation (1.1).
It is well known that there are two different methods to analyzing SPDEs: The semigroup (or mild
solution ) approach (cf. [7]) and the variational approach (cf. [26]). For (1.1), since its coefficients are
allowed to be random, we need to use the variational approach in the weak solution framework (in the
PDE sense) of the Gelfand triple and can not use the mild solution approach to study it. In fact, when
the coefficients are deterministic, we always study the stochastic evolution equation in the mild solution
framework. However, due to the randomness of coefficients, it seems very difficult or even impossible
to tackle the problem in the mild solution sense. Indeed, if we define the mild solution as usual, the
adaptability of the integrand in the stochastic integral may not be satisfied due to the randomness of
the operator A. The advantage of the variational approach is that a version of itô’s formula exists in
the context of the Gelfand triple of Hilbert spaces (see [14] for details). Such a formula will play an
important role in proving the main results throughout this paper.

Another purpose of this paper is to establish the maximum principle and verification theorem for
the optimal control problem where the state process is driven by a controlled stochastic evolution
equation (1.1). A classical approach for optimal control problems is to derive necessary conditions
satisfied by an optimal control, such as Pongtryagins maximum principle. Since the 1970s, the
maximum principle has been extensively studied for stochastic control systems: In the
finite-dimensional case it has been solved by Peng [25] in a general setting where the control was
allowed to take values in a nonconvex set and enter into the diffusion, while in the infinte-dimensional
case the existing literature e.g., [3,15,16,41], required at least one of the following three assumptions:
(1) The control domain was convex; (2) The diffusion did not depend on the control; (3) The state
equation and cost functional were both linear in the state variable. So far the general maximum
principle for infinite-dimensional stochastic control systems, the counterpart of Peng’s result,
remained open for a long time. Until recently, Du and Meng attempt to fill this gap in [8] where they
developed a new procedure to perform the second-order duality analysis: By virtue of the Lebesgue
differentiation theorem and an approximation argument to establish the corresponding maximum
principle. Meanwhile other very important works concerned with the general stochastic maximum
principle in infinite dimensions were given in [12, 18] besides [8]. From the above references, works
on optimal control problems of infinite dimension stochastic evolution equation or stochastic partial
differential equation are mainly concerned with systems driven only by Wiener processes. In contrast,
there have not been a number of results on the optimal control for stochastic partial differential
equations driven by jump processes. In 2005, Øksendal, Prosk and Zhang [23] studied the optimal
control problem of quasilinear semielliptic SPDEs driven by Poisson random measure and gave
sufficient maximum principle results, not necessary ones. In 2017, Tang and Meng [34] studied the
optimal control problem of more general stochastic evolution equations driven by Poisson random
measure with random coefficients and gave necessary and sufficient maximum principle results. In
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this paper, for a controlled stochastic evolution equation (1.1), we suppose that the control domain is
convex. We adopt the convex variation method and the first adjoint duality analysis to show a
necessary maximum principle where the continuous dependence theorem (see Theorem 3.2) plays a
key role in proving the variation inequality for the cost functional (see Lemma 6.2). Under the
convexity assumption of the Hamiltonian and the terminal cost, we provide a sufficient maximum
principle for this optimal problem which is the so-called verification theorem. It is worth mentioning
that if the admissible control set is non-convex and the diffusion terms of the state equation is
independent of the control variable we can use the first-order spike variation method to obtain the
maximum principle in the global form by establishing some subtle L2-estimate for the state equation.
All the details shall be given in our forthcoming paper. But for the general setting, it seems very
difficult or even impossible to obtain the corresponding maximum principle because it seems
impossible to establish some Lp (p > 2) estimates as in [8] for the state process which play a key role
in the second variation analysis. Finally, to illustrate our results, we apply the stochastic maximum
principles to solve an optimal control of a Cauchy problem for a controlled stochastic linear partial
differential equation. Furthermore, it is worth mentioning that under non classical conditions, the
optimal control problem of stochastic partial differential equations has become a research hotspot and
has been widely studied, and the relevant literature can be referred to [4, 13, 17, 24]. We will also do
further research in this research direction.

The rest of this paper is structured as follows. In Section 2, we provide the basic notations and
recall itô formula for Teugels martingales in Hilbert space used frequently in this paper. Section 3
establishes the continuous dependence and the existence and uniqueness of solutions to the stochastic
evolution equation (1.1). Section 4 formulates the optimal control problem specifying the hypotheses.
In section 5, adjoint equation is introduced which turns out to be a backward stochastic evolution
equation driven by Teugels martingales. In Section 6, we establish the stochastic maximum principle
by the classical convex variation method. In Sections 7, the verification theorem for optimal controls
is obtained by dual technique. In section 8, we present an application of our results. The final section
concludes the paper.

2. Notations and itô formula for Teugels martingales in Hilbert space

Let (Ω,F , {Ft}0≤t≤T , P) be a filtrated complete probability space on which a one-dimensional Lévy
process {Z(t), 0 ≤ t ≤ T } and a one-dimensional standard Brownian motion {W(t), 0 ≤ t ≤ T } are
defined with {Ft}0≤t≤T being the natural filtration completed by the totality N of all null sets of FT .
For Lévy process {Z(t), 0 ≤ t ≤ T }, we assume that its characteristic function is given by

E
[
eiθZ(t)] = exp

[
iaθt −

1
2
σ2θ2t + t

∫
R1

(eiθx − 1 − iθxI{|x|<1})v(dx)
]
, ∀θ ∈ R.

Here σ > 0, a ∈ R1 and v is a measure on R1 satisfying (i) there exists δ > 0 and λ > 0, such that∫
{−δ,δ}c

eλ|x|v(dx) < ∞ and (ii)
∫ T

−T
(1 ∧ x2)v(dx) < ∞. In view of these conditions , it is easy to check

that that the random variables Z(t) have moments of all orders. Denote by P the predictable sub-σ
field of B([0,T ]) ×F , then we introduce the following notation used throughout this paper.
• X: A Hilbert space with norm ‖ · ‖X.
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• (·, ·)X : The inner product in Hilbert space X.
• l2: The space of all real-valued sequences x = (xn)n≥1 satisfying

‖x‖l2 ,

√√
∞∑

i=1

x2
i < +∞.

• l2(X) : The space of all H-valued sequence f = { f i}i≥1 satisfying

‖ f ‖l2(X) ,

√√
∞∑

i=1

|| f i||2X < +∞.

• l2
F (0,T ; X) : The space of all l2(X)-valued and Ft-predictable processes f = { f i(t, ω), (t, ω) ∈

[0,T ] ×Ω}i≥1 satisfying

‖ f ‖l2
F

(0,T,X) ,

√√
E

∫ T

0

∞∑
i=1

|| f i(t)||2Xdt < ∞.

• M2
F (0,T ; X) : The space of all X-valued and Ft-adapted processes f = { f (t, ω), (t, ω) ∈ [0,T ] ×

Ω} satisfying

‖ f ‖M2
F

(0,T ;X) ,

√
E

∫ T

0
‖ f (t)‖2Xdt < ∞.

• S 2
F (0,T ; X) : the space of all X-valued and Ft-adapted càdlàg processes f = { f (t, ω), (t, ω) ∈

[0,T ] ×Ω} satisfying

‖ f ‖S 2
F

(0,T ;X) ,
√

E sup
0≤t≤T

‖ f (t)‖2X < +∞.

• L2(Ω,F , P; X) : The space of all H-valued random variables ξ on (Ω,F , P) satisfying

‖ξ‖L2(Ω,F ,P;X) , E‖ξ‖2X < ∞.

We denote by {Hi(t), 0 ≤ t ≤ T }∞i=1 the Teugels martingales associated with the Lévy process
{L(t), 0 ≤ t ≤ T }. Hi(t) is given by

Hi(t) = ci,iY (i)(t) + ci,i−1Y (i−1)(t) + · · · + ci,1Y (1)(t),

where Y (i)(t) = L(i)(t) − E[L(i)(t)] for all i ≥ 1, L(i)(t) are so called power-jump processes with L(1)(t) =

L(t), L(i)(t) =
∑

0<s≤t

(∆L(s))i for i ≥ 2 and the coefficients ci j corresponding to the orthonormalization

of polynomials 1, x, x2, · · · w.r.t. the measure µ(dx) = x2v(dx) + σ2δ0(dx). The Teugels martingales
{Hi(t)}∞i=1 are pathwise strongly orthogonal and their predictable quadratic variation processes are given
by

〈H(i)(t),H( j)(t)〉 = δi jt

For more details of Teugels martingales, we invite the reader to consult Nualart and Schoutens [21].
Let V and H be two separable (real) Hilbert spaces such that V is densely embedded in H. We

identify H with its dual space by the Riesz mapping. Then we can take H as a pivot space and get a
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Gelfand triple V ⊂ H = H∗ ⊂ V∗, where H∗ and V∗ denote the dual spaces of H and V , respectively.
Denote by ‖ · ‖V , ‖ · ‖H and ‖ · ‖V∗ the norms of V,H and V∗, respectively, by (·, ·)H the inner product in
H, by 〈·, ·〉 the duality product between V and V∗. Moreover we write L (V,V∗) the space of bounded
linear transformations of V into V∗. Throughout this paper, we let C and K be two generic positive
constants, which may be different from line to line.

Now we present an itô’s formula in Hilbert space which will be frequently used in this paper.

Lemma 2.1. Let ϕ ∈ L2(Ω,F0, P; H). Let Y,Z,Γ and R ≡ (Ri)∞i=1 be three progressively measurable
stochastic processes defined on [0,T ] × Ω with values in V,H and V∗ such that Y ∈ M2

F (0,T ; V),Z ∈
M2

F (0,T ; H), Γ ∈ M2
F (0,T ; V∗) and R ∈ l2

F (0,T ; H), respectively. Suppose that for every η ∈ V and
almost every (ω, t) ∈ Ω × [0,T ], it holds that

(η,Y(t))H = (η, ϕ)H +

∫ t

0
〈η,Γ(s)〉ds +

∫ t

0
(η,Z(s))HdW(s) +

∞∑
i=1

∫ t

0
(η,Ri(s))HdHi(s).

Then Y is a H-valued strongly càdlàg Ft-adapted process such that the following itô formula hold

||Y(t)||2H =||ϕ||2 + 2
∫ t

0
〈Γ(s),Y(s)〉ds + 2

∫ t

0
(Y(s),Z(s))HdW(s) +

∫ t

0
||Z(s)||2Hds

+ 2
∞∑

i=1

∫ t

0
(Y(s),Ri(s))HdHi(s) +

∞∑
i=1

∞∑
j=1

∫ t

0
(Ri(s),R j(s))Hd[Hi(s),H j(s)].

(2.1)

Proof. The proof follows that of Theorem 1 in Gyöngy and Krylov [13]. �

3. Stochastic differential equations in infinite dimensional Hilbert space driven by Teugels
martingales

In this section, we present some preliminary results of the following stochastic evolution equation
(SEE for short) in infinite dimensional Hilbert space driven by Brownian motion {W(t), 0 ≤ t ≤ T } and
Teugels Martingales {Hi(t), 0 ≤ t ≤ T }∞i=1:

dX(t) = [A(t)X(t) + b(t, X(t))]dt + [B(t)X(t) + g(t, X(t))]dW(t) +

∞∑
i=1

σi(t, X(t−))dHi(t),

X(0) = x ∈ H, t ∈ [0,T ],

(3.1)

where A, B, b, g and σ ≡ (σi)∞i=1 are given random mappings which satisfy the following standard
assumptions.

Assumption 3.1. The operator processes A : [0,T ]×Ω −→ L (V,V∗) and B : [0,T ]×Ω −→ L (V,H)
are weakly predictable; i.e., 〈A(·)x, y〉 and (B(·)x, y)H are both predictable process for every x, y ∈ V,
and satisfy the coercive condition, i.e., there exist some constants C, α > 0 and λ such that for any
x ∈ V and each (t, ω) ∈ [0,T ] ×Ω,

−〈A(t)x, x〉 + λ||x||2H ≥ α||x||
2
V + ||Bx||2H, (3.2)

and

sup
(t,ω)∈[0,T ]×Ω

‖A(t, ω)‖L (V,V∗) + sup
(t,ω)∈[0,T ]×Ω

‖B(t, ω)‖L (V,H) ≤ C . (3.3)
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Assumption 3.2. The mappings b : [0,T ] × Ω × H −→ H and g : [0,T ] × Ω × H −→ H are both
P ×B(H)/B(H)-measurable such that b(·, 0), g(·, 0) ∈ M2

F (0,T ; H); the mapping σ : [0,T ] × Ω ×

H −→ l2(H) is P ×B(H)/B(l2(H))-measurable such that σ(·, 0) ∈ l2
F (0,T,H). And there exists a

constant C such that for all x, x̄ ∈ V and a.s.(t, ω) ∈ [0,T ] ×Ω,

||b(t, x) − b(t, x̄)||H + ||g(t, x) − g(t, x̄)||H + ||σ(t, x) − σ(t, x̄)||l2(H) ≤ C||x − x̄||H. (3.4)

Definition 3.1. A V-valued, {Ft}0≤t≤T -adapted process X(·) is said to be a solution to the SEE (3.1), if
X(·) ∈ M2

F (0,T ; V) such that for every φ ∈ V and a.e. (t, ω) ∈ [0,T ] ×Ω, it holds that

(X(t), φ)H = (x, φ)H +

∫ t

0
〈A(s)X(s), φ〉 ds +

∫ t

0
(b(s, X(s)), φ)Hds

+

∫ t

0
(B(s)X(s) + g(s, X(s)), φ)HdW(s) +

∞∑
i=1

∫ t

0
(σi(s, X(s−)), φ)HdHi(s),

X(0) = x ∈ H, t ∈ [0,T ],

(3.5)

or alternatively, X(·) satisfies the following itô’s equation in V∗:

X(t) = x +

∫ t

0
A(s)X(s)ds +

∫ t

0
b(s, X(s))ds +

∫ t

0
[B(s)X(s) + g(s, X(s))]dW(s)

+

∞∑
i=1

∫ t

0
σi(s, X(s−))dHi(s),

X(0) = x ∈ H, t ∈ [0,T ].

(3.6)

Now we state our main result.

Theorem 3.1. Let Assumptions 3.1 and 3.2 be satisfied by any given coefficients (A, B, b, g, σ) of the
SEE (3.1). Then for any initial value X(0) = x, the SEE (3.1) has a unique solution X(·) ∈ M2

F (0,T ; V).

To prove this theorem, we first show the following result on the continuous dependence of the
solution to the SEE (3.1).

Theorem 3.2. Let X(·) be a solution to the SEE (3.1) with the initial value X(0) = x and the coefficients
(A, B, b, g, σ) which satisfy Assumptions 3.1 and 3.2. Then the following estimate holds:

sup
0≤t≤T
E[||X(t)||2H] + E

[ ∫ T

0
‖X(t)‖2Vdt

]
≤ K

{
||x||2H + E

[ ∫ T

0
‖b(t, 0)‖2Hdt

]
+ E

[ ∫ T

0
‖g(t, 0)‖2Hdt

]
+ E

[ ∫ T

0
‖σ(t, 0)‖2l2(H)dt

]}
.

(3.7)

Furthermore, suppose that X̄(·) is a solution to the SEE (3.1) with the initial value X̄(0) = x̄ ∈ H and
the coefficients (A, B, b̄, ḡ, σ̄) satisfying Assumptions 3.1 and 3.2, then we have
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sup
0≤t≤T
E[||X(t) − X̄(t)||2H] + E

[ ∫ T

0
‖X(t) − X̄(t)‖2Vdt

]
≤K

{
‖x − x̄‖2H + E

[ ∫ T

0
‖b(t, X̄(t)) − b̄(t, X̄(t))‖2Hdt

]
+ E

[ ∫ T

0
‖g(t, X̄(t)) − ḡ(t, X̄(t))‖2Hdt

]
+ E

[ ∫ T

0
‖σ(t, X̄(t)) − σ̄(t, X̄(t))‖2l2(H)dt

]}
. (3.8)

Proof. The estimate (3.7) can be directly obtained by the estimate (3.8) by taking the initial value
X̄(0) = 0 and the coefficients (A, B, b̄, ḡ, σ̄) = (A, B, 0, 0, 0) which imply that X̄(·) ≡ 0. Therefore, it
suffices to prove the estimate (3.8). For the sake of simplicity, in the following discussion, we will use
the following shorthand notation:

X̂(t) , X(t) − X̄(t), x̂ , x − x̄,

Λ ,‖x − x̄‖2H + E
[ ∫ T

0
‖b(t, X̄(t)) − b̄(t, X̄(t))‖2Hdt

]
+ E

[ ∫ T

0
‖g(t, X̄(t)) − ḡ(t, X̄(t))‖2Hdt

]
+ E

[ ∫ T

0
‖σ(t, X̄(t)) − σ̄(t, X̄(t))‖2l2(H)dt

]
,

(3.9)

and for φ = b, g, σ

φ̃(t) , φ(t, X(t)) − φ̄(t, X̄(t)),
φ̂(t) , φ(t, X̄(t)) − φ̄(t, X̄(t)),
∆φ(t) , φ(t, X(t)) − φ(t, X̄(t)), t ∈ [0,T ],

(3.10)

where when φ = σ, the terms X(t) and X̄(t) will be replaced by X(t−) and X̄(t−), respectively.
Applying itô formula in Lemma 2.1 to ||X̂(t)||2H and using Assumptions 3.1 and 3.2 and the

elementary inequalities |a + b|2 ≤ 2a2 + 2b2 and 2ab ≤ a2 + b2, ∀a, b > 0, we get that

||X̂(t)||2H

=||x̂||2H + 2
∫ t

0
〈A(s)X̂(s), X̂(s)〉ds + 2

∫ t

0
(X̂(s), b̃(s))Hds +

∫ t

0
||B(s)X̂(s) + g̃(s)||2Hds

+

∞∑
i=1

∞∑
j=1

∫ t

0
(σ̃i(s), σ̃ j(s))Hd[Hi(s),H j(s)] + 2

∫ t

0
(X̂(s), B(s)X̂(s) + g̃(s))HdW(s)

+ 2
∞∑

i=1

∫ t

0
(X̂(s), σ̃i(s))dHi(s)

=||x̂||2H + 2
∫ t

0

[
〈A(s)X̂(s), X̂(s)〉 + ||B(s)X̂(s)||2H

]
ds +

∫ t

0
||∆g(s) + ĝ(s)||2Hds
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+ 2
∫ t

0
(B(s)X̂(s),∆g(s) + ĝ(s))Hds + 2

∫ t

0
(X̂(s),∆b(s) + b̂(s))Hds

+

∫ t

0
||∆σ(s) + σ̂(s)||l2(H)ds +

∞∑
i=1

∞∑
j=1

∫ t

0
(σ̃i(s), σ̃ j(s))Hd{[Hi(s),H j(s)] − 〈Hi(s),H j(s)〉}

+ 2
∫ t

0
(X̂(s), B(s)X̂(s) + g̃(s))HdW(s) + 2

∞∑
i=1

∫ t

0
(X̂(s), σ̃i(s))dHi(s)

≤KΛ − α

∫ t

0
‖X̂(s)‖2Vds + K

∫ t

0
‖X̂(s)‖2Hds

+

∞∑
i=1

∞∑
j=1

∫ t

0
(σ̃i(s), σ̃ j(s))Hd{[Hi(s),H j(s)] − 〈Hi(s),H j(s)〉}

+ 2
∫ t

0
(X̂(s), B(s)X̂(s) + g̃(s))HdW(s) + 2

∞∑
i=1

∫ t

0
(X̂(s), σ̃i(s))dHi(s) (3.11)

Taking expectation on both sides of the above inequality, we get that

E[||X̂(t)||2H] + αE
[ ∫ t

0
||X̂(s)||2Vds

]
≤ KΛ + KE

[∫ t

0
‖X̂(s)‖2Hds

]
. (3.12)

Then by virtue of Grönwall’s inequality to E[||X(t)||2H], we obtain

sup
0≤t≤T
E[||X̂(t)||2H] + E

[ ∫ T

0
||X̂(s)||2Vds

]
≤KΛ. (3.13)

The proof is complete. �

In the following, we give the existence and uniqueness result for the solution of the SEE (3.1) for a
simple case where the coefficients (b, g, σ) is independent of the variable x.

Lemma 3.3. Given three stochastic processes b, g and σ such that

b(·) ∈ M2
F (0,T ; H), g(·) ∈ M2

F (0,T ; H)

and
σ(·) ∈ M2

F (0,T ; l2(H)).

Suppose that the operators A and B satisfy Assumption 3.1. Then there exists a unique solution X(·) ∈
M2

F (0,T ; V) to the following SEE:
dX(t) = [A(t)X(t) + b(t)]dt + [B(t)X(t) + g(t)]dW(t) +

∞∑
i=1

σi(t)dHi(t),

X(0) = x, t ∈ [0,T ].

(3.14)

Proof. The proof can be obtained by Galerkin approximations in the same way as the proof of
Theorem 3.2 in [5] with minor change. Now we begin our proof. First of all, we fix a standard
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complete orthogonal basis {ei|i = 1, 2, 3, . . . } in the space H which is dense in the space V . For any n,
consider the following finite-dimensional stochastic differential equation in Rn :

xn
1(t) = (x, e1)H +

∫ t

0

[ n∑
j=1

xn
j(s)〈A(s)e j, e1〉 + (b(s), e1)H

]
ds

+

∫ t

0

[ n∑
j=1

xn
j(s)(B(s)e j, e1)H + (g(s), e1)H

]
dW(s)

+

∞∑
i=1

∫ t

0
(σi(s), e1)HdHi(s),

xn
2(t) = (x, e2)H +

∫ t

0

[ n∑
j=1

xn
j(s)〈A(s)e j, e1〉 + (b(s), e2)H

]
ds

+

∫ t

0

[ n∑
j=1

xn
j(s)(B(s)e j, e2)H + (g(s), e2)H

]
dW(s)

+

∞∑
i=1

∫ t

0
(σi(s), e2)HdHi(s),

...

xn
n(t) = (x, en)H +

∫ t

0

[ n∑
j=1

xn
j(s)〈A(s)e j, en〉 + (b(s), en)H

]
ds

+

∫ t

0

[ n∑
j=1

xn
j(s)(B(s)e j, en)H + (g(s), en)H

]
dW(s)

+

∞∑
i=1

∫ t

0
(σi(s), en)HdHi(s),

(3.15)

Under Assumptions 3.1 and 3.2, from the existence and uniqueness theory for the finite dimensional
SDE driven by Teugels martingale , the above equation admits a unique strong solution
xn(·) ∈ M2

F (0,T ;Rn) , where xn(·) = (xn
1(·), · · · , xn

n(·)).
Now we can define an approximation solution to (3.14) as follows:

Xn(t) :=
n∑

i=1

xn
i (t)ei,

where

Xn(0) :=
n∑

i=1

(x, ei)Hei.

Then Eq (3.15) can be written as
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(Xn(t), ei)H = (Xn(0), ei)H +

∫ t

0

[
〈A(s)Xn(s), ei〉 + (b(s), ei)H

]
ds

+

∫ t

0

[
(B(s)Xn(s), ei) + (g(s), ei)H

]
dW(s)

+

∞∑
i=1

∫ t

0
(σi(s), en)HdHi(s), i = 1, · · · , n. (3.16)

Now applying itô formula to ||Xn(t)||2H, we get that

||Xn(t)||2H

=||X̂n(0)||2H + 2
∫ t

0
〈A(s)Xn(s), Xn(s)〉ds + 2

∫ t

0
(Xn(s), b(s))Hds +

∫ t

0
||B(s)Xn(s) + g(s)||2Hds

+

∞∑
i=1

∞∑
j=1

∫ t

0
(σi(s), σ j(s))Hd[Hi(s),H j(s)] + 2

∫ t

0
(Xn(s), B(s)Xn(s) + g(s))HdW(s)

+ 2
∞∑

i=1

∫ t

0
(Xn(s), σi(s))dHi(s).

Therefore, under Assumptions 3.1 and 3.2, similar to the proof of the estimate (3.7), using Grönwall’s
inequality, we can easily get the following estimate:

E
[ ∫ T

0
‖Xn(t)‖2Vdt

]
≤K

{
||x||2H + E

[ ∫ T

0
‖b(t)‖2Hdt

]
+ E

[ ∫ T

0
‖g(t)‖2Hdt

]
+ E

[ ∫ T

0
‖σ(t)‖2l2(H)dt

]}
.

(3.17)

This inequality implies that there is a subsequence {n′} of {n} and a triple X(·) ∈ M2
F (0,T ; V) such that

Xn′ → X weakly in M2
F (0,T ; V). (3.18)

Let Π be an arbitrary bounded random variable on (Ω,F ) and ψ be an arbitrary bounded measurable
function on [0,T ]. From the equality (3.16), for n′ ∈ N∗ and basis ei, where i ≤ n′, we have

E
[ ∫ T

0
Πψ(t)(Xn′(t), ei)Hdt

]
=E

[ ∫ T

0
Πψ(t)

{ (
Xn′(0), ei

)
H

+

∫ t

0

[ 〈
A(s)Xn′(s), ei

〉
+ (b(s), ei)H

]
ds

+

∫ t

0

[
(B(s)Xn′(s), ei) + (g(s), ei)H

]
dW(s)+

∞∑
i=1

∫ t

0
(σi(s), ei)HdHi(s)

}
dt

]
. (3.19)

Now letting n′ −→ ∞ on the both sides of the above equation to get its limit. Firstly, from the weak
convergence property of {Xn}∞n=1 inM2

F
(0,T ; V), we have
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lim
n′→∞
E
[ ∫ T

0
Πψ(t)(Xn′(t), ei)Hdt

]
= lim

n′→∞
E
[ ∫ T

0
E[Π|Ft]ψ(t)(Xn′(t), ei)Hdt

]
= lim

n′→∞
E
[ ∫ T

0
(Xn′(t),E[Π|Ft]ψ(t)ei)Hdt

]
=E

[ ∫ T

0
(X(t),E[Π|Ft]ψ(t)ei)dt

]
=E

[ ∫ T

0
Πψ(t)(X(t), ei)dt

]
, (3.20)

and

lim
n′→∞
E
[ ∫ t

0
Π〈A(s)Xn′(s), ei〉ds

]
= lim

n′→∞
E
[ ∫ t

0
E[Π|Fs]〈A(s)Xn′(s), ei〉ds

]
= lim

n′→∞
E
[ ∫ t

0
〈A(s)Xn′(s),E[Π|Fs]ei〉ds

]
= lim

n′→∞
E
[ ∫ t

0
〈Xn′(s), A∗(s)E[Π|Fs]ei〉ds

]
=E

[ ∫ t

0
〈X(s), A∗(s)E[Π|Fs]ei〉ds

]
=E

[ ∫ t

0
Π〈A(s)X(s), ei〉ds

]
. (3.21)

In view of (3.3) and (3.17), we conclude that

E
[∣∣∣∣∣ ∫ t

0
Π〈A(s)Xn′(s), ei〉ds

∣∣∣∣∣] ≤ C
{
E
[ ∫ T

0
||Xn′(s)||2Vds

]} 1
2

< C < ∞,

where the constant C is independent of n′. Hence from Fubini’s Theorem and Lebesgue’s Dominated
Convergence Theorem, we have

lim
n′−→∞

E
[ ∫ T

0
Πψ(t)

∫ t

0
〈A(s)Xn′(s), ei〉dsdt

]
= lim

n′−→∞

∫ T

0
ψ(t)E

[ ∫ t

0
Π〈A(s)Xn′(s), ei〉ds

]
dt

=

∫ T

0
ψ(t)E

[ ∫ t

0
Π〈A(s)X(s), ei〉ds

]
dt

=E
{ ∫ T

0
ψ(t)

[ ∫ t

0
Π〈A(s)X(s), ei〉ds

]
dt

}
. (3.22)

AIMS Mathematics Volume 7, Issue 2, 2427–2455.



2439

Similarly, in view of (3.3), from (3.17) and (3.18), it is easy to check that

(BXn′ , ei)H → (BX, ei)H weakly in M2
F (0, t;R).

Since the stochastic integral with respect to the Brownian motion W are linear and strong continuous
mappings from M2

F (0, t;R) to L2(Ω,FT , P;R), it is weakly continuous. Therefore,

lim
n′→∞
E
[
Π

∫ t

0

(
B(s)Xn′(s), ei

)
H

dW(s)
]

= E
[
Π

∫ t

0
(B(s)X(s), ei)H dW(s)

]
. (3.23)

Moreover, from (3.17), we get

ψ(t)E
[
Π

( ∫ t

0

(
B(s)Xn′(s), ei

)
H

dW(s)
]
≤

1
2
ψ2(t)E|Π|2 + C

{
E
[ ∫ T

0
||B(s)Xn′(s)||2Hds

]}
≤ C.

Hence, by Fubini’s Theorem and Lebesgue’s Dominated Convergence Theorem, we have

lim
n′→∞
E
[ ∫ T

0
ψ(t)Π

( ∫ t

0

(
B(s)Xn′(s), ei

)
H

dW(s)
]
dt

= lim
n′→∞

∫ T

0
ψ(t)E

[
Π

( ∫ t

0

(
B(s)Xn′(s), ei

)
H

dW(s)
]
dt

=

∫ T

0
ψ(t)E

[
Π

( ∫ t

0
(B(s)X(s), ei)H dW(s)

)]
dt

=E

∫ T

0

[
ψ(t)Π

( ∫ t

0
(B(s)X(s), ei)H dW(s)

)]
dt. (3.24)

Therefore, combining (3.20), (3.22)–(3.24), and letting n′ → ∞ in (3.19), we can conclude that

E
[ ∫ T

0
Πψ(t)(X(t), ei)Hdt

]
=E

[ ∫ T

0
Πψ(t)

{
(X(0), ei)H +

∫ t

0

[
〈A(s)X(s), ei〉 + (b(s), ei)H

]
ds

+

∫ t

0

[
(B(s)X(s), ei) + (g(s), ei)H

]
dW(s)+

∞∑
i=1

∫ t

0
(σi(s), ei)HdHi(s)

}
dt

]
. (3.25)

This implies that for a.s. (t, ω) ∈ [0,T ] ×Ω,

(X(t), ei)H = (X(0), ei)H +

∫ t

0

[
〈A(s)X(s), ei〉 + (b(s), ei)H

]
ds

+

∫ t

0

[
(B(s)X(s), ei) + (g(s), ei)H

]
dW(s)+

∞∑
i=1

∫ t

0
(σ j(s), ei)HdH j(s), (3.26)

thanks to the arbitrariness of Π and ψ(·). Since the standard complete orthogonal basis
{ei|i = 1, 2, 3, . . . } in H is dense in the space V , for every φ ∈ V and a.e. (t, ω) ∈ [0,T ] × Ω, it
holds that
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(X(t), φ)H = (X(0), φ)H +

∫ t

0

[
〈A(s)X(s), φ〉 + (b(s), φ)H

]
ds

+

∫ t

0

[
(B(s)X(s), φ) + (g(s), φ)H

]
dW(s)+

∞∑
i=1

∫ t

0
(σ j(s), φ)HdH j(s). (3.27)

Therefore, from the Definition 3.1, we conclude that the triple X(·) is the solution to the SEE (3.14).
Thus the existence is proved. For the uniqueness, the proof can be directly by the priori estimate (3.8).
The proof is complete. �

Proof of Theorem 3.1. The uniqueness of the solution to the SEE (3.1) can be got by the a priori
estimate (3.8) directly. For ρ ∈ [0, 1] and any three given stochastic processes b0 ∈ M2

F (0,T ; H),
g0 ∈ M2

F (0,T ; H), and σ0 ∈ M2
F (0,T ; l2(H)) we introduce a family of parameterized SEEs as follows:

X(t) = x +

∫ t

0
A(s)X(s)ds +

∫ t

0

[
ρb(s, X(s))] + b0(s)

]
ds

+

∫ t

0

[
B(s)X(s) + ρg(s, X(s)) + g0(s)

]
dW(s)

+

∞∑
i=1

∫ t

0

[
ρσi(s, X(s)) + σi

0(s)
]
dHi(s).

(3.28)

It is easy to see that when we take the parameter ρ = 1 and b0 ≡ 0, g0 ≡ 0, σ0 ≡ 0, the SEE (3.28) is
reduced to the original SEE (3.1). Obviously, the coefficients of the SEE (3.28) satisfy
Assumptions 3.1 and 3.2 with (A, B, b, g, σ) replaced by (A, B, ρb + b0, ρg + g0, ρσ + σ0). Suppose for
any b0 ∈ M2

F (0,T ; H), g0 ∈ M2
F (0,T ; H), σ0 ∈ M2

F (0,T ; l2(H)) and some parameter ρ = ρ0, there
exists a unique solution X(·) ∈ M2

F (0,T ; V) to the SEE (3.28). For any parameter ρ, the SEE (3.28)
can be rewritten as

X(t) = x +

∫ t

0
A(s)X(s)ds +

∫ t

0

[
ρ0b(s, X(s)) + b0(s) + (ρ − ρ0)b(s, X(s))

]
ds

+

∫ t

0

[
B(s)X(s) + ρ0g(s, X(s)) + g0(s) + (ρ − ρ0)g(s, X(s))

]
dW(s)

+

∞∑
i=1

∫ t

0

[
ρ0σ

i(s, X(s))+σi
0(s) + (ρ − ρ0)σi(s, X(s))

]
dHi(s).

(3.29)

Therefor by the above assumption, for any x(·) ∈ M2
F (0,T ; V), the following SEE

X(t) = x +

∫ t

0
A(s)X(s)ds +

∫ t

0

[
ρ0b(s, X(s)) + b0(s) + (ρ − ρ0)b(s, x(s))

]
ds

+

∫ t

0

[
B(s)X(s) + ρ0g(s, X(s)) + g0(s) + (ρ − ρ0)g(s, x(s))

]
dW(s)

+

∞∑
i=1

∫ t

0

[
ρ0σ

i(s, X(s)) + σi
0(s) + (ρ − ρ0)σi(s, x(s))

]
dHi(s)

(3.30)
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admits a unique solution X(·) ∈ M2
F (0,T ; V). Now define a mapping from M2

F (0,T ; V) onto itself
denoted by

X(·) = Γ(x(·)).

Then for any xi(·) ∈ M2
F (0,T ; V), i = 1, 2, from the Lipschitz continuity of b, g, σ and a priori

estimate (3.8), it follows that

||Γ(x1(·)) − Γ(x2(·))||2M2
F

(0,T ;V) = ||X1(·) − X2(·)||2M2
F

(0,T ;V) ≤ K|ρ − ρ0|
2 · ||x1(·) − x2(·)||2M2

F
(0,T ;V).

Here K is a positive constant independent of ρ. If |ρ−ρ0| <
1

2
√

K
, the mapping Γ is strictly contractive in

M2
F (0,T ; V). Hence it implies that the SEE (3.14) with the coefficients (A, B, ρb + b0, ρg + g0, ρσ+σ0)

admits a unique solution X(·) ∈ M2
F

(0,T ; V). From Lemma 3.3, the uniqueness and existence of the
solution to the SEE (3.14) is true for ρ = 0. Then starting from ρ = 0, one can reach ρ = 1 in finite
steps and this finishes the proof of solvability of the SEE (3.1). This completes the proof.

4. Formulation of optimal control problem

Let U be a real-valued Hilbert space standing for the control space. Let U be a nonempty convex
closed subset of U. An admissible control process u(·) , {u(t), 0 ≤ t ≤ T } is defined as follows.

Definition 4.1. A stochastic process u(·) defined on [0,T ] × Ω is called an admissible control process
if it is a predictable process such that u(·) ∈ M2

F (0,T ; U) and u(t) ∈ U , a.e. t ∈ [0,T ], P-a.s.. WriteA
for the set of all admissible control processes.

In the Gelfand triple (V,H,V∗), for any admissible control u(·) ∈ A, we consider the following
controlled SEE driven by Teugels martingales

dX(t) = [A(t)X(t) + b(t, X(t), u(t))]dt + [B(t)X(t) + g(t, X(t), u(t))]dW(t)

+

∞∑
i=1

σi(t, X(t−), u(t))dHi(t),

X(0) = x, t ∈ [0,T ]

(4.1)

with the cost functional

J(u(·)) = E
[ ∫ T

0
l(t, x(t), u(t))dt + Φ(x(T ))

]
. (4.2)

where the coefficients satisfy the following basic assumptions:

Assumption 4.1.
(i) A : [0,T ] × Ω −→ L (V,V∗) and B : [0,T ] × Ω −→ L (V,H) are operator-valued stochastic

processes satisfying (i) in Assumption 3.1;

b, g : [0,T ] ×Ω × H ×U → H

are P ×B(H) ×B(U )/B(H) measurable mappings and

σ = (σi)∞i=1 :[0,T ] ×Ω × H ×U −→ l2(H)
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is a P ×B(H) ×B(U)/B(l2(H))-measurable mapping such that

b(·, 0, 0), g(·, 0, 0) ∈ M2
F (0,T ; H),

σ(·, 0, 0) ∈ M2
F (0,T ; l2(H)).

Moreover, for almost all (t, ω) ∈ [0,T ] × Ω, b, g and σ are Gâteaux differentiable in (x, u) with
continuous bounded Gâteaux derivatives bx, gx, σx, bu, gu and σu;

(ii) l : [0,T ] × Ω × H × U → R is a P ⊗ B(H) ⊗ B(U )/B(R)-measurable mapping and Φ :
Ω × H → R is a FT ⊗B(H)/B(R)-measurable mapping. For almost all (t, ω) ∈ [0,T ] × Ω, l
is continuous Gâteaux differentiable in (x, u) with continuous Gâteaux derivatives lx and lu, and
Φ is Gâteaux differentiable in x with continuous Gâteaux derivative Φx. Moreover, for almost all
(t, ω) ∈ [0,T ] ×Ω, there exists a constant C > 0 such that for all (x, u) ∈ H ×U

|l(t, x, u)| ≤ C(1 + ‖x‖2H + +‖u‖2U),

‖lx(t, x, u)‖H + +‖lu(t, x, u)‖U ≤ C(1 + ‖x‖H + ‖u‖U),

and

|Φ(x)| ≤ C(1 + ‖x‖2H),

‖Φx(x)‖H ≤ C(1 + ‖x‖H).

For any admissible control u(·), the solution of the system (4.1), denoted by Xu(·) or X(·), if its
dependence on u(·) is clear from the context, is called the state process corresponding to the control
process u(·), and (u(·); X(·)) is called an admissible pair. The following result gives the well-posedness
of the state equation as well as some useful estimates.

Lemma 4.1. Let Assumption 4.1 be satisfied. Then for any admissible control u(·), the state
equation (4.1) has a unique solution Xu(·) ∈ M2

F (0,T ; V). Moreover, the following estimate holds

sup
0≤t≤T
E[||Xu(t)||2H] + E

[ ∫ T

0
‖Xu(t)‖2Vdt

]
≤ K

{
1 + ||x||2H + E

[ ∫ T

0
‖u(t)‖2Udt

]}
(4.3)

and

|J(u(·))| < ∞. (4.4)

Furthermore, let Xv(·) be the state process corresponding to another admissible control v(·), then

sup
0≤t≤T
E[||Xu(t) − Xv(t)||2H] + E

[ ∫ T

0
‖Xu(t) − Xv(t)‖2Vdt

]
≤ KE

[ ∫ T

0
‖u(t) − v(t)‖2Udt

]
. (4.5)

AIMS Mathematics Volume 7, Issue 2, 2427–2455.



2443

Proof. Under Assumption 4.1, by Theorem 3.1, we can get directly the existence and uniqueness of the
solution of the state equation (3.1). By Assumption 4.1 and the estimates (3.7) and (3.8), we get that

sup
0≤t≤T
E[||X(t)||2H] + E

[ ∫ T

0
‖X(t)‖2Vdt

]
≤ K

{
||x||2H + E

[ ∫ T

0
‖b(t, u(t))‖2Hdt

]
+ E

[ ∫ T

0
‖g(t, u(t))‖2Hdt

]
+ E

[ ∫ T

0
‖σ(t, u(t))‖2l2(H)dt

]}
≤ K

{
1 + ||x||2H + E

[ ∫ T

0
‖u(t)‖2Udt

]}
(4.6)

and

sup
0≤t≤T
E[||Xu(t) − Xv(t)||2H] + E

[ ∫ T

0
‖Xu(t) − Xv(t)‖2Vdt

]
≤ K

{
E
[ ∫ T

0
‖b(t, Xu(t)) − b̄(t, Xv(t))‖2Hdt

]
+ E

[ ∫ T

0
‖g(t, Xu(t)) − ḡ(t, Xv(t))‖2Hdt

]
(4.7)

+ E
[ ∫ T

0
‖σ(t, Xu(t) − σ̄(t, Xv(t))‖2l2(H)dt

]}
.

≤ KE
[ ∫ T

0
‖u(t) − v(t)‖2Udt

]
, (4.8)

which implies that (4.3) and (4.5) hold.
Furthermore, from Assumption 4.1 and the estimate (4.3), it follows that

|J(u(·))| ≤ K
{

sup
0≤t≤T
E
[
||X(t)||2H

]
+ E

[ ∫ T

0
||u(t)||2Udt

]
+ 1

}
≤ K

{
1 + ||x||2H + E

[ ∫ T

0
||u(t)||2Udt

]}
< ∞.

(4.9)

The proof is complete. �

Therefor by Lemma 4.1, we claim that the cost functional (4.2) is well-defined. Our optimal control
problem can be stated as follows.

Problem 4.2. Find an admissible control process ū(·) ∈ A such that

J(ū(·)) = inf
u(·)∈A

J(u(·)). (4.10)

The admissible control ū(·) satisfying (4.10) is called an optimal control process of Problem 4.2.
Correspondingly, the state process X̄(·) associated with ū(·) is called an optimal state process. Then
(ū(·); X̄(·)) is called an optimal pair of Problem 4.2.
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5. Regularity result for the adjoint equation

For any admissible pair (ū(·); X̄(·)), the corresponding adjoint processes is defined as a triple
( p̄(·), q̄(·), r̄(·)) of stochastic processes, which is a solution to the following backward stochastic
evolution equation (BSEE for short) driven by Teugels martingales, called the adjoint equation,

dp̄(t) = −

[
A∗(t) p̄(t) + b∗x(t, X̄(t), ū(t)) p̄(t) + B∗(t)q̄(t) + g∗x(t, X̄(t), ū(t))q̄(t)

+

∞∑
i=1

σi∗
x(t, X̄(t), ū(t))r̄i(t) + lx(t, X̄(t), ū(t))

]
dt

+q̄(t)dW(t) +

∞∑
i=1

r̄i(t)dHi(t), 0 6 t 6 T,

p̄(T ) = Φx(X̄(T )).

(5.1)

Here A∗ denotes the adjoint operator of the operator A. Similarly, we can define the corresponding
adjoint operator for other coefficients.

Under Assumptions 4.1, we have the following basic result for the adjoint process.

Lemma 5.1. Let Assumptions 4.1 be satisfied. Then for any admissible pair (ū(·); X̄(·)), there exists a
unique adjoint process ( p̄(·), q̄(·), r̄(·)) ∈ M2

F (0,T ; V) × M2
F (0,T ; H) × M2

F (0,T ; l2(H)). Moreover, the
following estimate holds:

E
[ ∫ T

0
‖p̄(t)‖2Vdt

]
+ E

[ ∫ T

0
‖q̄(t)‖2Hdt

]
+ E

[ ∫ T

0
‖r̄(t)‖2l2(H)dt

]
≤ K

{
E
[ ∫ T

0
‖lx(t, X̄(t), ū(t))‖2Hdt

]
+ E[||Φx(X̄(T ))||2H]

}
.

(5.2)

Proof. From the property of adjoint operator, the adjoint operator A∗ of A and the adjoint operator B∗

of B also satisfies (i) in Assumption 3.1. Therefore, similarly to Theorem 3.1, the existence and
uniqueness of the solution can be proved by Galerkin approximations and parameter extension
method. �

Define the HamiltonianH : [0,T ] ×Ω × H ×U × H × H × l2(H)→ R by

H(t, x, u, p, q, r) := (b(t, x, u), p)H + (g(t, x, u), q)H + (σ(t, x, u), r(t))l2(H) + l(t, x, u). (5.3)

Using HamiltonianH , the adjoint equation (5.1) can be written in the following form: dp̄(t) = −

[
A∗(t) p̄(t) + B(t)∗q̄(t) + H̄x(t)

]
dt + q̄(t)dW(t) +

∞∑
i=1

r̄i(t)dHi(t), 0 6 t 6 T,

p̄(T ) = Φx(X̄(T )),
(5.4)

where we denote

H̄(t) , H(t, x̄(t), ū(t), p̄(t), q̄(t), r̄(t)). (5.5)

AIMS Mathematics Volume 7, Issue 2, 2427–2455.



2445

6. Stochastic maximum principle

6.1. Variation of the state process and cost functional

Let(ū(·); X̄(·)) be an optimal pair of Problem 4.2. Define a convex perturbation of ū(·) as follows:

uε(·) , ū(·) + ε(v(·) − ū(·)), 0 ≤ ε ≤ 1,

where v(·) is an arbitrarily admissible control. Since the control domain U is convex, uε(·) is also
an element of A. We denote by Xε(·) the state process corresponding to the control uε(·). Now we
introduce the following first order variation equation:

dY(t) = [A(t)Y(t) + bx(t, X̄(t), ū(t))Y(t) + bu(t, X̄(t), ū(t))(v(t) − ū(t))]dt

+ [B(t)Y(t) + gx(t, X̄(t), ū(t))Y(t) + gu(t, X̄(t), ū(t))(v(t) − ū(t))]dW(t)

+

∞∑
i=1

[
σi

x(t, X̄(t−), ū(t))Y(t−) + σi
u(t, X̄(t−), ū(t))(v(t) − ū(t))

]
dHi(t),

Y(0) =0.

(6.1)

Under Assumption 4.1, by Theorem 3.1, we see that the variation equation (6.1) has a unique solution
Y(·) ∈ M2

F (0,T ; V).

Lemma 6.1. Let Assumption 4.1 be satisfied. Then we have the following estimates:

sup
0≤t≤T
E
[
‖Xε(t) − X̄(t)‖2H

]
+ E

[ ∫ T

0
‖Xε(t) − X̄(t)‖2Vdt

]
= O(ε2), (6.2)

sup
0≤t≤T
E
[
‖Xε(t) − X̄(t) − εY(t)‖2H

]
+ E

[ ∫ T

0
‖Xε(t) − X̄(t) − εY(t)‖2Vdt

]
= o(ε2) . (6.3)

Proof. From the estimate (4.5), we have

sup
0≤t≤T
E
[
‖Xε(t) − X̄(t))‖2H

]
+ E

[ ∫ T

0
‖Xε(t) − X̄(t)‖2Vdt

]
≤KE

[ ∫ T

0
‖uε(t) − ū(t)‖2Udt

]
= Kε2E

[ ∫ T

0
‖v(t) − ū(t)‖2Udt

]
= O(ε2).

(6.4)

Denote

Ξε(t) := Xε(t) − X̄(t) − εY(t). (6.5)

From Taylor expanding, we have

dΞε(t) = [A(t)Ξε(t) + bx(t, X̄(t), ū(t))Ξε(t) + αε(t)]dt

+ [B(t)Ξε(t) + gx(t, X̄(t), ū(t))Ξε(t) + βε(t)]dW(t)

+

∞∑
i=1

[
σi

x(t, X̄(t−), ū(t))Ξε(t) + γiε(t)
]
dHi(t),

X(0) = x, t ∈ [0,T ],

(6.6)
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where

αε(t) =

∫ 1

0

[(
bx(t, X̄(t) + λ(Xε(t) − X̄(t)), ū(t) + λ(uε(t) − ū(t)))

− bx(t, X̄(t), ū(t))
)
(Xε(t) − X̄(t)) +

(
bu(t, X̄(t) + λ(Xε(t) − X̄(t)), ū(t)

+ λ(uε(t) − ū(t))) − bu(t, X̄(t), ū(t))
)
(uε(t) − ū(t))

]
dλ,

βε(t) =

∫ 1

0

[(
gx(t, X̄(t) + λ(Xε(t) − X̄(t)), ū(t) + λ(uε(t) − ū(t)))

− gx(t, X̄(t), ū(t))
)
(Xε(t) − X̄(t)) +

(
gu(t, X̄(t) + λ(Xε(t) − X̄(t)), ū(t)

+ λ(uε(t) − ū(t))) − gu(t, X̄(t), ū(t))
)
(uε(t) − ū(t))

]
dλ,

γiε(t) =

∫ 1

0

[(
σi

x(t, X̄(t−) + λ(Xε(t−) − X̄(t−)), ū(t) + λ(uε(t) − ū(t))

− σi
x(t, X̄(t−), ū(t))

)
(Xε(t−) − X̄(t−)) +

(
σi

u(t, X̄(t−) + λ(Xε(t−) − X̄(t−)), ū(t)

+ λ(uε(t) − ū(t))) − σi
x(t, X̄(t−), ū(t))

)
(uε(t) − ū(t))

]
dλ.

(6.7)

From the estimates (3.7), (6.2) and Lebesgue dominated convergence theorem, we get that

sup
0≤t≤T
E
[
‖Ξ(t)‖2H

]
+ E

[ ∫ T

0
‖Ξ(t)‖2Vdt

]
≤ K

{
E
[ ∫ T

0
||αε(t)||2Hdt

]
+ E

[ ∫ T

0
||βε(t)||2Hdt

]
+ E

[ ∫ T

0
||γε(t)||2l2(H)dt

]}
= o(ε2). (6.8)

The proof is complete. �

Lemma 6.2. Let Assumption 4.1 be satisfied. Let (ū(·); X̄(·)) be an optimal pair of Problem 4.2
associated with the first order variation process Y(·) (see (6.1)). Then,

J(uε(·)) − J(ū(·)) =εE
[
(Φx(X̄(T )),Y(T ))H

]
+ εE

[ ∫ T

0
(lx(t, X̄(t), ū(t)),Y(t))Hdt

]
+ εE

[ ∫ T

0
(lu(t, X̄(t), ū(t)), v(t) − u(t))Udt

]
+ o(ε).

(6.9)

Proof. From the definition of the cost functional (see (4.2)), we have

J(uε(·)) − J(ū(·)) = E
[ ∫ T

0

(
l(t, Xε(t), uε(t)) − l(t, X̄(t), ū(t)

)
dt

]
+ E

[
Φ(Xε(T )) − Φ(X̄(T ))

]
=: I1 + I2,

(6.10)

where

I1 =E
[ ∫ T

0

(
l(t, Xε(t), uε(t)) − l(t, X̄(t), ū(t)

)
dt

]
,

I2 =E
[
Φ(Xε(T )) − Φ(X̄(T ))

]
.

(6.11)
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Let us concentrate on I1. In terms of Taylor expanding, Lemma 6.1 and the control convergence
theorem, we have

I1 =E
[ ∫ T

0

∫ 1

0

(
lx(t, X̄(t) + λ(Xε(t) − X̄(t)), ū(t) + λ(uε(t) − ū(t)))

− lx(t, X̄(t), ū(t))
)
(Xε(t) − X̄(t))dλdt

]
+ E

[ ∫ T

0

∫ 1

0

(
lu(t, X̄(t) + λ(Xε(t) − X̄(t)), ū(t) + λ(uε(t) − ū(t)))

− lu(t, X̄(t), ū(t))
)
(uε(t) − ū(t))dλdt

]
+ E

[ ∫ T

0
lx(t, X̄(t), ū(t))

)
Ξε(t)dt

]
+ εE

[ ∫ T

0
lx(t, X̄(t), ū(t))

)
Y(t)dt

]
+ εE

[ ∫ T

0
lu(t, X̄(t), ū(t))

)
(u(t) − ū(t))dt

]
=εE

[ ∫ T

0
lx(t, X̄(t), ū(t))Y(t)dt

]
+ εE

[ ∫ T

0
lu(t, X̄(t), ū(t))(u(t) − ū(t))dt

]
+ o(ε). (6.12)

Similarly, we have

I2 = εE
[
Φx(X̄(T ))Y(T )

]
+ o(ε). (6.13)

Then putting (6.12) and (6.13) into (6.10), we get (6.9). The proof is complete. �

6.2. Main results

Now we are in position to state and prove the maximum principle for Problem 4.2.

Theorem 6.3 (Maximum Principle). Let Assumption 4.1 be satisfied. Let (ū(·); X̄(·)) be an optimal
pair of Problem 4.2 associated with the adjoint processes (p̄(·), q̄(·), r̄(·)). Then the following minimum
condition holds:(
Hu(t, X̄(t−), ū(t), p̄(t−), q̄(t), r̄(t)), v − ū(t)

)
U ≥ 0, ∀v ∈ U , f or a.e. t ∈ [0,T ],P − a.s. (6.14)

Proof. Recalling the adjoint equation (5.4) and the first order variational equation (6.1), and then
applying itô formula to (p̄(t),Y(t))H, we have

E[(Φx(X̄(T )),Y(T ))H] + E
[ ∫ T

0
(lx(t, X̄(t), ū(t)),Y(t))Hdt

]
=E

[ ∫ T

0

(
v(t) − ū(t), b∗u(t, X̄(t), ū(t)) p̄(t) + g∗u(t, X̄(t), ū(t))q̄(t) +

∞∑
i=1

σi∗
u(t, X̄(t), ū(t))r̄i(t)

)
U

dt
]
.

(6.15)

Since ū(·) is the optimal control, from (6.9), the duality relation (6.15) and the definition of the
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HamiltonianH (see (5.3)) , we have

0 ≤ lim
ε−→0+

J(uε(·)) − J(ū(·))
ε

=E[
(
Φx(X̄(T )),Y(T )

)
H] + E

[ ∫ T

0
(lx(t, X̄(t), ū(t)),Y(t))Hdt

]
+ E

[ ∫ T

0
(lu(t, X̄(t), ū(t)), v(t) − u(t))Udt

]
=E

[ ∫ T

0

(
v(t) − ū(t), b∗u(t, X̄(t), ū(t)) p̄(t) + g∗u(t, X̄(t), ū(t))q̄(t)

+

∞∑
i=1

σi∗
u(t, X̄(t), ū(t))r̄i(t)

)
U

dt
]

+ E
[ ∫ T

0
(lu(t, X̄(t), ū(t)), v(t) − ū(t))Udt

]
=E

[ ∫ T

0

(
v(t) − ū(t),Hu(t, X̄(t), ū(t), p̄(t), q̄(t), r̄(t)))Udt

]
.

(6.16)

This implies the minimum condition (6.14) holds since v(·) is any given admissible control. �

7. Verification Theorem

In the following, we give a sufficient condition of optimality for the existence of an optimal control
of Problem 4.2, which is the so-called verification theorem.

Theorem 7.1 (Verification Theorem). Let Assumption 4.1 be satisfied. Let (ū(·); X̄(·)) be an
admissible pair of Problem 4.2 associated with the adjoint processes ( p̄(·), q̄(·), r̄(·)). Suppose that
H(t, x, u, p̄(t), q̄(t), r̄(t)) is convex in (x, u), and Φ(x) is convex in x, moreover assume that the
following optimality condition holds for almost all (t, ω) ∈ [0,T ] ×Ω:

H(t, X̄(t), ū(t), p̄(t), q̄(t), r̄(t)) = min
u∈U
H(t, X̄(t), u, p̄(t), q̄(t), r̄(t)). (7.1)

Then (ū(·); X̄(·)) is an optimal pair of Problem 4.2.

Proof. Let (u(·); X(·)) be an any given admissible pair. To simplify our notations, we define

b(t) , b(t, X(t), u(t)), b̄(t) , b(t, X̄(t), ū(t)),
g(t) , g(t, X(t), u(t)), ḡ(t) , g(t, X̄(t), ū(t)),
σi(t) , σi(t, X(t−), u(t)), σ̄i(t) , σi(t, X̄(t−), ū(t)),
H(t) , H(t, X(t), u(t), p̄(t), q̄(t), r̄(t)),
H̄(t) , H(t, X̄(t), ū(t), p̄(t), q̄(t), r̄(t)).

(7.2)

From the definitions of the cost functional J(u(·)) and the HamiltonianH (see (4.2) and (5.3)), we can
represent J(u(·)) − J(ū(·)) as follows:

J(u(·)) − J(ū(·))
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=E
[ ∫ T

0

(
H(t) − H̄(t) − ( p̄(t), b(t) − b̄(t))H − (q̄(t), g(t) − ḡ(t))H

−

∞∑
i=1

(r̄i(t), σi(t) − σ̄i(t))H

)
dt

]
+ E

[
Φ(X(T )) − Φ(X̄(T ))

]
. (7.3)

Then recalling the adjoint equation (5.1) and applying itô’s formula to ( p̄(t), X(t)−X̄(t))H, we get that

E
[ ∫ T

0

(
( p̄(t), b(t) − b̄(t))H + (q̄(t), g(t) − ḡ(t))H +

∞∑
i=1

(r̄i(t), σi(t) − σ̄i(t))H

)
dt

]
=E

[ ∫ T

0
(H̄x(t), X(t) − X̄(t))Hdt

]
+ E

[
(Φx(X̄(T )), X(T ) − X̄(T ))H

]
. (7.4)

Then substituting (7.4) into (7.3) leads to

J(u(·)) − J(ū(·))

=E
[ ∫ T

0

(
H(t) − H̄(t) − (H̄x(t), X(t) − X̄(t))H

)
dt

]
+E[Φ(X(T )) − Φ(X̄(T )) − (Φx(X̄(T )), X(T ) − x̄(T ))H]. (7.5)

On the other hand, the convexity ofH(t) and Φ(x) yields

H(t) − H̄(t) ≥ (H̄x(t), X(t) − X̄(t))H + (H̄u(t), u(t) − ū(t))U , (7.6)

and

Φ(X(T )) − Φ(X̄(T )) ≥ (Φx(X̄(T )), x(T ) − x̄(T ))H. (7.7)

In addition, the optimality condition (7.1) and the convex optimization principle (see Proposition 2.21
of [9] ) yield that for almost all (t, ω) ∈ [0,T ] ×Ω,

(H̄u(t), u(t) − ū(t))U ≥ 0. (7.8)

Then putting (7.6)–(7.8) into (7.5), we get that

J(u(·)) − J(ū(·)) ≥ 0. (7.9)

Therefore, since u(·) is arbitrary, ū(·) is an optimal control process and (ū(·); X̄(·)) is an optimal pair.
The proof is complete. �

8. Application

In this section, we will apply our theoretical results to solve a specific example, i.e., an optimal
control problem for a controlled Cauchy problem driven by Teugels martingales.

First of all, let us recall some preliminaries of Sobolev spaces. For m = 0, 1, we define the space
Hm , {φ : ∂αz φ ∈ L2(Rd), for any α := (α1, · · · , αd) with |α| := |α1| + · · · + |αd| ≤ m} with the norm

‖φ‖m ,

∑
|α|≤m

∫
Rd
|∂αz φ(z)|2dz


1
2

.
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We denote by H−1 the dual space of H1. We set V = H1, H = H0, V∗ = H−1. Then (V,H,V∗) is a
Gelfand triple.

We choose control domain U = U = H. The admissible control set A is defined as M2
F (0,T ; U).

For any admissible control u(·, ·) ∈ M2
F (0,T ; U), we consider a controlled Cauchy problem, where the

system is given by a stochastic partial differential equation driven by Brownian motion W and Poisson
random martingale in the following divergence form:

dy(t, z) =
{
∂zi[ai j(t, z)∂z jy(t, z)] + bi(t, z)∂ziy(t, z) + c(t, z)y(t, z) + u(t, z)

}
dt

+ {∂zi[ηi(t, z)y(t, z)] + ρ(t, z)y(t, z) + u(t, z)}dW(t)

+

∞∑
i=1

[Γi(t, z)y(t, z) + u(t, z)]dHi(t),

y(0, z) = ξ(z) ∈ Rd, (t, z) ∈ [0,T ] × Rd,

(8.1)

where the coefficients ai j, bi, ηi, c, ρ : [0,T ] × Ω × Rd → R and Γi : [0,T ] × Ω × Rd are given random
mappings and satisfy the suitable measurability. Here we also use the Einstein summation convention
to ∂zi[ai j(t, z)∂z jy(t, z)], bi(t, z)∂ziy(t, z) and ∂zi[ηi(t, z)y(t, z)].

For any admissible control u(·, ·) ∈ A, the following definition gives the generalized weak solution
to (8.1).

Definition 8.1. An R-valued, P × B(Rd)-measurable process y(·, ·) is called a solution to (8.1), if
y(·, ·) ∈ M2

F
(0,T ; H) such that for every φ ∈ H and a.e. (t, ω) ∈ [0,T ] ×Ω, it holds that∫
Rd

y(t, z)φ(z)dz

=

∫
Rd
ξ(z)φ(z)dz −

∫ t

0

∫
Rd

ai j(s, z)∂z jy(s, z)∂ziφ(z)dzds +

∫ t

0

∫
Rd

[
bi(s, z)∂ziy(s, z)

+ c(s, z)y(s, z) + u(s, z)
]
φ(z)dzds −

∫ t

0

∫
Rd
ηi(s, z)y(s, z)∂iφ(z)dzdW(s)

+

∫ t

0

∫
Rd

[
ρ(s, z)y(s, z) + u(s, z)

]
φ(z)dzdW(s)

+

∞∑
i=1

∫ t

0

∫
Rd

[
Γi(s, z)y(s, z) + u(s, z)

]
φ(z)dzdHi(s).

(8.2)

For any admissible control process u(·, ·) and the solution y(·, ·) of the corresponding state
equation (8.1), the objective of the control problem is to minimize the following cost functional

J(u(·)) = E
[ ∫
Rd

y2(T, z)dz +

"
[0,T ]×Rd

y2(s, z)dsdz +

"
[0,T ]×Rd

u2(s, z)dsdz
]
. (8.3)

To make the control problem well-defined, we make the following assumptions on the coefficients
a, b, c, η, ρ, Γ, for some fixed constants K ∈ (1,∞) and κ ∈ (0, 1):

Assumption 8.1. The functions a, b, c, η, and ρ are P ×B(Rd)-measurable with values in the set of
real symmetric d × d matrices, Rd, R, Rd and R, respectively, and are bounded by K. The function Γ is
P ×B(E) ×B(Rd)-measurable with value l2(R) and is bounded by K. ξ ∈ L2(Rd).
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Assumption 8.2. The super-parabolic condition holds, i.e.,

κI + η(t, z)(η(t, z))∗ ≤ 2a(t, ω, z) ≤ KI, ∀(t, ω, z) ∈ [0,T ] ×Ω × Rd,

where I is the (d × d)-identity matrix.

In order to apply our abstract theoretical results in Section 6 and 7 to our optimal control problem,
now we begin to transform (8.1) into a SEE driven by Teugels martingales in the form of (3.1). Set

X(t) , y(t, ·),
(A(t)φ)(z) , ∂zi[ai j(t, z)∂z jφ(z)] + bi(t, z)∂ziφ(z) + c(t, z)φ(z), ∀φ ∈ V,

(B(t)φ)(z) , ∂zi[ηi(t, z)φ(z)] + ρ(t, z)φ(z), ∀φ ∈ V,

b(t, φ, u) , u, ∀φ ∈ H, u ∈ U,

g(t, φ, u) , u, ∀φ ∈ H, u ∈ U,

σi(t, φ, u) , Γi(t)φ + u, ∀φ ∈ H, u ∈ U,

l(t, φ, u) , (φ, φ)H + (u, u)U , ∀φ ∈ H, u ∈ U,

Φ(φ) , (φ, φ)H, ∀φ ∈ H.

In the Gelfand triple (V,H,V∗), using the above notations, we can rewrite the state equation (8.1) as
follows: 

dX(t) = [A(t)X(t) + b(t, X(t), u(t))]dt + [B(t)X(t) + g(t, X(t), u(t))]dW(t)

+

∞∑
i=1

σi(t, X(t), u(t))dHi(t),

X(0) = x, t ∈ [0,T ],

(8.4)

and the cost functional (8.3) can be rewritten as

J(u(·)) = E
[ ∫ T

0
l(t, x(t), u(t))dt + Φ(x(T ))

]
, (8.5)

where we set

l(t, x, u) , (x, x)H + (u, u)H,∀x ∈ H, u ∈ U,

Φ(x) , (x, x)H,∀x ∈ H.
(8.6)

Thus this optimal control problem is transformed into Problem 4.2 as a special case. Under
Assumptions 8.1 and 8.2, it is easy to check that the coefficients of this optimal control problem
satisfy Assumptions 4.1. So in this case, Theorems 6.3 and 7.1 hold. Moreover, from the a priori
estimate (3.8), it is easy to see that the cost functional J(u(·)) is the strictly convex, coercive
lower-semi continuous functional defined on the reflexive Banach space M2

F (0,T ; U). Therefore the
uniqueness and existence of the optimal control can be obtained by the convex optimality principle
(see Proposition 2.12 of [9]). Let (ū(·), X̄(·)) be the optimal pair. In the following, we will give the
duality characterization of the optimal control ū(·) by the maximum principle. More precisely, in this
case the corresponding HamiltonianH becomes

H(t, x, u, p, q, r) := (u, p)H + (u, q)H +

∞∑
i=1

(
Γi(t)x + u, ri(t)

)
H

+ (x, x)H + (u, u)H. (8.7)

AIMS Mathematics Volume 7, Issue 2, 2427–2455.



2452

Let (ū(·); X̄(·)) be an optimal pair. Then the corresponding adjoint equation becomes
dp̄(t) = −

[
A∗(t)p̄(t) + B∗(t)q̄(t) +

∞∑
i=1

Γi∗(t)r̄i(t) + 2X̄(t)
]
dt

+q̄(t)dW(t) +

∞∑
i=1

r̄i(t)dHi(t), 0 6 t 6 T,

p̄(T ) = 2X̄(T ),

(8.8)

where

A∗(t)φ(z) , −∂zi[ai j(t, z)∂z jφ(z)] + ∂zi[bi(t, z)φ(z)] + c(t, z)φ(z), ∀φ ∈ V,

B∗(t)φ(z) , −ηi(t, z)∂ziφ(z), ∀φ ∈ H,

Γi∗(t)φ(z) , Γi(t, z)φ(z), ∀φ ∈ H.

Since U = U, there is no constraint on the control and therefore the minimum condition (6.14)
becomes

Hu(t, X̄(t−), ū(t), p̄(t−), q̄(t), r̄(t)) = 0, (8.9)

which imply that

2ū(t) + p̄(t−) + q̄(t) + r̄(t) = 0, (8.10)

a.e. t ∈ [0,T ], P-a.s.. Thus the optimal control ū(·) is given by

ū(t) = −
1
2

[
p̄(t−) + q̄(t) +

∞∑
i=1

r̄i(t)
]
.

Remark 8.1. The above example can be regarded as a special case of the infinite-dimensional linear-
quadratic control problem driven by Teugels martiangles which can also be applied to some more
practical problems such as the partial observation optimal control driven by Teugels martingales and
the optimal harvesting problem associated with Lévy processes and so on. And we will give detailed
investigations on these applications in our future publication.

9. Conclusions

In this paper, we have developed an infinite-dimensional optimal control problem of the stochastic
evolution system driven by Teugels martingales. We have considered the control variable enters the
diffusion of the state equation and the control domain is convex. We first provided the existence
uniqueness and continuous dependence theorems of solutions to SEE driven by Teugels martingales.
Then we established necessary and sufficient conditions for optimal controls in the form of maximum
principles by convex variational technique. As an application, we considered an optimal control
problem of a Cauchy problem for a controlled stochastic partial differential equation and obtained the
dual characterization of the optimal control in terms of the solution to the corresponding stochastic
Hamiltonian system. And further investigates will be carried out on the optimal control problem
under convex control domain assumption and more practical applications in our future publications
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in banach spaces, Stochastics, 6 (1982), 153–173. doi: 10.1080/17442508208833202.

15. Y. Hu, N-person differential games governed by semilinear stochastic evolution systems, Appl.
Math. Optim., 24 (1991), 257–271. doi: 10.1007/BF01447745.

16. Y. Hu, S. Peng, Maximum principle for semilinear stochastic evolution control systems, Stochastics
Stochastic Rep., 33 (1990), 159–180. doi: 10.1080/17442509008833671.

17. S. Lenhart, J. Xiong, J. Yong, Optimal controls for stochastic partial differential equations
with an application in population modeling, SIAM J. Control Optim., 54 (2016), 495–535. doi:
10.1137/15m1010233.
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