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1. Introduction

In recent years, fractional calculus has gained a great deal of attention from the research
community due to its widespread applications in physics, chemistry, fluid mechanics, viscoelasticity,
finance, control systems and other areas of science and engineering. The phenomena in the aforesaid
fields can be modelled very successfully by means of equations containing fractional derivatives and
fractional integrals; and therefore, the investigation of fractional differential equations has become a
hot topic for many researchers. Fractional kinetic equations including Fokker-Planck equation,
fractional diffusion equation, fractional cable equation and fractional advection-diffusion equation are
proved to be powerful instruments for modelling transport dynamics in complex systems such as
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electrodiffusion of ions in spiny dendrites, transport of proteins molecules, movement of a solution in
an aquifer, pollution of underground water, movement under the effect of optical tweezers and
more [1–5]. To get more insight into the applications of fractional calculus, the interested reader can
refer to the classical books in [6, 7], besides the recent books in [8, 9].

In this work, we study the following two-dimensional time-fractional diffusion equation with a
non-homogeneous source term:

C
0 Dα

t u(x, y, t) = ax
∂2u(x, y, t)

∂x2 + ay
∂2u(x, y, t)

∂y2 + f (x, y, t), (x, y) ∈ Ω, 0 < t ≤ T, (1.1)

u(x, y, t) = p(x, y, t), (x, y) ∈ ∂Ω, 0 < t ≤ T, (1.2)
u(x, y, 0) = g(x, y), (x, y) ∈ Ω ∪ ∂Ω, (1.3)

where f (x, y, t), p(x, y, t) and g(x, y) are known functions, Ω = (0, L) × (0, L) is a bounded domain in
R2, ∂Ω is the boundary, ax > 0 and ay > 0 are the diffusion coefficients, and α (0 < α ≤ 1) is the
anomalous diffusion exponent. The term C

0 Dα
t u(x, y, t) stands for the Caputo fractional derivative of the

function u(x, y, t) that is defined as,

C
0 Dα

t u(x, y, t) =

 1
Γ(1−α)

∫ t

0
(t − ξ)−α ∂u(x,y,ξ)

∂ξ
dξ, 0 < α < 1,

∂u(x,y,t)
∂t , α = 1.

From the above definition, it can be observed that the fractional diffusion problems (1.1)–(1.3)
corresponds to the classical diffusion model as α = 1. Fractional diffusion equation is one of the most
fundamental equations in the literature, and its capability to model many problems in science and
engineering is a well established fact. Generally speaking, it has been widely used for describing
random walks and modelling phenomena that are governed by anomalous diffusion in various fields
such as porous systems, nuclear magnetic resonance and transport in fractal geometries [10–12].
Since most fractional differential equations are difficult to handle analytically, many researchers have
resorted to numerical techniques, especially the finite difference method for solving fractional
diffusion problems [4, 10, 11, 13–25]. The complexity of fractional differential equations stems from
the presence of non-local fractional derivatives that have the property of global dependence on time or
space. This forms the principal obstacle to the development of efficient simulation algorithms in terms
of CPU time and memory usage, especially for multi-dimensional problems [26–28]. To surmount
this issue, techniques including fast Poisson solver [14], parallel implementation [15, 29],
preconditioning [15] and multigrid method [30] were suggested in the literature. Therefore, the
question of how we can remove the fractional derivative from our computations to reduce the
complexity and establish efficient solution algorithms is considered a big question arising in the
numerical simulations of fractional differential equations. In this regard, Ren et al. [31] have
introduced a relatively new approach for solving Caputo-type fractional differential equations. In this
approach, a Laplace transform technique is proposed to approximate the fractional differential
equation by its corresponding integer-order differential equation, which can be solved with less effort
by using a suitable numerical or analytical method (see [32, 33]). Recently in [34], a new hybrid
standard point (HSP) iterative method based on a combination of the Laplace transform technique and
implicit difference scheme has been proposed to solve the time-fractional diffusion
problems (1.1)–(1.3). The authors showed that their method produces accurate numerical solutions
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with an optimal computational complexity of O(N) and optimal memory requirement of O(Ms),
where N and Ms are the total number of time levels and spatial unknowns, respectively.

It is well known that the explicit group iterative methods [35–39] based on finite difference
approximations are proposed for the numerical solutions of integer-order differential equations. From
one side, explicit group methods are unconditionally stable as the conventional implicit schemes. On
the other side, they reduce the number of spatial unknowns taken in the iterative process and thus lead
to computationally efficient algorithms. Although the grouping methods have been successfully
employed to abroad spectrum of classical differential models, very little work has been reported to
deal with fractional differential equations using grouping techniques (see [40–43]). In addition, the
handling of nonlinear and variable order fractional differential equations by explicit group methods,
besides their parallel implementation, is another topic that is still at its infancy. Therefore, this subject
needs a major development.

The main purpose of this paper is to combine the Laplace transform technique with an explicit
group scheme to solve the two-dimensional time-fractional diffusion Eqs (1.1)–(1.3). The
unconditional stability, convergence and solvability of the resulting method, namely the modified
hybrid explicit group (MHEG) method are rigorously proved. To illustrate the efficiency and
feasibility of the proposed method, the fast HSP iterative method based on the recent work in [34] is
also presented.

The rest of this paper is organized as follows. In Section 2, we briefly review the existing HSP
iterative method [34] for solving the problems (1.1)–(1.3). In Section 3, the MHEG iterative method
is proposed, and its unconditional stability, convergence and solvability are rigorously proved in
Section 4. In Section 5, numerical simulations are performed to indicate the efficiency of the proposed
method and support our theoretical analysis. Finally, this work ends with a brief summary in
Section 6.

2. Overview of the existing HSP iterative method

Since the Caputo fractional derivative in (1.1) is non-local and has the character of history
dependence, conventional difference schemes (such as an implicit or explicit scheme with a particular
discretiztion formula for the fractional derivative) for the problems (1.1)–(1.3) result in costly
simulations in terms of CPU time and memory consumption. In order to surmount the computational
challenge, and utilizing the Laplace transform technique, the Caputo’s time fractional derivative is
approximated as follows [34]:

C
0 Dα

t u(x, y, t) ≈ α
∂u(x, y, t)

∂t
+ (1 − α)[u(x, y, t) − u(x, y, 0)]. (2.1)

By substituting (2.1) into (1.1), the original time-fractional diffusion Eq (1.1) is reduced to its
corresponding integer-order partial differential equation (PDE) with the following initial and
boundary conditions [34]:
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∂u(x, y, t)
∂t

= Ax
∂2u(x, y, t)

∂x2 + Ay
∂2u(x, y, t)

∂y2 − (r − 1)u(x, y, t) + (r − 1)g(x, y)

+r f (x, y, t), (x, y) ∈ Ω, 0 < t ≤ T, (2.2)
u(x, y, t) = p(x, y, t), (x, y) ∈ ∂Ω, 0 < t ≤ T, (2.3)
u(x, y, 0) = g(x, y), (x, y) ∈ Ω ∪ ∂Ω, (2.4)

where Ax = ax/α, Ay = ay/α and r = 1/α are positive constants. Next, we let

xi = ih, i = 0, 1, . . . ,M, y j = jh, j = 0, 1, . . . ,M, tk = kτ, k = 0, 1, . . . ,N,

where h = L/M and τ = T/N are the uniform space and time step sizes, respectively. We also introduce
the grid functions given by

uk
i, j = u(xi, y j, tk), u0

i, j = g(xi, y j), f k
i, j = f (xi, y j, tk), 0 ≤ i, j ≤ M, 0 ≤ k ≤ N.

Here, the notations δtUk+1
i, j , δ2

xU
k+1
i, j and δ2

yUk+1
i, j are defined as follows:

δtUk+1
i, j =

1
τ

(Uk+1
i, j − Uk

i, j) + O(τ),

δ2
xU

k+1
i, j =

1
h2 (Uk+1

i+1, j − 2Uk+1
i, j + Uk+1

i−1, j) + O(h2),

δ2
yUk+1

i, j =
1
h2 (Uk+1

i, j+1 − 2Uk+1
i, j + Uk+1

i, j−1) + O(h2).

(2.5)

Now, applying the difference operators in (2.5) to the approximating PDEs (2.2)–(2.4) and
disregarding the truncation errors, we obtain the implicit difference scheme in the following form:

uk+1
i, j =

1
(1 + (r − 1)τ + 2q1 + 2q2)

[
q1(uk+1

i+1, j + uk+1
i−1, j) + q2(uk+1

i, j+1 + uk+1
i, j−1),

+uk
i, j + (r − 1)τu0

i, j + rτ f k+1
i, j

]
, 1 ≤ i, j ≤ M − 1, 0 ≤ k ≤ N − 1, (2.6)

uk
i, j|∂Ω = p(xi, y j, tk), 0 ≤ k ≤ N, (2.7)

u0
i, j = g(xi, y j), 0 ≤ i, j ≤ M, (2.8)

where q1 = Axτ/h2, q2 = Ayτ/h2 and uk
i, j is the numerical approximation of the function Uk

i, j after
neglecting the truncation errors.

Considering the fact that the spatial and temporal discretizations usually lead to large and sparse
systems of linear equations to be solved, iterative solvers, such as Gauss-Seidel method, are more
practical and economic than the direct solvers. Here, and at each time level, the HSP method
functions through the iterative evaluation of solutions at all mesh points � shown in Figure 1 by using
Eq (2.7) until certain convergence is achieved. Once the converged solution values
uk+1 = (uk+1

11 , u
k+1
1,2 , . . . , u

k+1
1,M−1, . . . , u

k+1
M−1,1, u

k+1
M−1,2, . . . , u

k+1
M−1,M−1)T are attained, they are utilized as an

initial guess for the next time level uk+2 = (uk+2
11 , u

k+2
1,2 , . . . , u

k+2
1,M−1, . . . , u

k+2
M−1,1, u

k+2
M−1,2, . . . , u

k+2
M−1,M−1)T .

Such process is repeated until it reaches the targeted time level. The HSP iterative method has been
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shown to reduce the memory requirement, computational complexity as well as the CPU time greatly
when compared to the fractional standard point (FSP) iterative methods derived based on the
conventional implicit difference schemes. For extra details, please refer to [34]. Seeking for more
efficient solution algorithm, we propose our method in the next section.

Figure 1. Distribution of solution mesh points for the HSP method when M = 10.

3. Formulation of the MHEG iterative method

Consider the standard mesh of points with the spatial step size 2h = 2L/M illustrated in Figure 2.
We begin this section by discretizing the derivatives of the space variables in (2.2) around these 2h
spaced points. Recalling the δt definition, the spatial difference operators δ2

x and δ2
y are defined as

follows:

δtUk+1
i, j =

1
τ

(Uk+1
i, j − Uk

i, j) + O(τ),

δ2
xU

k+1
i, j =

1
h2 (Uk+1

i+2, j − 2Uk+1
i, j + Uk+1

i−2, j) + O(h2),

δ2
yUk+1

i, j =
1
h2 (Uk+1

i, j+2 − 2Uk+1
i, j + Uk+1

i, j−2) + O(h2).

(3.1)

Applying the difference operators in (3.1) to the approximating PDE (2.2), we obtain

uk+1
i, j − uk

i, j

τ
=Ax

uk+1
i+2, j − 2uk+1

i, j + uk+1
i−2, j

4h2

 + Ay

uk+1
i, j+2 − 2uk+1

i, j + uk+1
i, j−2

4h2


− (r − 1)uk+1

i, j + (r − 1)u0
i, j + r f k+1

i, j + O(τ + h2).

(3.2)
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figure.png

Figure 2. Distribution of solution mesh points for the MHEG method when M = 10.

After simplification and imposing the initial and boundary conditions, the following implicit scheme
is attained: 

uk+1
i, j =

1
(1 + (r − 1)τ + q1/2 + q2/2)

[q1

4

(
uk+1

i+2, j + uk+1
i−2, j

)
+

q2

4

(
uk+1

i, j+2 + uk+1
i, j−2

)
,

+uk
i, j + (r − 1)τu0

i, j + rτ f k+1
i, j

]
, 2 ≤ i, j ≤ M − 2, 0 ≤ k ≤ N − 1, (3.3)

uk
i, j|∂Ω = p(xi, y j, tk), 0 ≤ k ≤ N, (3.4)

u0
i, j = g(xi, y j), 0 ≤ i, j ≤ M, (3.5)

where uk
i, j is the approximate numerical solution of Uk

i, j after omitting the truncation error terms. The
MHEG method can now be constructed by applying Eq (3.3) to a group of four mesh points of the
solution domain. This will result in the following (4 × 4) system of equations:


D −q1/4 0 −q2/4
−q1/4 D −q2/4 0

0 −q2/4 D −q1/4
−q2/4 0 −q1/4 D




uk+1
i, j

uk+1
i+2, j

uk+1
i+2, j+2

uk+1
i, j+2

 =


rhsi, j

rhsi+2, j

rhsi+2, j+2

rhsi, j+2

 , (3.6)

where

D =1 + (r − 1)τ + q1/2 + q2/2,

rhsi, j =
q1

4
uk+1

i−2, j +
q2

4
uk+1

i, j−2 + uk
i, j + (r − 1)τu0

i, j + rτ f k+1
i, j ,

rhsi+2, j =
q1

4
uk+1

i+4, j +
q2

4
uk+1

i+2, j−2 + uk
i+2, j + (r − 1)τu0

i+2, j + rτ f k+1
i+2, j,

rhsi+2, j+2 =
q1

4
uk+1

i+4, j+2 +
q2

4
uk+1

i+2, j+4 + uk
i+2, j+2 + (r − 1)τu0

i+2, j+2 + rτ f k+1
i+2, j+2,

rhsi, j+2 =
q1

4
uk+1

i−2, j+2 +
q2

4
uk+1

i, j+4 + uk
i, j+2 + (r − 1)τu0

i, j+2 + rτ f k+1
i, j+2.
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The coefficients matrix in (3.6) can be inverted to get the MHEG equation given as below:
uk+1

i, j

uk+1
i+2, j

uk+1
i+2, j+2

uk+1
i, j+2

 =
1
η


η1 η2 η3 η4

η2 η1 η4 η3

η3 η4 η1 η2

η4 η3 η2 η1




rhsi, j

rhsi+2, j

rhsi+2, j+2

rhsi, j+2

 , (3.7)

where

η =
1

256
(4 + 4(r − 1)τ + q1 + q2)(4 + 4(r − 1)τ + 3q1 + q2)(4 + 4(r − 1)τ + q1 + 3q2)

× (4 + 4(r − 1)τ + 3q1 + 3q2),

η1 =
1

32
(2 + 2(r − 1)τ + q1 + q2)(16 + 16q1 + 16q2 + 8q1q2 + 3q2

1 + 3q2
2 + 16q1(r − 1)τ

+ 16q2(r − 1)τ + 32(r − 1)τ + 16(r − 1)2τ2),

η2 =
1

64
q1(16 + 16q1 + 16q2 + 8q1q2 + 3q2

1 + 5q2
2 + 16q1(r − 1)τ + 16q2(r − 1)τ

+ 32(r − 1)τ + 16(r − 1)2τ2),

η3 =
1

16
q1q2(2 + 2(r − 1)τ + q1 + q2),

η4 =
1

64
q2(16 + 16q1 + 16q2 + 8q1q2 + 5q2

1 + 3q2
2 + 16q1(r − 1)τ + 16q2(r − 1)τ

+ 32(r − 1)τ + 16(r − 1)2τ2).

Back to Figure 2, it can be seen that the discretized solution domain comprises three different
types of mesh points (�, �, #). Here, the MHEG method functions through the iterative evaluation of
solutions at �mesh points by utilizing Eq (3.7) until a certain convergence criterion is met. Afterwards,
the solution values at the remaining mesh points of types � and # are computed directly once in a
particular sequence. The computational cost of the iterative method still depends on the number of
unknowns involved in the iteration process. For the MHEG method, it is obvious that the number of
mesh points taken in the iteration process is lesser than that of the prespecified HSP method, which
is expected to speed up the convergence rate of the proposed method. For convenience, the MHEG
method in combination with the Gauss-Seidel iterative solver is elaborated in Algorithm 1.

Algorithm 1: MHEG method utilizing the Gauss-Seidel iterative solver
1: Branch the mesh points of the discretized solution domain into the following categories:

• Iterative points of type �.
• Direct points of types � and #.

2: Arrange all the � points into groups of four mesh points as depicted in Figure 2.
3: Set an initial guess for the solution at the current time level.
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4: For each four-point group at the current time level, iterate the intermediate solutions at � mesh
points utilizing 

ûk+1,n+1
i, j

ûk+1,n+1
i+2, j

ûk+1,n+1
i+2, j+2

ûk+1,n+1
i, j+2

 =
1
η


η1 η2 η3 η4

η2 η1 η4 η3

η3 η4 η1 η2

η4 η3 η2 η1




rhsi, j

rhsi+2, j

rhsi+2, j+2

rhsi, j+2

 ,
where

rhsi, j =
q1

4
uk+1

i−2, j +
q2

4
uk+1

i, j−2 + uk
i, j + (r − 1)τu0

i, j + rτ f k+1
i, j ,

rhsi+2, j =
q1

4
uk+1

i+4, j +
q2

4
uk+1

i+2, j−2 + uk
i+2, j + (r − 1)τu0

i+2, j + rτ f k+1
i+2, j,

rhsi+2, j+2 =
q1

4
uk+1

i+4, j+2 +
q2

4
uk+1

i+2, j+4 + uk
i+2, j+2 + (r − 1)τu0

i+2, j+2 + rτ f k+1
i+2, j+2,

rhsi, j+2 =
q1

4
uk+1

i−2, j+2 +
q2

4
uk+1

i, j+4 + uk
i, j+2 + (r − 1)τu0

i, j+2 + rτ f k+1
i, j+2,

and perform the Gauss-Seidel solver
uk+1,n+1

i, j

uk+1,n+1
i+2, j

uk+1,n+1
i+2, j+2

uk+1,n+1
i, j+2

 = ω


ûk+1,n+1

i, j

ûk+1,n+1
i+2, j

ûk+1,n+1
i+2, j+2

ûk+1,n+1
i, j+2

 + (1 − ω)


uk+1,n

i, j

uk+1,n
i+2, j

uk+1,n
i+2, j+2

uk+1,n
i, j+2

 ,
where n is the iteration number and ω = 1 is the relaxation parameter of the Gauss-Seidel solver.
η, η1, η2, η3 and η4 are as defined before in this section.

5: Test the convergence. If convergence is achieved, go to step 6. Otherwise, step 4 is repeated until
convergence is attained.

6: The solutions on the rest of mesh points of types � and # are evaluated directly once in the
following manner:

• For � points, the approximating PDE (2.2) is discretized by using skewed finite difference
operators. Such difference operators are derived by rotating the standard mesh an angle 45◦

clockwise and applying the Taylor series expansion afterwards [45]. This will lead to the
following skewed difference scheme for (2.2):

uk+1
i, j =

1
(1 + (r − 1)τ + q1 + q2)

[q1

2

(
uk+1

i+1, j−1 + uk+1
i−1, j+1

)
+

q2

2

(
uk+1

i+1, j+1 + uk+1
i−1, j−1

)
+ uk

i, j + (r − 1)τu0
i, j + rτ f k+1

i, j

]
.

• For # points, the difference scheme formula defined by (2.6) is employed.

7: If the final time level is reached, go to step 8. Otherwise, adopt the solution values of the last time
level as an initial guess for the next time level and go to step 4.

8: Display the numerical solutions.
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4. Stability and convergence

In this section, we turn to consider the stability and convergence of the MHEG scheme defined
by (3.7) by using the matrix analysis method. For the convenience of our analysis, three remarks are
given at first.

Remark 4.1. Let z ∈ N. The symbol ‖Az×z‖ denotes the infinity norm of matrix A = [ai, j] which is
defined as,

‖Az×z‖∞ = max
1≤i≤z

{ z∑
j=1

|ai, j|

}
.

Remark 4.2. Az×z is called a stricatly diagonally dominant (SDD) matrix if |ai,i| > ri(A), where ri(A) is
the i-th deleted absolute row sum (i.e., ri(A) =

∑z
j,i, j=1|ai, j|, 1 ≤ i ≤ z).

Remark 4.3. Given that Az×z is a SDD matrix, then Az×z is non-singular and the following norm’s bound
does hold [44]:

‖A−1‖∞ ≤
1

min1≤i≤M

{
|ai,i| − ri(A)

} .
4.1. Stability analysis

Here, we analyze the stability of the MHEG scheme (3.7). For simplicity and without loss of
generality, we assume that q1 = q2 = q = τ/h2. Indeed, the MHEG scheme (3.7) can be represented in
the following matrix form:

Auk+1 = Buk + Cu0 + b, 0 ≤ k ≤ N − 1, (4.1)

where ukis an (M−2)2

4 -dimensional vector expressed in the block form

uk = (uk
1, u

k
2, . . . , u

k
(M−2)2

16

)T , uk
l = (uk

i, j, u
k
i+2, j, u

k
i+2, j+2, u

k
i, j+2)T , 1 ≤ l ≤

(M − 2)2

16
,

and

A =



J1 J2

J3 J1 J2
. . .

J3 J1 J2

J3 J1


, B =



H1

H1
. . .

H1

H1


, b =



S 1

S 1
...

S 1

S 1


,

C =



P1

P1
. . .

P1

P1


, J1 =



Q1 Q3

Q2 Q1 Q3
. . .

Q2 Q1 Q3

Q2 Q1


,
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J2 =



Q5

Q5
. . .

Q5

Q5


, J3 =



Q4

Q4
. . .

Q4

Q4


,

H1 =



I4

I4
. . .

I4

I4


, P1 =



T1

T1
. . .

T1

T1


, S 1 =



G1

G1
...

G1

G1


,

Q1 =


1 + (r − 1)τ + q −q/4 0 −q/4

−q
4 1 + (r − 1)τ + q −q/4 0
0 −q/4 1 + (r − 1)τ + q −q/4
−q/4 0 −q/4 1 + (r − 1)τ + q

 ,

Q2 =


0 0 0 −q/4
0 0 −q/4 0
0 0 0 0
0 0 0 0

 ,Q3 =


0 0 0 0
0 0 0 0
0 −q/4 0 0
−q/4 0 0 0

 ,

Q4 =


0 −q/4 0 0
0 0 0 0
0 0 0 0
0 0 −q/4 0

 ,Q5 =


0 0 0 0
−q/4 0 0 0

0 0 0 −q/4
0 0 0 0

 ,

T1 =


(r − 1)τ 0 0 0

0 (r − 1)τ 0 0
0 0 (r − 1)τ 0
0 0 0 (r − 1)τ

 ,

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,G1 = rτ


fi, j

fi+2, j

fi+2, j+2

fi, j+2

 .
Taking note of the above block matrices, the matrix representation in (4.1) can be rewritten in the

more elaborated general form[
A (M−2)2

4 ×
(M−2)2

4

]
uk+1 =

[
B (M−2)2

4 ×
(M−2)2

4

]
uk +

[
C (M−2)2

4 ×
(M−2)2

4

]
u0 + b. (4.2)

Next, we prove the following result:

Theorem 4.1. The MHEG scheme defined by (4.2) is unconditionally stable.

Proof. Suppose uk and ũk are respectively the exact and approximate solutions of (4.2). Then the error
at time level k is expressed as ek = uk − ũk. From Remarks 4.2 and 4.3, it follows that A is invertible

AIMS Mathematics Volume 7, Issue 2, 2370–2392.



2380

and therefore Eq (4.2) can be rewritten as

uk+1 = A−1Buk + A−1Cu0 + A−1b, 0 ≤ k ≤ N − 1. (4.3)

The error function ek satisfies (4.3) and leads to the following round-off error equation:

ek+1 = A−1Bek + A−1Ce0, 0 ≤ k ≤ N − 1, (4.4)

where

ek+1 =


ek+1

0
ek+1

0
...

ek+1
0

 , ek+1
0 =


ψk+1

1
ψk+1

2
...

ψk+1
(M−2)2

16

 , ψ
k+1 =


ψk+1

i, j

ψk+1
i+2, j

ψk+1
i+2, j+2

ψk+1
i, j+2

 ,
and ψk+1

i, j = uk+1
i, j − ũk+1.

In order to demonstrate the stability, we shall prove that ‖ek+1‖ ≤ ‖e0‖ for all 0 ≤ k ≤ N − 1. To this
end, the mathematical induction will be used. For k = 0, we obtain

e1 = A−1Be0 + A−1Ce0.

Using the fact that the matrix and the vector infinity norms are consistent, yields

‖e1‖ = ‖A−1Be0 + A−1Ce0‖

≤ ‖A−1B‖‖e0‖ + ‖A−1C‖‖e0‖

≤ ‖A−1‖‖B‖‖e0‖ + ‖A−1‖‖C‖‖e0‖

= (‖B‖ + ‖C‖)‖A−1‖‖e0‖.

Define ri(A) as in Remark 4.2. Then using Remark 4.3, we get

‖e1‖ ≤
(‖B‖ + ‖C‖)

min1≤i≤M

{
|ai,i| − ri(A)

}‖e0‖

1 + (r − 1)τ
|1 + (r − 1)τ + q| − (| − q/4| + | − q/4| + | − q/4| + | − q/4|)

=
1 + (r − 1)τ
1 + (r − 1)τ

‖e0‖ = ‖e0‖.

Next, suppose that
‖es+1‖ ≤ ‖e0‖, s = 1, 2, . . . , k − 1. (4.5)

We will show the above inequality is true for s = k. Noticing (4.4) and (4.5), we get

‖ek+1‖ = ‖A−1Bek + A−1Ce0‖

≤ ‖A−1‖‖B‖‖ek‖ + ‖A−1‖‖C‖‖e0‖

≤ ‖A−1‖‖B‖‖e0‖ + ‖A−1‖‖C‖‖e0‖
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≤
(‖B‖ + ‖C‖)

min1≤i≤M

{
|ai,i| − ri(A)

}‖e0‖

=
1 + (r − 1)τ

|1 + (r − 1)τ + q| − (| − q/4| + | − q/4| + | − q/4| + | − q/4|)

=
1 + (r − 1)τ
1 + (r − 1)τ

‖e0‖ = ‖e0‖.

Thus, the proof is completed. �

4.2. Convergence analysis

We now analyze the convergence of the MHEG scheme (3.7) by following a similar approach to
that in the previous subsection. As a start, we suppose that the truncation errors on each four-point
group of mesh points at any time level are represented by the block vector of the following form:

Rk+1 = (Rk+1
1 ,Rk+1

2 , . . . ,Rk+1
(M−2)2

16

)T ,

Rn+1
l = (Rk+1

i, j ,R
k+1
i+2, j,R

k+1
i+2, j+2,R

k+1
i, j+2)T , 1 ≤ l ≤

(M − 2)2

16
.

Noticing Eq (3.2) and since i, j and k are finite, there is a positive constant C∗ such that

‖Rk+1‖ ≤ C∗(τ + h2), 0 ≤ k ≤ N − 1. (4.6)

Subtracting (4.2) from the following equation:

AUk+1 = BUk + CU0 + b + Rk+1,

will result in error equation given by

AEk+1 = BEk + CE0 + Rk+1, (4.7)

where

Ek+1 =


Ek+1

0
Ek+1

0
...

Ek+1
0

 , Ek+1
0 =


φk+1

1
φk+1

2
...

φk+1
(M−2)2

16

 , φ
k+1 =


φk+1

i, j

φk+1
i+2, j

φk+1
i+2, j+2

φk+1
i, j+2

 ,
and φk+1

i, j = Uk+1
i, j − uk+1

i, j .
The convergence property is given in the next theorem.

Theorem 4.2. Assume problem (1.1) has a smooth solution u(x, y, t). Then, the MHEG scheme defined
by (3.7) is convergent and the convergence order is O(τ + h2).

Proof. We will use mathematical induction for the proof. For k = 0 and using that E0 = 0, we obtain

E1 = A−1R1.
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In view of of Remark 4.3 and utilizing (4.6), yields

‖E1‖ = ‖A−1R1‖

≤ ‖A−1‖‖R1‖

≤
1

min1≤i≤M

{
|ai,i| − ri(A)

}C∗(τ + h2)

=
1

1 + (r − 1)τ
C∗(τ + h2) = C0(τ + h2),

where C0 = C∗/(1 + (r − 1)τ).
∴ ‖E1‖ ≤ C0

(
τ + h2

)
.

Now, assume that
E s+1 ≤ Cs(τ + h2), s = 1, 2, . . . , k − 1. (4.8)

We prove the above result is true for s = k. Noticing (4.7) and (4.8), we get

‖Ek+1‖ = ‖A−1BEk + A−1Rk+1‖

≤ ‖A−1‖‖B‖‖Ek‖ + ‖A−1‖‖Rk+1‖

≤
1

min1≤i≤M

{
|ai,i| − ri(A)

} [
Ck−1(τ + h2) + C∗(τ + h2)

]
=

1
1 + (r − 1)τ

(Ck−1 + C∗)(τ + h2)

= Ck(τ + h2),

where Ck = Ck−1 + C∗ as limn→∞ τ = 0.

∴ ‖En+1‖ ≤ Ck

(
τ + h2

)
, 0 ≤ n ≤ N − 1.

Hence, the proof is completed by induction. �

4.3. Solvability

Theorem 4.3. The MHEG scheme defined by (3.7) is uniquely solvable.

Proof. In view of (4.1), The coefficients matrix A of the MHEG scheme (3.7) is an SDD matrix.
Consequently, and based on Remark 4.3, it follows that A is a non-singular matrix. This proves the
existence and uniqueness of the solution of the MHEG scheme. �

5. Numerical simulations

In this section, we report on numerical simulations for (1.1)–(1.3). In this endeavor, two test
problems with known exact solutions are given to demonstrate the accuracy and efficiency of the
newly developed MHEG method. For comparison purposes, the fast HSP method proposed recently
in [34] is applied to solve the two test problems. All simulations using the both methods are
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performed in Mathematica 11.3 software and run on a computer with an Intel (R) Core (TM)
i7-8550U CPU and 8.00 GB of RAM. In these simulations, the Gauss-Seidel iterative solver with a
stopping criterion selected to be 10−5 are employed to generate the corresponding numerical results.
To get more insight into these results, and based on the total number of arithmetic operations to be
implemented before and after the convergence process, an analysis on the computational complexity
of the MHEG and HSP iterative methods is established and presented in Table 1.

Table 1. The computational complexity of the HSP [34] and the MHEG iterative methods
(σ = M − 1).

Method Per iteration After convergence Total operations
HSP 13σ2 ∗ Ite - 13σ2 ∗ Ite

MHEG 4.5(σ − 1)2 ∗ Ite 3.25(3σ2 + 2σ − 1) 4.5(σ − 1)2 ∗ Ite + 3.25(3σ2 + 2σ − 1)

Test problem 5.1. We consider the following diffusion equation of fractional order:

C
0 Dα

t u(x, y, t) =
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2 +

(
2t2−α

Γ(3 − α)
+ 2t2

)
sin(x) sin(y),

subject to the boundary and initial conditions

u(x, y, t)|∂Ω = t2 sin(x) sin(y), u(x, y, 0) = 0,

in the spatial domain (0, L) × (0, L) = (0, 1)2, T = 1, and the exact analytic solution is u(x, y, t) =

t2 sin(x) sin(y).

In this test, numerical outputs including maximum absolute error Emax = max1≤i, j≤M−1 |u(xi, y j, tN)−
uN

i, j|, CPU time (in seconds), number of iterations (Ite) as well as total number of arithmetic operations
are computed for different values of τ, h and α and listed in Table 2. It can be observed that the
MHEG iterative method results in significantly faster simulations without compromising too much of
the accuracy when compared to the HSP iterative method. To illustrate this further, Figures 3 and 4
show respectively the graphs of CPU time and total operations of both methods against various mesh
sizes. Form these figures, it is apparent that the shape of the computing time plots is consistent with
the shape of the total computing effort plots. This indicates that the experimental results are in good
agreement with our theoretical analysis. The comparison of the exact and the numerical solutions
besides the graphical error representation when τ = h = 1/18 and α = 0.55 are depicted in Figures 5
and 6, respectively. A comparison of the numerical errors of the test problems for different fractional
orders shows that the accuracy of the proposed method is greatest at α = 0.55, followed by α = 0.75
and α = 0.95. It is clear that the numerical solution matches well with the exact solution.
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Table 2. The numerical results of the MHEG and HSP [34] iterative methods in Test
problem 5.1.

α τ = h Method CPU time (sec) Ite Total operations Emax

0.55
1/6 HSP 0.062 27 8,775 1.6737E-03

MHEG 0.015 2 417 1.7983E-03
1/10 HSP 0.968 56 58,968 9.5405E-04

MHEG 0.140 11 4,013 1.0764E-03
1/14 HSP 3.937 86 188,942 6.0571E-04

MHEG 0.359 16 12,097 7.6144E-04
1/18 HSP 10.062 117 439,569 3.8681E-04

MHEG 0.734 22 28,269 5.7584E-04
0.75

1/6 HSP 0.062 26 8,450 2.3916E-03
MHEG 0.015 2 417 2.4750E-03

1/10 HSP 0.937 53 55,809 1.4477E-03
MHEG 0.109 10 3,725 1.5593E-03

1/14 HSP 3.109 80 175,760 9.9823E-04
MHEG 0.250 15 11,449 1.1488E-03

1/18 HSP 8.062 107 401,999 6.9546E-04
MHEG 0.640 21 27,117 9.0926E-04

0.95
1/6 HSP 0.062 25 8,125 2.9204E-03

MHEG 0.015 2 417 2.9789E-03
1/10 HSP 0.656 50 52,650 1.7502E-03

MHEG 0.062 10 3,725 1.8611E-03
1/14 HSP 2.562 75 164,775 1.1935E-03

MHEG 0.203 14 10,801 1.3410E-03
1/18 HSP 7.937 100 375,700 8.2842E-04

MHEG 0.515 19 24,813 1.0461E-03
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Figure 3. Graphs of CPU times for Test problem 5.1.
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Figure 4. Graphs of Computing efforts for Test problem 5.1.

(a) Exact solution (b) Numerical solution

Figure 5. The exact solution and the numerical solution for Test problem 5.1 when T = 1,
τ = h = 1/18 and α = 0.55.
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Figure 6. The maximum absolute errors of the MHEG method for the Test problem 5.1 at
T = 1, τ = h = 1/18 and α = 0.55.

Test problem 5.2. We consider another diffusion equation of fractional order as follows:

C
0 Dα

t u(x, y, t) =
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2 +

(
2t2−α

Γ(3 − α)
− 2t2

)
e(x+y),

with the boundary and initial conditions

u(x, y, t)|∂Ω = t2e(x+y), u(x, y, 0) = 0,

in the spatial domain Ω = (0, 1)2, T = 1, and the exact analytic solution u(x, y, t) = t2e(x+y).

The numerical results of solving this problem for various values of τ, h and α are presented in
Table 3. Figure 7 highlights the CPU time plots versus several mesh sizes. In view of Table 3 and
Figure 7, it can be seen that the MHEG iterative method reduces the CPU time greatly without
jeopardizing the accuracy of numerical solutions compared to the HSP iterative method. This can be
attributed to the reduction in the number of executed arithmetic operations that leads to a lower
computational complexity as shown in Figure 8. Figure 9 introduces the comparison between the
exact and the numerical solutions, whereas Figure 10 presents the 3D plot of the maximum errors
when τ = h = 1/30 and α = 0.75. Again, these demonstrate the effectiveness of the proposed MHEG
method. Table 4 illustrates the experimental convergence order in the temporal direction using the
formula ρ(τ, h) = log2 (Emax(2τ, h)/Emax(τ, h)). It can be observed that the performance is in good
agreement with the theoretical analysis.
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Figure 7. Graphs of CPU times for Test problem 5.2.
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Figure 8. Graphs of Computing efforts for Test problem 5.2

(a) Exact solution (b) Numerical solution

Figure 9. The exact solution and the numerical solution for Test problem 5.2 when T = 1,
τ = h = 1/30 and α = 0.75.

Figure 10. The maximum absolute errors of the MHEG method for the Test problem 5.2 at
T = 1, τ = h = 1/30 and α = 0.75.
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Table 3. The numerical results of the MHEG and HSP [34] iterative methods in Test
problem 5.2.

α τ = h Method CPU time (sec) Ite Total operations Emax

0.55
1/18 HSP 12.671 170 638,690 6.3352E-03

MHEG 0.859 29 36,333 6.8017E-03
1/22 HSP 31.906 221 1,266,993 5.0040E-03

MHEG 2.359 38 72,833 5.5331E-03
1/26 HSP 64.234 271 2,201,875 4.0351E-03

MHEG 3.390 46 125,485 4.6340E-03
1/30 HSP 118.625 320 3,498,560 3.2629E-03

MHEG 7.937 55 202,425 3.8992E-03
0.75

1/18 HSP 12.640 156 586,092 1.0239E-02
MHEG 0.625 27 34,029 1.0665E-02

1/22 HSP 28.828 199 1,140,867 8.4919E-03
MHEG 1.343 34 65,633 9.0001E-03

1/26 HSP 57.593 242 1,966,250 7.1948E-03
MHEG 3.359 42 115,117 7.8080E-03

1/30 HSP 102.688 284 3,104,972 6.1807E-03
MHEG 7.328 49 181,257 6.9414E-03

0.95
1/18 HSP 12.359 143 537,251 1.1950E-02

MHEG 0.562 25 31,725 1.2403E-02
1/22 HSP 25.968 182 1,043,406 9.7841E-03

MHEG 1.328 31 60,233 1.0285E-02
1/26 HSP 51.796 219 1,779,375 8.1651E-03

MHEG 3.203 38 104,749 8.8048E-03
1/30 HSP 94.796 255 2,787,915 6.9147E-03

MHEG 6.890 44 163,617 7.6882E-03

Table 4. Numerical error and computational order with α = 0.55 and h = 1/22.

Test problem τ Emax Computational order
1 1/10 9.9154E-04 0.9835

1/20 5.0149E-04
2 1/10 1.1829E-02 0.9658

1/20 6.0570E-03

6. Conclusions

In this paper, a new MHEG iterative method for solving the two-dimensional diffusion equation
with time fractional derivative has been developed. The unique solvability, unconditional stability
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and convergence are proved by the matrix analysis method. Moreover, the feasibility and efficiency
of the proposed numerical method are confirmed through the computational outputs drawn from the
conducted numerical simulations. The advantages of being uncomplicated, easy to implement and
diminishing the amount of computational complexity indicate that the proposed method and numerical
analysis in this article can be extended to solve other types of non-linear and variable order fractional
differential equations. In addition, the parallel implementation of the proposed MHEG method is an
interesting line to study which can be considered as a part of future work.
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