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Abstract: The aim of the paper is to study the impact of anti-predator behavior caused by dread
of predator species in a prey predator system with Holling III type functional response and prey
shelters. Firstly, we analyze the dynamic behavior of the system, including the stability of the
system and demonstrating the occurrence of Hopf bifurcation around the positive equilibrium point
and the existence of limit cycle emerging through Hopf bifurcation. Secondly, through the study of
the effect of fear and refuge, we discover that the increase of fear level can improve the stability of
the system by eliminating periodic solutions and decrease the populations of predator species at the
coexist equilibrium, but not cause the extinction of the predators, and prey refuge also plays very vital
role in the persistence of the predators. Finally, the rationality of the results is verified by numerical
simulation.
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1. Introduction

The research of the dynamic relationship between prey and predator has been and will continue to
be a hot topic for a long time because of its extensive existence and importance (see [1–9] and the
references cited therein). There are a lot of outstanding works about the famous Lotka-Volterra type
prey-predator system after it was brought up by Lotka and Volterra [10, 11]. In 1959, a Canadian
scholar named Holling [12] proposed the corresponding functional response function for different
types of species to depict the predation rate of predator population to prey population according to his
experimental results, which include three main types Holling type I, II and III, among them, Holling
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type III functional response function, i.e.,
αx2

β2 + x2 is applicable to cattle, sheep and other vertebrates.

From then on, the research on functional response of Holling type III has gradually become another
important direction in the study of predator-prey dynamics (see [13–21] ). In the real world, many prey
species use shelters to protect themselves from being captured by predators. In order to investigate
the impact of refuge on population interaction, it is necessary to establish a mathematical model of
predator-prey including refuge. Many scholars have made achievements in this field [22–32]. Yunjin
Huang et al. [25] proposed and investigated a prey-predator system incorporating Holling type III
response function and a prey refuge, given by Eq (1.1)

dx
dt

= ax − bx2 −
α(1 − m)2x2y
β2 + (1 − m)2x2 ,

dy
dt

= −cy +
kα(1 − m)2x2y
β2 + (1 − m)2x2 ,

(1.1)

where the meaning of all parameters of system (1.1) is shown in Table 1. The authors of this paper
obtain the following conclusions: There is only one limit cycle in the system when the positive
equilibrium is unstable; when the positive equilibrium is locally asymptotically stable, it is also
globally asymptotically stable; Sufficient shelters can improve the stability of the system by eliminating
periodic solutions, while less shelters will not change the dynamic stability of the system.

Table 1. Meaning of parameters in system (1.1).

Parameter Meaning

x The prey species density at time t
y The predator species density at time t
a > 0 Intrinsic increase rate of prey
a
b
> 0 The environmental capacity of the prey

c > 0 The mortality of predator
k > 0 The conversion efficiency of ingested prey into new predators
αx2

β2 + x2 , α > 0, β > 0 Holling type III response function

(1 − m)x, m ∈ [0, 1) The amount of the prey available to the predator

However, in nature, fear of predators has a variety of effects on animals, including habitat use,
foraging behavior, reproduction and physiological changes. There are more and more works about
the predator-prey system including fear effect in recent years, see [33–39]. Zanette et al. [40] used the
playback of predator calls to control fear factors in the study of the effect of fear on free-living songbird
population, and eliminated the effect of direct predation on the experiment by isolation. The research
indicated that the number of offspring of sparrows would be reduced by 40% due to the fear of predators
alone, and the predation risk itself was enough to affect the changes of wild animal population. In order
to establish a model to simulate the impact of fear on species reduction, we use a function F(n, y) to
express the fear factor which is used to measure the consumption of anti-predator defense owing to
the fear on the system. From the biological viewpoint and experimental results, the fear factor F(n, y)

should meet [33, 41] F(0, y) = 1, F(n, 0) = 1, lim
n→+∞

F(n, y) = 0, lim
y→+∞

F(n, y) = 0,
∂F(n, y)
∂n

< 0 and
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∂F(n, y)
∂y

< 0. Wang et al. [42] introduced a simple function F(n, y) =
1

1 + ny
as the fear factor. Here,

n > 0 indicates the level of fear and y is the predator population density at time t.
Up to now, no one has studied a Holling type III prey-predator system with fear effect and a prey

refuge. Inspired by the above articles, we extend model (1.1) by incorporating the fear factor F(n, y) =
1

1 + ny
to the intrinsic growth by multiplication. Accordingly, the system (1.1) becomes


dx
dt

=
ax

1 + ny
− bx2 −

α(1 − m)2x2y
β2 + (1 − m)2x2 ,

dy
dt

= −cy +
kα(1 − m)2x2y
β2 + (1 − m)2x2 .

(1.2)

The meaning of the parameters of system (1.2) is consistent with system (1.1), what’s more,
n > 0 denotes the level of fear. We can find corresponding models in the real world, such as snow
leopard which is predator species and Tibetan antelope which is prey species and has been protected
in protected areas. This model has a strong biological background and significance.

The rest of this paper consists of the following sections: In Section 2, we provide a qualitative
analysis of the system. In Section 3, we analyze bifurcation of the system and demonstrate the
occurrence of limit cycle. In Section 4, we consider the influence of fear effect and the refuge on
the system. In Section 5, numerical simulation is done to verify the rationality of the conclusion. In
Section 6, we finish this paper with a short discussion.

2. Qualitative analysis

For the convenience of research, we first take the following variable substitution for system (1.2)

x =

√
c

kα − c
βu, y =

β

α

√
c(kα − c)v, dt =

c(1 − m)2u2 + kα − c
c(kα − c)

dτ,

then, system (1.2) is simplified as
du
dτ

= u
(B2u2 + B0

1 + nB4v
− B3u3 − B1u

)
− (1 − m)2u2v,

dv
dτ

= −v + (1 − m)2u2v.

(2.1)

where

B0 =
a
c
, B1 =

bβ
c

√
c

kα − c
, B2 =

(1 − m)2a
kα − c

,

B3 =
(1 − m)2bβ

kα − c

√
c

kα − c
, B4 =

β
√

c(kα − c)
α

.

Taking the existence of the equilibria and practicability of system (1.2) into account, we suppose c <
kα < 2c throughout this article. Hence, B0, B1, B2, B3 and B4 are all positive constants.

Firstly, we provide all possible equilibria of system (2.1).
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(i) The extinction equilibrium E0(0, 0) always exists.
(ii) There is only one semi-trivial equilibrium E1(u0, 0).

We know u0 is the positive real root of the following cubic equation of one variable

−B3u3 + B2u2 − B1u + B0 = 0.

After verification, the equation has only one positive real root u0 =
B2

B3
. The other two roots are

u = ±
1

1 − m

√
kα − c

c
i.

(iii) There is only one coexistent (positive) equilibrium E∗ = (u∗, v∗), where u∗ =
1

1 − m
, v∗ is the

positive real root of the following equation

B2(u∗)2 + B0

1 + nB4v
− B3(u∗)3 − B1u∗ − (1 − m)2u∗v = 0,

which is equivalent to the following quadratic equation of one variable

nv2 +
1

√
c(kα − c)

(α
β

+
kbαβn

(kα − c)(1 − m)2

)
v +

kα2

c
3
2 (kα − c)

3
2

( b
(1 − m)2

√
c

kα − c
−

a
β(1 − m)

)
= 0.

When
kα2

c
3
2 (kα − c)

3
2

( b
(1 − m)2

√
c

kα − c
−

a
β(1 − m)

)
< 0 namely 0 ≤ m < m1, where

m1 = 1 −
bβ
a

√
c

kα − c
. (2.2)

The equation has unique positive real root

v∗ =
− 1
√

c(kα−c)

(
α
β

+
kbαβn

(kα−c)(1−m)2

)
+
√

∆

2n
, (2.3)

where

∆ =
1

c(kα − c)

(α
β
−

kbαβn
(kα − c)(1 − m)2

)2
+

4kaα2n

βc
3
2 (kα − c)

3
2 (1 − m)

.

Secondly, the dynamic behavior of the equilibria E0, E1 and E∗ is discussed.

Theorem 2.1. E0(0, 0) is a saddle point.

Proof. The Jacobian matrix of system (2.1) at E0 is

J(E0) =

(
B0 0
0 −1

)
,

its eigenvalues are λ1 = B0 > 0 and λ2 = −1 < 0, so the extinction equilibrium E0(0, 0) is a saddle point.
The proof is complete. �
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Theorem 2.2. E1(u0, 0) is locally asymptotically stable for m > m1, and E1 is unstable (saddle) for
0 ≤ m < m1.

Proof. The Jacobian matrix of system (2.1) at E1 is

J(E1) =


−

B2
2

B2
3

− B0
nB4(B4

2 + B0B2B2
3)

B2
3

− (1 − m)2 B2
2

B2
3

0 −1 + (1 − m)2 B2
2

B2
3

 .

its eigenvalues are λ1 = −
B3

2

B2
3

− B0 < 0 and λ2 = −1 + (1 − m)2 B2
2

B2
3

. Hence E1 is locally asymptotically

stable if −1 + (1 − m)2 B2
2

B2
3

< 0, that is m > m1, and E1 is unstable (saddle) if 0 ≤ m < m1. �

Remark 2.1. From Theorem 2.2, where the shelter rate m takes m1 as the threshold, we can observe
that when the shelter rate exceeds m1, the boundary equilibrium point E1 is locally gradually stable,
otherwise the boundary equilibrium point E1 is unstable. A reasonable biological explanation is that:
(1) A higher prey refuge rate m is obviously beneficial to prey species, and the natural high prey refuge
rate m value always helps prey species obtain their biomass; (2) The high prey refuge rate leads to the
excessive lack of food source of predator population, which leads to extinction.

Theorem 2.3. E∗(u∗, v∗) is locally asymptotically stable if m2 ≤ m < m1 or 0 ≤ m < m2 and n > n1

hold, where

m2 = 1 −
2bcβ

a(2c − kα)

√
c

kα − c
, (2.4)

n1 =
(1 − m)2(kα − c)(2c − kα)((1 − m)a(2c − kα)

√
c(kα − c) − 2bc2β)

2kb2c2αβ3 , (2.5)

and E∗ is unstable if 0 ≤ m < m2 and 0 < n < n1 hold.

Proof. The Jacobian matrix of system (2.1) at E∗ is

J(E∗) =

(
A11 A12

A21 0

)
,

where

A11 =
B2(u∗)2 − B0 − 2B3(u∗)3 − 2nB3B4(u∗)3v∗

1 + nB4v∗

A12 =
−kaβn

(1 − m)
√

c(kα − c)(1 + nB4v∗)2
− 1 < 0

A21 = 2v∗ > 0

The secular equation of matrix J(E∗) is λ2 − A11λ − A12A21 = 0, and the two eigenvalues meet λ1λ2 =

det(J(E∗)) = −A12A21 > 0, λ1 + λ2 = tr(J(E∗)) = A11, then the two eigenvalues are of the same sign,
thus E∗ is stable when A11 < 0, and unstable when A11 > 0.
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By calculation, A11 < 0 is equivalent to

v∗ >
aα(2c − kα)

2bc2β2n
(m2 − m). (2.6)

If m2 ≤ m < m1 holds, the inequality (2.6) clearly holds because the left of the formula is positive sign.
When 0 ≤ m < m2 holds, by substituting v∗ into inequality, after calculation, it needs to satisfy n > n1.
Hence, E∗ is locally asymptotically stable for m2 ≤ m < m1 or 0 ≤ m < m2 and n > n1, and E∗ is
unstable for 0 ≤ m < m2 and 0 < n < n1. �

Remark 2.2. From Theorem 2.3, when the shelter rate m is in the interval [m2, m1), the coexistence
equilibrium point is locally asymptotically stable, which means that the appropriate shelter rate makes
the system reach a stable state. At this time, the fear factor has no effect on the stability of the system;
However, when the shelter rate is relatively small, that is, when the shelter rate is less than m2, the
stability of the system will be affected by the fear of prey population to predator. Here, we observe that
when the fear caused by predator is at low level, the system shows unstable system dynamics. When the
fear caused by predator is at high level, it shows a stable state. A reasonable biological explanation
for this phenomenon is that when prey species are very afraid of predators, they will reduce foraging
activities and adapt to different defense mechanisms to avoid predation. Fear factors greatly help
predator species increase their biomass, so in the long run, it also helps the persistence of predator
species and improves the stability of the whole system.

Next, the sufficient condition of global stability for the coexistent equilibrium E∗(u∗, v∗) is obtained.

Theorem 2.4. E∗ is globally asymptotically stable if a > c and max{m2, m∗} ≤ m < m1 hold, where

m∗ = 1 −
3
√

3bβ
a + c − kα

√
a − c

a + c − kα
. (2.7)

Proof. From Theorem 2.3, we know for m2 ≤ m < m1, E∗ is locally asymptotically stable. Let

P(u, v) = u
(B2u2 + B0

1 + nB4v
− B3u3 − B1u

)
− (1 − m)2u2v, Q(u, v) = −v + (1 − m)2u2v.

and construct a Dulac function as:

B(u, v) = (1 + nB4v)u−2v−2,

then
∂(PB)
∂u

+
∂(QB)
∂v

= u−2v−2[−2B3u3 + (B2 − (1 − m)2)u2 − B0 + 1 − 2B3B4nu3v].

Set g(u) = −2B3u3 + (B2 − (1 − m)2)u2 − B0 + 1, and

g′(u) = −6B3u
(
u −

B2 − (1 − m)2

3B3

)
= 0
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then we get u = 0 or u =
B2 − (1 − m)2

3B3
. If a > c, and c < kα < 2c, then a+c > kα, i.e.

B2 − (1 − m)2

3B3
>

0.
So

gmax = g(
B2 − (1 − m)2

3B3
) =

(B2 − (1 − m)2)3 − 27(B3)2(B0 − 1)
27(B3)2 for u > 0.

When gmax < 0, i.e. m > 1 −
3
√

3bβ
(a + c − kα)

√
a − c

a + c − kα
= m∗, we get

∂(PB)
∂u

+
∂(QB)
∂v

< 0 for u > 0, v > 0.

By the Dulac Theorem in reference [43], there is no limit cycle in the positive region of u-v plane.
Thus, E∗ is globally asymptotically stable if a > c and max{m2,m∗} ≤ m < m1 hold. �

We use a table to show the existence and stability of all equilibria of system (2.1), as shown in
Table 2.

Table 2. Stationary states and their stability in system (2.1).

Equilibrium Existence Type

E0(0, 0) Always exists Saddle point.
E1(u1, 0) Always exists 0 ≤ m < m1, Saddle point;

m1 < m < 1, Stable.
E∗(u∗, v∗) 0 ≤ m < m1 m2 ≤ m < m1, Stable;

0 ≤ m < m2 and n > n1, Stable;
0 ≤ m < m2 and 0 < n < n1, Unstable;
max{m2,m∗} ≤ m < m1 and a > c,
Globally asymptotically stable.

3. Bifurcation analysis

In this part, we analyze bifurcation of the system and demonstrate the occurrence of limit cycle.

Theorem 3.1. Suppose 0 ≤ m < m2, then system (2.1) goes through a Hopf bifurcation around E∗ at
n = n1.

Proof. The secular equation of matrix J(E∗) is λ2 − tr(J(E∗))λ + det(J(E∗)) = 0, and det(J(E∗)) =

−A12A21 > 0, tr(J(E∗)) = A11, then

det(J(E∗))|n=n1 =
( kaβn1

(1 − m)
√

c(kα − c)(1 + n1B4(v∗)|n=n1)2
+ 1

)
2(v∗)|n=n1 > 0.

Obviously,
tr(J(E∗))|n=n1 = A11|n=n1 = 0,

d
dn

[tr(J(E∗))]|n=n1 =
d

dn
(A11)|n=n1 =

−B4(v∗)|n=n1(B2(u∗)2 − B0)
(1 + n1B4(v∗)|n=n1)2

=
−B4(v∗)|n=n1(2c − kα)a

(1 + n1B4(v∗)|n=n1)2(kα − c)c
, 0.

Hence, system (2.1) goes through a Hopf bifurcation around E∗ at n = n1. �
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Theorem 3.2. Suppose 0 ≤ m < m2 and 0 < n < n1, system (2.1) has one limit cycle.

Proof. From Theorem 2.2 and Theorem 2.3, E∗ is a unstable point and E0, E1 are saddle points, when
0 ≤ m < m2 and 0 < n < n1 hold. Suppose that

L1 = u − uB = 0,
L2 = v − vD = 0,
L3 = v − vE + u − uB = 0,

where uB, vD, vE satisfy uB > u0 > u∗, max
u∗<u<uB

{u(−B3u3 + B2u2 − B1u + B0 + 1), v∗} < vE < vD, and

D(u∗, vD), E(uB, vE) are shown in Figure 1.

Figure 1. The region with limit cycle.

Therefore

dL1

dt

∣∣∣∣
L1=0

=
du
dt

∣∣∣∣
u=uB

=
[
u
(B2u2 + B0

1 + nB4v
− B3u3 − B1u

)
− (1 − m)2u2v

]∣∣∣∣
u=uB

≤ [u(−B3u3 + B2u2 − B1u + B0) − (1 − m)2u2v]|u=uB

=
[
− B3u(u − u0)

(
u −

1
1 − m

√
kα − c

c
i
)
·

(
u +

1
1 − m

√
kα − c

c
i
)
− (1 − m)2u2v

]∣∣∣∣
u=uB

≤ 0, for v > 0.
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dL2

dt

∣∣∣∣
L2=0

=
dv
dt

∣∣∣∣
v=vD

=
[
(1 − m)2v

(
u2 −

1
(1 − m)2

)]∣∣∣∣
v=vD

≤ 0, for 0 < u < u∗ =
1

1 − m
.

dL3

dt

∣∣∣∣
L3=0

=
[du

dt
+

dv
dt

]∣∣∣∣
u+v=uB+vE

= [−(u + v) + u(−B3u3 + B2u2 − B1u + B0 + 1)]|u+v=uB+vE

= −(uB + vE) + u(−B3u3 + B2u2 − B1u + B0 + 1)
= −uB − (vE − u(−B3u3 + B2u2 − B1u + B0 + 1))
≤ 0, for u∗ < u < uB.

By the Poincaré-Bendixson theorem [44], system (2.1) has one limit cycle in the domain I as shown in
Figure 1. The proof is complete.

From Theorem 3.2, we know that system (2.1) has one limit cycle in the first quadrant, and from
numerical simulation results it is possible to observe that there is a unique limit cycle. �

4. The influence of fear effect

In this part, we will study the impact of fear effect on the system.
• The influence of the fear factor on the stability of system (2.1)

From Theorem 2.3 and Theorem 2.4, the coexistent equilibrium E∗(u∗, v∗) is locally asymptotically
stable if m2 ≤ m < m1. In such instance, regardless of the level of fear, the stability of the system will
not be affected. If 0 ≤ m < m2 , as the level of fear increases, E∗(u∗, v∗) changes from unstable state
to stable one, and n = n1 is the critical value. At this time, the fear factor can stabilize the system by
eliminating periodic solutions. The domains of the stability of E∗ are shown in Figure 2.

Figure 2. The domains of the stability of E∗.

• The influence of fear factor on predators
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Because the final prey population has nothing to do with fear level n, we just talk about the
influence of fear factor on predator species. By the calculation, it’s easy to draw a conclusion that the
predator population v∗ decreases with the increase of fear level n, since v∗ is a continuous function of
n. Finding the derivative of n on both sides of the following formula:

B2(u∗)2 + B0

1 + nB4v∗
− B3(u∗)3 − B1u∗ − (1 − m)2u∗v∗ = 0,

we get

dv∗

dn
=

−(B2(u∗)2 + B0)B4v∗

(B2(u∗)2 + B0)B4v∗n + (1 − m)2u∗(1 + nB4v∗)2 < 0.

• The comprehensive influence of fear factor and prey shelters on predator-prey species
In order to seek out the comprehensive influence of fear factor and prey shelters on predator-prey

species, let’s first consider the influence of prey shelters on preys and predators without fear factor,
i.e., letting n = 0 in system (2.1), we have

u∗ =
1

1 − m
, v∗ =

1
(1 − m)2

kaα
c(kα − c)

(m1 − m),

then u∗ and v∗ are derived from m respectively:

du∗

dm
=

1
(1 − m)2 > 0,

dv∗

dm
=

1
(1 − m)3

kaα
c(kα − c)

(m3 − m),

where

m3 = 1 −
2bβ

a

√
c

kα − c
< m1.

Hence, we know that the increase of m can increase prey population, if 0 ≤ m < m1 holds. For

v∗: if 0 ≤ m < m3 , i.e.
dv∗

dm
> 0, then the increase of m can increase predator population, while if

m3 < m < m1, i.e.
dv∗

dm
< 0, then the increase of m can decrease predator population; When m = m3,

the predator population v∗ achieves the maximum value, and when m = m1 i.e. v∗ = 0, the predators
dies out.

Next we will study the influence of prey shelters with fear factor on predator-prey species. i.e.
n > 0.

From (2.3), the derivatives along u∗ and v∗ with respect to m are

du∗

dm
=

1
(1 − m)2 > 0,

dv∗

dm
=

kaα2

cβ (m3 − m) − kbαβ
[
− 1
√

c(kα−c)

(
α
β

+
kbαβn

(kα−c)(1−m)2

)
+
√

∆
]

√
∆c

1
2 (kα − c)

3
2 (1 − m)3

.

When 0 ≤ m < m1, u∗ is strictly monotone increasing with respect to m, which completely coincides
with the system without fear effect.
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On the other hand, by the calculation,
dv∗

dm
< 0 is equivalent to

kaα2

cβ
(m3 − m) < kbαβ

[
−

1
√

c(kα − c)
(
α

β
+

kbαβn
(kα − c)(1 − m)2 ) +

√
∆
]
.

When m3 < m < m1 the inequality above clearly holds since the right side of the formula is positive
sign. When 0 ≤ m < m3 holds, by an equivalent deformation, it needs to meet

n >
a(kα − c)

3
2 (1 − m)2(m3 − m)

2kb2c
1
2β3

= f (m).

When n = f (m) holds,
dv∗

dm
= 0. Here, the function n = f (m) satisfies

dn
dm

=
−3a(kα − c)

3
2 (1 − m)(m3 − m + 1

3 )

2kb2c
1
2β3

< 0 for 0 ≤ m < m3.

and we set n2 = f (0) =
a(kα − c)

3
2 m3

2kb2c
1
2β3

.

Hence, as shown in Figure 3, we know that n > n2 and 0 ≤ m < m1 hold, v∗ is strictly monotone
decreasing with regard to m, that means the increase of m can decrease predator population, and
predator population gets its maximum value at m = 0, i.e. without refuge; When 0 < n < n2 and
0 ≤ m < m1 hold, v∗ is strictly monotone increasing with respect to m in the interval [0, f −1(n)] and
decreasing with respect to m in the interval [ f −1(n),m1], then predator population reaches its maximum
value at m = f −1(n), which is influenced by fear effect and different from the situation without fear
factor; When m = m1, i.e. v∗ = 0, the predator species dies out, which is similar to the situation without
fear factor.

Figure 3. The positive and negative regions of
dv∗

dm
.
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5. Numerical results

In this part, the numerical simulations are done to further verify the validity of the above
conclusions. Let’s set the following parameters as:

a = 10, b = 1, c = 0.6, k = 1, α = 1, β = 1.

Under these set of parameters, we get:

m1 = 0.8775, m2 = 0.2652, m∗ = 0.7550, m3 = 0.4644.

The simulation results are shown as follow:
In Figure 4: m = 0.1, n = 0.01. By a calculation, we have n1 = 0.0146. Here 0 ≤ m < m2, 0 <

n < n1, the system (2.1) has two saddle points: a extinction equilibrium E0 = (0, 0), and a boundary
equilibrium point E1 = (8.1650, 0); the only unstable coexist equilibrium point E∗ = (1.1111, 33.4783).
There is a limit cycle in the system, we can clearly observe that the trajectories of an initial value inside
and outside the limit cycle approach the limit cycle.

In Figure 5: m = 0.1, n = 1, then 0 ≤ m < m2, n > n1. The system (2.1) also has two saddle points:
E0 = (0, 0), E1 = (8.1650, 0); and a unique coexist equilibrium point E∗ = (1.1111, 5.7810), which is a
locally asymptotically stable spiral source point. Compared with Figure 4, we know that increase the
fear level will decrease the final number of predators v∗, and change E∗ from unstable point to stable
one. At this time, the fear factor can eliminate the limit cycle oscillation and enhance the stability of
the system.

In Figure 6: m = 0.1, then n1 = 0.0146. The system (2.1) goes through a Hopf bifurcation around
E∗ at n = 0.0146.

In Figure 7: m = 0.5, n = 1, then m2 ≤ m < m1. The system (2.1) also has two saddle points: E0 =

(0, 0), E1 = (8.1650, 0); the only local asymptotical stable coexist equilibrium point E∗ = (2, 4.7256).
Compared with Figures 4 and 5, increase the fear effect can decrease the final number of predators v∗,
but not alter the stability of E∗.

In Figure 8: m = 0.8, n = 1, then a > c and max{m2,m∗} ≤ m < m1. The system (2.1) has two
saddle points: E0 = (0, 0), E1 = (8.1650, 0); and a unique coexist equilibrium point E∗ = (5, 1.2595),
which is a globally asymptotically stable point. Compared with Figures 4, 5 and 7, we know that
increase refuge can increase the number of preys u∗.

In Figure 9: m = 0.8, n = 10, then a > c and max{m2,m∗} ≤ m < m1. The system (2.1) also has two
saddle points: E0 = (0, 0), E1 = (8.1650, 0); and a unique coexist equilibrium point E∗ = (5, 0.12887),
which is also a globally asymptotically stable point. Compared with Figure 8, the v∗ is further reduced
to near zero by the increase of fear factor n, but v∗ is always greater than zero. In such instance, the
fear effect does not cause the extinction of the predator population.

In Figure 10: m = 0.9, n = 1, then m > m1. The system (2.1) has one extinction equilibrium
E0 = (0, 0), which is a saddle point, and one boundary equilibrium point E1 = (8.1650, 0), which is
locally asymptotically stable, and no coexist equilibrium point. In such instance, there are enough prey
refuges to cause the extinction of the predator population.

In Figure 11: m = 0, n = 1, then 0 ≤ m < m2, n > n1. At this time, the system (2.1) has no refuge.
Similar to Figure 7, the system also has two saddle points: E0 = (0, 0), E1 = (8.1650, 0); and only one
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coexist equilibrium point E∗ = (1, 5.7764), which is a locally asymptotically stable point. Obviously,
in the system (2.1) let m = 0 we can get a new system that only contains fear factor and no prey shelter,
and the dynamic properties of the new system can be easily obtained from the dynamic properties of
system (2.1).

In Figure 12: m = 0, n = 0. At this time, the system (2.1) becomes a system that has neither a refuge
for the prey population nor a fear effect, which is the same as the system in [45]. Similar to Figure 4
the system has two saddle points: a extinction equilibrium E0 = (0, 0), and a boundary equilibrium
point E1 = (8.1650, 0); the only unstable coexist equilibrium point E∗ = (1, 36.5636) and there is a
limit cycle in the system.

In Figure 13: m = 0.9, n = 0. At this time, the system (2.1) becomes a system without fear effect
which is the same as the system in [25]. Similar to Figure 10, the system only has one extinction
equilibrium E0 = (0, 0), which is a saddle point, and one boundary equilibrium point E1 = (8.1650, 0),
which is locally asymptotically stable. and no coexist equilibrium point. Compared with Figure 10,
we know that the extinction of predator species has nothing to do with fear effect.

(a) (b)

Figure 4. (a) The trajectory diagram of system (1.1) for m = 0.1, n = 0.01; (b) Solution
curves for m = 0.1, n = 0.01.

(a) (b)

Figure 5. (a) The trajectory diagram of system (1.1) for m = 0.1, n = 1; (b) Solution curves
for m = 0.1, n = 1.
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(a) (b)

Figure 6. Bifurcation diagrams with parameter n for m = 0.1. (a) The variation of u with n;
(b) The variation of v with n.

(a) (b)

Figure 7. (a) The trajectory diagram of system (1.1) for m = 0.5, n = 1; (b) Solution curves
for m = 0.5, n = 1.

(a) (b)

Figure 8. (a) The trajectory diagram of system (1.1) for m = 0.8, n = 1; (b) Solution curves
for m = 0.8, n = 1.
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(a) (b)

Figure 9. (a) The trajectory diagram of system (1.1) for m = 0.8, n = 10; (b) Solution curves
for m = 0.8, n = 10.

(a) (b)

Figure 10. (a) The trajectory diagram of system (1.1) for m = 0.9, n = 1; (b) Solution curves
for m = 0.9, n = 1.

(a) (b)

Figure 11. (a) The trajectory diagram of system (1.1) for m = 0, n = 1; (b) Solution curves
for m = 0, n = 1.
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(a) (b)

Figure 12. (a) The trajectory diagram of system (1.1) for m = 0, n = 0; (b) Solution curves
for m = 0, n = 0.

(a) (b)

Figure 13. (a) The trajectory diagram of system (1.1) for m = 0.9, n = 1; (b) Solution curves
for m = 0.9, n = 1.

6. Conclusions

In this paper, the influence of anti-predator behavior caused by fear of predators in a prey-predator
system with Holling type III response function and prey refuge is considered. We analyze the dynamic
behavior of the system mathematically, including the stability of the system and the occurrence of Hopf
bifurcation around the positive equilibrium point and the existence of limit cycle emerging through
Hopf bifurcation. We discover that the fear effect can stabilize the system by eliminating periodic
solutions and decrease the final number of predator species at the coexist equilibrium, but not cause
the extinction of predators, which is different from the system without fear factor. We also discover
that prey shelters has vital role on the permanence of the predators. When n > n2 and 0 ≤ m < m1

hold, the increase of the quantity of shelters can decrease predator population, and the final number
of predator species reaches its maximum value without prey refuge namely m = 0; when 0 < n < n2

and 0 ≤ m < m1 hold, v∗ increases monotonically at first and then decreases monotonically in the
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interval [0, m1) with respect to m, then predator species reaches its maximum value at m = f −1(n),
which is influenced by fear effect and different from the situation without fear effect; when m = m1

the predator species dies out, which is similar to the situation without fear effect. The system in this
paper has complex dynamic behavior, which enrich the dynamic behavior of predator-prey system.
From the real world, we can protect endangered animals and achieve ecosystem balance by setting up
appropriate reserves.
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