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Abstract: The rapid development of fintech has caused a great impact on traditional financial 

industries. It improves the quality of financial services but also buries potential risks at the same time. 

This paper takes China's FinTech and traditional financial industry as the research objects based on 

the daily yield data from 2019 to 2022. First, we measure the systemic risk index ΔCoVaR 

(Conditional Value at Risk) of the FinTech industry and traditional financial industries after 

effectively fitting the marginal distribution of industry return data. Second, we decompose the 

systemic risk sequences of FinTech and traditional financial industries to obtain the data at different 

frequencies with the combination of the frequency decomposition method. Finally, we use the 

quantile-on-quantile regression model to analyze the risk spillover effect of the FinTech industry 

driving traditional financial industries in different frequencies under different risk states. The article 

draws the following conclusion: first, in general, the peak of the positive risk spillover impact of 

FinTech on the traditional industries is mainly concentrated in the high quantile of FinTech, while the 

peak of the negative impact is mainly concentrated in the low quantile of FinTech. Second, the risk 

spillover impact direction of FinTech on the five traditional financial industries mainly changes from 

negative to positive under high trading frequency and low trading frequency, and takes a U-shape in 

medium trading frequency. 
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1. Introduction 

Finance has been accompanied by risks since its birth. Unsystematic risk can be prevented and 

resolved by means of diversified investment, but the systemic risk is the eternal theme of financial 

study [1]. In recent years, FinTech has been regarded as one of the most important innovations in 

finance, and it is expected to reshape the industry by cutting costs, improving the quality of financial 

services, and creating a more diverse and stable financial landscape [2,3]. Technological 

developments in infrastructure, big data, data analysis, and mobile devices enable FinTech firms to 

get rid of the intermediary role of traditional financial institutions through unique and personalized 

services [4,5]. However, on the dark side, FinTech has the potential to amplify the contagion, 

pro-cyclicality and volatility of markets, which would destabilize the financial system [6]. The 14th 

“Five-Year Plan” voted by the Fourth Session of the 13th National People's Congress emphasized, 

“We must develop financial technology steadily... strengthen financial innovation risk assessment”. 

In reality, different traditional industries possess different characteristics and have different links with 

FinTech, so it is necessary to study the asymmetric risk spillover impact that FinTech drives on 

traditional finance. 

The rapid development of FinTech has caused a great impact on traditional financial businesses, 

such as the terminology conversion, credit conversion, income conversion and risk conversion [7,8]. 

The literature summarizes three reasons why FinTech and traditional financial institutions are 

intrinsically related: first, the two compete in similar market segments [9]; second, the two cooperate 

closely [10]; Third, the investment of traditional financial institutions in FinTech companies is 

increasing [4,11]. For banks, Cheng & Qu [12] believe that the external influence of FinTech mainly 

affects commercial banks through the competitive effect and technology spillover effect. Almost 

every component of the banking value chain is sensitive to information and time, benefiting from the 

innovative use of digital technology [13]. For the security industry, online stock trading reduces 

operating costs to the maximum extent by processing each stock transaction online, and provides 

differentiated services at the lowest feasible transaction cost to achieve competitive advantage [14] 

For the insurance industry, FinTech is committed to establishing more direct relationships between 

insurance companies and customers, using data analysis to calculate and match risks, and simplifying 

the medical insurance billing process [4]. On the other hand, the multiple interconnections between 

FinTech and traditional financial institutions makes the inherent risks of FinTech institutions 

possibly spread to traditional financial institutions, thus resulting in systemic risks. Li, Li, Zhu, 

Yao, & Casu [15] found that the tail risk spillover between FinTech and traditional financial 

institutions is indeed different. 

A large number of scholars have studied the risks of the FinTech industry. Pi, Hu, Lu, & 

Chen [16] believe that the integration of finance and technology has greatly rebuilt the risk 

characteristics of the financial system itself. Based on the existing research and the reality of the 

FinTech development, it is possible for FinTech to trigger traditional financial risks such as credit 

risk, liquidity risk and operational risk [17,18], as well as risks containing non-financial factors such 

as basic information technology and technical ethics due to its own characteristics [19]. The impact 

of digital technology is particularly obvious. Once there are technical loopholes, it may lead to 

information technology risks such as data theft, privacy infringement, website attacks, and bring 

serious economic loss to customers and enterprises [20,21]. Wei, Deng, Huang, Han, & Jing [22] 

specially studied the risk factors of FinTech, among which the 12 most important factors are 
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information system security risk, product risk, investment risk, business risk, legal risk, compliance 

risk, transaction payment security risk, infringement risk, economic and market status risk, capital 

risk, acquisition risk and tax risk. In terms of risk control, Fuster, Plosser, Schnabl, & Vickey [23] 

propose that FinTech innovation can use advanced technologies including biometrics and voice 

recognition to reduce labor, capital and time costs, thus reducing internal fraud risk and systemic risk. 

Brown & Piroska [24] suggest that instead of containing fintech, the sandbox is designed in a way 

that advances risk washing of fintech even if it is disguised as risk taming. 

From the perspective of risk measurement methods, the previous literature can be roughly 

divided into two categories. The first type is text analysis. For example, the LDA topic model is 

used to identify risk factors faced by FinTech companies from text [22]. The second type is to 

calculate the tail risk, such as obtaining the expected value at risk (EVAR) by calculating the tail 

risk of the FinTech stock index using the expectation regression model containing lagging returns 

and macroeconomic risk factors [25]. For example, the conditional value at risk method is used to 

measure the risk spillover effect between the online lending industry and different types of 

platforms [26,27], and the Conditional Autoregressive Value at Risk model is used to measure 

Bitcoin’s risk [28,29]. 

The aforementioned literature provides a wealth of materials for the research of this paper, and 

also leaves enough room for improvement. First, the systemic risks of FinTech and traditional 

finance are measured. The measurement of systemic risk has been improved in recent papers. In this 

paper, we take the Shanghai Composite index as the systematic index, and measure the asymmetric 

conditional value at risk (CoVaR) under the framework of the DCC-GJR-GARCH model. Based on 

the previous measurement result, we can forwardly calculate the systemic risk of FinTech and the 

traditional financial industry after effectively fitting the marginal distribution of the industry’s return 

rate data, so that we can analyze the evolution of the risk. Second, the systematic risk series are 

divided to obtain ΔCoVaR at different frequencies. Time range is a must consider when we discuss 

the financial industry, for example, the transaction needs to be divided into high-frequency and 

low-frequency categories, and risks need to be divided into short-term and long-term categories. 

Most of the existing literature focuses on a certain period of time, while this paper uses the wavelet 

analysis method to further subdivide the series into five frequencies, and discusses the risk spillover 

from the FinTech industry to the traditional financial industries at different frequencies. Third, the 

heterogeneity of risk spillover from FinTech to traditional finance under different risk states is 

discussed. When the industry itself is at different risk stages, the spillover impact may be different. 

Based on this, this paper uses the quantile-on-quantile regression model to study the heterogeneity of 

impact and verify its asymmetric risk spillover relationship under different risk quantiles of both 

FinTech and traditional financial industries. We finally draw the following conclusions: first, in 

general, the peak of the positive risk spillover impact of FinTech on the traditional industries is 

mainly concentrated in the high quantile of FinTech, while the peak of the negative impact is mainly 

concentrated in the low quantile of FinTech. Second, the risk spillover impact direction of FinTech 

on the five traditional financial industries mainly changes from the negative to the positive under 

high trading frequency and low trading frequency, and takes a U-shape in medium trading frequency. 

The remaining structure of this paper is arranged as follows: the second part is materials and 

methods, which describes the research strategies and methods used in this paper, as well as the 

description of variables and the data trend analysis. The third part is the empirical results, including 

the CoVaR of each industry obtained by the DCC-GJR-GARCH model, and the risk spillover effect 
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that FinTech drives on traditional financial industries under different frequencies and risk conditions. 

The fourth part is the discussion of the empirical results, which further analyzes and compares the 

heterogeneity of the impact intensity and direction change of the risk spillover impact. The fifth part 

is the conclusion of this paper. 

2. Materials and methods 

2.1. Research strategy and methods 

2.1.1. DCC-GJR-GARCH-CoVaR model 

The concept of CoVaR is derived from VaR (Value at Risk), and its economic meaning is the 

total value at risk borne by one institution when another institution takes risks [30]. VaR refers to the 

maximum potential loss faced by an institution within a certain holding period and at a certain 

confidence level. A general function of VaR is: 

𝑝𝑟𝑜𝑏(∆𝑃 > 𝑉𝑎𝑅) = 1 − 𝑇 (1) 

According to the definition, a general function of CoVaR is： 

𝑃𝑟(𝑋𝑖 ≤ 𝐶𝑜𝑉𝑎𝑅𝑞
𝑖𝑗
|𝑋𝑗 = 𝑉𝑎𝑅𝑞

𝑗
) = 𝑞 (2) 

The overall risk taken by industry i in the case of risk in industry j is CoVaRq
ij

. If we want to 

exclude industry i’s own risk and calculate the risk increment brought by industry j, then we can use 

the following index: 

∆𝐶𝑜𝑉𝑎𝑅𝑞
𝑖𝑗
= 𝐶𝑜𝑉𝑎𝑅𝑞

𝑖𝑗
− 𝑉𝑎𝑅𝑞

𝑗
 (3) 

The DCC-GARCH model is mainly used to describe the dynamic change relationship and mutual 

influence between different variables. The core steps are as follows: 1) calculating the single variable 

GARCH model first; 2) calculating the dynamic correlation coefficient parameter ρ between the two 

variables. Therefore, the starting point of DCC-GARCH model is to build GARCH model [31]. 

In this paper, following Singhal & Ghosh [32] and Jiang, Nie, & Monginsidi [33]; ARMA (p, 

q)-DCC-GJR-GARCH model considering the leverage effects in the financial markets are employed. 

We use the ARMA (p, q) form to construct the mean model: 

𝑟𝑡 = 𝑐 +∑𝛼𝑖𝑟𝑡−𝑖

𝑝

𝑖=1

+∑𝛽𝑖𝜀𝑡−𝑖

𝑞

𝑖=0

 (4) 

𝜀𝑡 = 𝜎𝑡
1/2

𝜈𝑡 (5) 

where rt is the return of an industry, p and q are the lagged order of the elements of AR(p) and 

MA(q) process, εt is the residual term, c is the constant variable, νt is the standardizes residuals 

and σt is the conditional variance term. The conditional variance of GJR model can be described as: 
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𝜎𝑡
2 = 𝜓 + 𝜙𝜀𝑡−1

2 + 𝜂𝜀𝑡−1
2 𝑑𝑡−1 + 𝛾𝜎𝑡−1

2  (6) 

where dt−1  is the dummy variable; when εt−1 < 0, dt−1 = 1, otherwise, dt−1 = 0. If η ≠ 0, 

there exist the leverage effects. 

The basic assumption of the DCC model is that it is the normal distribution N(0, E[rtrt
′|It−1]), 

and the variance matrix is denoted as Ht = DtRtDt ,where the diagonal matrix Dt =

diag[√h1,t, √h2,t] is the time-varying standard deviation matrix, hi,t is conditional covariance (σt
2) 

which can be obtained through GJR-GARCH model in Eq (6). Rt is the conditional correlation 

coefficient matrix of the standardized returns, τt = Dt
−1rt 

𝑅𝑡 = [
1 𝑞12,𝑡

𝑞12,𝑡 1
] (7) 

The matrix Rt can be decomposed as 

𝑅𝑡 = 𝑄𝑡
−1/2

𝑄𝑡𝑄𝑡
1/2

 (8) 

where Qt is the time-varying covariance matrix of standardized returns. 

𝑄𝑡
−1/2

= [
1/√𝑞11,𝑡 0

0 1/√𝑞22,𝑡
] (9) 

and then we can obtain the DCC (1,1) model: 

𝑄𝑡 = 𝑤 + 𝛼𝜏𝑡−1𝜏′𝑡−1 + 𝛽𝑄𝑡−1 (10) 

where w = (1 − α − β)Q̅; Q̅ = E(τtτ′t) is the unconditional variance matrix; and it meets α +

β < 1. 

We can obtain the dynamic conditional correlation coefficient shown as: 

𝜌12𝑡 =
𝑞12,𝑡

√𝑞11,𝑡𝑞22,𝑡
 (11) 

Under the framework of DCC-GJR-GARCH, we have obtained dynamic correlation parameters, 

then the function of ∆CoVaR can be written as: 

∆𝐶𝑜𝑉𝑎𝑅𝑞,𝑡
𝑖𝑗

=
𝜌𝑖𝑗,𝑡𝜎𝑖,𝑡

2

𝜎𝑗,𝑡
2 (𝑉𝑎𝑅𝑞.𝑡

𝑖 − 𝑉𝑎𝑅50%,𝑡
𝑖 ) (12) 

2.1.2. The wavelet analysis method 

Compared with ordinary discrete wavelet transform, the maximum overlap discrete wavelet 

transform (MODWT) has no excessive requirements for data length and higher resolution. Scholars 

often use this method to decompose time series data in empirical research [34,35]. Based on this, this 

paper uses MODWT to decompose the original time series. The following is the process of the 

wavelet decomposition. Firstly, it is assumed that all-time series variables Z(t) in this paper follow a 
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specific structure, as shown in Eq (13): 

𝑍(𝑡) =∑ 𝑠𝑗,𝑘𝜔𝑗,𝑘(𝑡)
𝑘

+∑ 𝑑𝑗,𝑘𝜑𝑗,𝑘(𝑡)
𝑘

+∑ 𝑑𝑗−1,𝑘𝜑𝑗−1,𝑘(𝑡)
𝑘

+. . . +∑ 𝑑1,𝑘𝜑1,𝑘(𝑡)
𝑘

 
(13) 

where j represents the decomposition level, and k represents the translation parameter; ωj,k(t) is the 

father wavelet, which is applied for the trend components in Eq (13); φj,k(t) is the mother wavelet, 

which stands for the degree of deviation from the trend; sj,k represents scaling coefficients; dj,k 

represents detail coefficients. sj,k and dj,k can be further expressed by ωj,k(t) and φj,k(t), as 

shown in Eqs (14) and (15): 

𝑠𝑗,𝑘 = ∫𝜔𝑗,𝑘(𝑡)𝑓(𝑡)𝑑𝑡 (14) 

𝑑𝑗,𝑘 = ∫𝜑𝑗,𝑘(𝑡)𝑓(𝑡)𝑑𝑡 (15) 

where dj,k is the scale deviation from the smooth process; sj,k is the smooth behavior of data j=1…

n that is connected with a location t and scale [2(j-1),2j]. 

Secondly, in this paper, the maximum overlap discrete wavelet transform (MODWT) is used to 

decompose the original time series at multiple scales so that the functional expressions of the father 

wavelet and the mother wavelet can be obtained, as shown in Eqs (16) and (17): 

𝑆𝑗(𝑡) =∑ 𝑠𝑗,𝑘𝜔𝑗,𝑘(𝑡)
𝑘

 (16) 

𝐷𝑗(𝑡) =∑ 𝑑𝑗,𝑘𝜑𝑗,𝑘(𝑡)
𝑘

 (17) 

Finally, the original time series in Eq (13) can be rewritten into the form of Eq (18): 

Z(t) = D1(t)+. . . +Dj(t) + Sj(t) (18) 

where Dj(t) represents the decomposed time series; Sj(t) represents the residual term. 

To sum up, after the wavelet transformation, the research data in this paper can be transformed 

from the original time series to data with different frequencies under five timescales, D1–D5, where 

D1 represents the highest frequency and D5 represents the lowest frequency, and these are helpful for 

a more comprehensive study on the ∆CoVaR under different transaction frequencies. 

2.1.3. The quantile-on-quantile regression method 

Scholars have dug out many methods to investigate spillover effects such as VAR model, 

state-space model, and PTSR model [36–38]. This paper hopes to get more detailed and targeted 

conclusions, so we attempt to progress empirical analysis at different quantile distribution level. 

Compared with the traditional OLS regression method and the quantile regression analysis (QRA) 
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method, the quantile-on-quantile regression (QQR) method can more effectively and 

comprehensively analyze the impact of FinTech on ∆CoVaR of traditional financial industries. 

Although QRA can provide more information about tail dependence, i.e., it can capture the influence 

between return rates and ∆CoVaR  in different degrees and the correlation structure between 

variables, it may ignore that the risk spillover effect of FinTech can affect the interaction of different 

financial industries. The QQR method, however, can comprehensively study the heterogeneous effect 

of the spillover effect under different quantiles on ∆CoVaR in different quantiles, and flexibility is 

the main advantage of the QQR method [39]. Furthermore, the asymmetric effects of ∆CoVaRof 

FinTech at different quantiles on ∆CoVaR of traditional financial industries at different quantiles are 

negligible in this paper. In summary, after referring to the method of Sim & Zhou [40], this paper 

adopts the QQR method to analyze the asymmetric risk spillover effect that FinTech drives on 

traditional financial industries under different quantiles. This model has two key advantages: (a) 

providing more accurate and detailed empirical results; (b) overcoming the shortcomings of the 

conventional linear regression model and the quantile regression analysis and captures more factors 

of uncertainty [41,35]. The following is an introduction to the QQR method. The specific model is 

shown in Eq (19): 

𝑇𝐹𝑛,𝑡 = 𝛽𝜃(𝐹𝑡𝑒𝑡) + 𝜇𝑡
𝜃 (19) 

where, TFi,t represents the ∆CoVaR of traditional financial industries in period t, and n=1,2,3,4,5 

representing bank, multi-finance, security, insurance and real estate; Ftet represents the ∆CoVaR of 

FinTech industry in period t; θ represents the θth quantile; μt
θ  stands for the residual under 

quantile θ; βθ(∙) is an unknown function form lacking prior information. 

In order to calculate the unknown relationship function βθ(∙) between FinTech and traditional 

financial industries in Eq (19), this paper first uses the first-order Taylor expansion to expand the 

regression model, and the specific form is shown in Eq (20): 

𝛽𝜃(𝐹𝑡𝑒𝑡) ≈ 𝛽𝜃(𝐹𝑡𝑒𝜑) + 𝛽𝜃′(𝐹𝑡𝑒𝜑)(𝐹𝑡𝑒𝑡 − 𝐹𝑡𝑒𝜑) (20) 

where βθ(Fteφ) is the value of Fte (∆CoVaR of FinTech) at the quantile φ, and βθ′(Ftet
φ
) is the 

partial derivative of βθ(Ftet
φ
) with respect to Ftet, which can be seen as a marginal benefit. 

Meanwhile, since all variables in Eq (20) are functions of θ and φ, βθ(Fteφ) and βθ′(Fteφ) can 

be regarded as the functions of θ and φ in Eq (20), so that Eq (20) can be simplified as Eq (21): 

𝛽𝜃(𝐹𝑡𝑒𝑡) ≈ 𝛽0(𝜃, 𝜑) + 𝛽1(𝜃, 𝜑)(𝐹𝑡𝑒𝑡 − 𝐹𝑡𝑒𝜑) (21) 

Then, by substituting Eq (21) into Eq (19), Eq (22) can be further obtained: 

𝑇𝐹𝑛,𝑡 ≈ 𝛽0(𝜃, 𝜑) + 𝛽1(𝜃, 𝜑)(𝐹𝑡𝑒𝑡 − 𝐹𝑡𝑒𝜑) + 𝜇𝑡
𝜃 (22) 

where β0(θ, φ) + β1(θ, φ)(Ftet − Fteφ) is the linear part of ∆CoVaR  of traditional financial 

industries of the conditional quantile θ, which can be seen that these parameters change with the 

change of the quantile, effectively reflecting the impact of ∆CoVaR of FinTech at the φth quantile 

on traditional financial industries at the θth quantile. 

Finally, this paper uses the estimators of Ftet and Fteφ to replace the original estimators, and 

uses 𝑏0 and 𝑏1 to replace the estimated coefficients β0 and β1 in the local linear regression. In 
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this way, the original problem can be transformed into a minimization problem. The specific solution 

formula is shown in Eq (23), and the values of β0(θ, φ) and β1(θ, φ) can be finally obtained. Eq (23) 

is as follows:  

min𝑏0, 𝑏1∑ 𝜌𝜃
𝑚

𝑖=1
[TFn,t − 𝑏0 − 𝑏1(𝐹𝑡𝑒̂𝑡 − 𝐹𝑡𝑒̂𝜑)]𝐾(

𝐹𝑚(𝐹𝑡𝑒̂𝑡 − 𝜑)

ℎ
) (23) 

where 𝜌𝜃(𝑢) is a quantile loss function, and 𝜌𝜃(𝑢) = 𝑢(𝜃 − 𝐼(𝑢 < 0); I(∙) is a commonly used 

indicator function; K(∙) represents the kernel function, which is widely used for parameter estimation 

due to its simplicity and effectiveness. Therefore, this paper adopts the Gaussian kernel function to 

weight the adjacent observations of Fteφ. In addition, the weight of the neighborhood observations 

is inversely proportional to the distanced observations in the distribution of 𝐹𝑡𝑒̂𝑡, which can be 

represented by the empirical distribution function of 𝐹𝑚(𝐹𝑡𝑒̂𝑡) in Formula (24): 

𝐹𝑚(𝐹𝑡𝑒̂𝑡) =
1

𝑛
∑ 𝐼(𝐹𝑡𝑒̂𝑘 < 𝐹𝑡𝑒̂𝑡)

𝑚

𝑘=1
 (24) 

It should be noted that the key to kernel function regression is the choice of bandwidth. 

Therefore, by referring to relevant literature, this paper finally decides that the bandwidth parameter 

is 0.05, so as to weight the observation values near the quantile. 

2.2. Variable description and data trend analysis 

In order to study the systematic risk spillover impact of FinTech on the traditional financial 

industries, this paper selects six industries in China, that is, FinTech, Bank, Multi-Finance (MultiFin), 

Security, Insurance and Real Estate as the research objects. The research sample is the daily yield 

data from March 12th of 2018 to June 30th of 2022, of which the FinTech data is from Vanke FinTech 

Index. The index reflects the integrative development of innovative technologies, such as finance and 

Intellectual Technology. The statistical objectives of the index include listed companies specialized in 

technology service, equipment manufacture, etc. in the field of finance. The time period is chosen 

based on the data availability as the FinTech Index was constructed from Marth 12th of 2018. The 

index reflects the integrative development of innovative technologies, such as finance and 

Intellectual Technology. We take the logarithmic of the prices and differentiate it, then multiply it 

by 100 to get the yield. The yield trend of the six industries is shown in Figure 1.  

We can see from Figure 1 that the volatility of returns of all industries is within the (−4, +4) 

range. Among them, the returns of the FinTech industry are concentrated in the (−2, +2) range, and 

that of the traditional financial industries are concentrated in the (−1, +1) range. However, there are 

many extreme values, such as the security industry close to +400% and −400%. Since we need to 

calculate the systemic risk of each industry, we introduce Shanghai Composite Index as the 

systematic index, and then make descriptive statistics on all variables, as shown in Table 1. 
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Figure 1. Daily return trend of six industries. 

Table 1. Summary statistics for the return series. 

 
Shzi FinTech Bank MultiFin Security Insurance Estate 

Mean 0.0008 0.0135 0.0029 −0.0237 0.0038 −0.0116 −0.0130 

Max 2.4122 3.4456 3.7558 4.1185 4.1397 3.8074 3.2069 

Mini −3.4914 −4.3043 −2.9496 −4.5655 −4.5711 −3.3281 −4.2768 

S. D. 0.5112 0.9283 0.5486 0.7740 0.8819 0.7677 0.6935 

Skew −0.6276 −0.1305 0.3008 −0.0283 0.3328 0.3487 −0.1607 

Kurt 7.7333 4.7427 6.8918 7.9561 7.1308 5.0200 6.3249 

J-B 1045***1 135*** 676*** 1071*** 763*** 199*** 486*** 

ADF −32.59*** −32.52*** −32.98*** −30.58*** −32.85*** −33.42*** −31.78*** 

Note: *** represents the significance level of 1%. 

Table 1 gives much information. The mean of all variables is around 0, the standard deviation of 

Shanghai Stock Exchange index is the smallest, and the standard deviation of financial technology is 
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the largest. The results of the Jarque-Bera test show that all variables are far greater than 0, which 

means that they are not normally distributed. Among them, Shanghai Composite Index, FinTech, 

Multi-Finance and Real Estate are left biased, while Bank, Security and Insurance are right biased. 

Moreover, the kurtosis of all variables is greater than 3, showing a sharp kurtosis, which is a typical 

characteristic distribution of financial time series. The ADF test results in the last line confirm that all 

variables are stable. In order to preliminarily observe whether there is a linear correlation between 

the variables for further processing, the correlation test results we obtained are shown in Table 2. 

Table 2. Correlation for the returns. 

 Shzi FinTech Bank MultiFin Security Insurance Estate 

Shzi 1       

-----       

FinTech 0.7928***1 1      

42.0250 -----      

Bank 0.7323*** 0.4262*** 1     

34.7445 15.2219 -----     

MultiFin 0.7833*** 0.7274*** 0.5762*** 1    

40.7176 34.2536 22.7794 -----    

Security 0.8346*** 0.7760*** 0.6320*** 0.8537*** 1   

48.9459 39.7525 26.3494 52.9758 -----   

Insurance 0.7384*** 0.4995*** 0.8127*** 0.5906*** 0.6636*** 1  

35.3756 18.6287 45.0730 23.6503 28.6595 -----  

Estate 0.7446*** 0.5318*** 0.7005*** 0.6479*** 0.6525*** 0.6698*** 1 

36.0379 20.2891 31.7138 27.4850 27.8232 29.1474 ----- 

Note: *** represents the significance level of 1%. 

It can be seen from Table 2 that the returns of all industries have a strong positive correlation 

with Shanghai Composite Index. The correlations between FinTech and traditional financial 

industries are above 0.3, of which the correlation with Security is the highest (0.7760) and the 

correlation with Bank is the lowest (0.4262). To a certain extent, it reflects the close internal 

relationship between FinTech and traditional finance. 

3. Empirical results 

3.1. The overall impact of FinTech on traditional finance 

In this part, we first obtain the ∆CoVaR of each industry according to the model mentioned in 

Section 2.1.1, as shown in Figure 2. 
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Figure 2. ∆CoVaR trend of six industries. 

The maximum of the six industries mainly appeared at the beginning of 2020, while Bank, 

Security and Insurance also reached a peak in the middle of 2020. However, in 2021, the six 

industries entered in a low state. It is reported in “China’s systemic financial risks in the first half 

of 2021” that, at the macro level, the risk of major disasters of China's financial system has 

repeatedly touched the short-term risk warning domain since the impact of the epidemic, but the 

trend value gradually fell in the first quarter of 2021. At the micro level, systemic risks are 

obviously concentrated in the banking industry, which is the financial hub, rising rapidly in the first 

half of 2020 and then declining. The report believes that excessive concentration of risks in 

traditional financial sectors such as banks in the post COVID-19 pandemic era will create certain 

hidden dangers, and the lack of breadth and depth of the capital market has restricted the channels for 

clearing and sharing risks. 

3.2. The heterogeneous impact of FinTech on traditional finance 

3.2.1. The heterogeneous impact of FinTech on Bank 

This section reflects the heterogeneous risk spillover impact of FinTech on Bank with 
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frequencies D1–D5. The specific impact parameter estimation results are shown in Figure 3, where 

(a)–(e) represent D1–D5, respectively. 

 

Figure 3. Estimation of the impact coefficients of FinTech on Bank at different time scales. 

We can summarize the heterogeneous risk spillover impact of FinTech on Bank from Figure 3. 

In most cases, the coefficient is around 0, which indicates that the risk spillover impact is not strong 

in the short term, but when Bank is at low and high quantiles, the impact is quite different. Under D1, 

when Bank is at the low quantile (0–0.2), the impact has a significant intensity change, from −3 (at 

the low quantile) to −1 (at the high quantile). Under D2, when Bank is at the low quantile (0.2–0.4), 

the coefficient starts to increase to about 6 at the 0.8 quantile. Under D3, the positive impact 

intensities of both sides are large, that is, when Bank is at the low quantile (0.2–0.4), the impact 

coefficient is about 2, and when Bank is at the high quantile (0.9–1), the coefficient reaches 4.2. 

Under D4, when the bank is at the low quantile (0–0.1), the impact coefficient gradually changes 

from −6 (at the low quantile) to 0 (at the high quantile). Under D5, when bank is at the low quantile 

(0.3–0.4), the impact coefficient gradually increases from −2 (at the low quantile) to +1.5 (at the high 
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quantile); when Bank is at the high quantile (0.9–1), the coefficient gradually decreases from +1.2 to 

0. 

By comparing the risk spillover impact characteristics of FinTech on Bank in different time 

periods in Figure 3, we have the following findings. First, from the perspective of impact direction, 

in most cases, it has a positive impact close to 0, but there is obvious heterogeneity at both ends of 

Bank. Second, from the perspective of the peak impact intensity, the peak of the positive impact 

intensity is under D2, and the peak of the negative impact intensity is under D4, which indicates that 

FinTech has the largest risk spillover impact on Bank in the medium term. Third, from the 

perspective of the quantile where the peak occurs, the positive peak is most likely to occur at the high 

quantile of Bank, and the negative peak is most likely to occur at the low quantile of Bank. Fourth, 

from the perspective of the change form of the impact direction, the main form is from the negative 

to the positive, and the turning point mainly occurs at the low quantile of Bank. 

3.2.2. The heterogeneous impact of FinTech on MultiFin 

This section reflects the heterogeneous risk spillover impact of FinTech on MultiFin with 

frequencies D1–D5. The specific impact parameter estimation results are shown in Figure 4, where 

(a)–(e) represent D1–D5, respectively. 

We can summarize the heterogeneous risk spillover impact of the FinTech on MultiFin from 

Figure 4. In most cases, the impact is around +1, and when MultiFin is at the low quantile (0–0.2), 

there is no significant impact coefficient, and the difference between the middle and the two ends is 

large. Under D1, when MultiFin is at the middle (0.3–0.5), the impact coefficient changes from −4 at 

the low quantile of FinTech to −2 in the high quantile, while when MultiFin is at the middle quantile 

(0.5–0.6), the impact coefficient reaches the positive peak of 2. Under D2, in most cases, the impact 

is around 0, while when MultiFin is at the middle (0.4–0.6), the coefficient starts to increase to about 

10 at the 0.8 quantile. Under D3, the positive impact intensities of both ends are large, that is, when 

MultiFin is at the low quantile (0.2–0.4), the impact coefficient is about 3, and when MultiFin is at 

the high quantile (0.9–1), the coefficient reaches 4. Under D4, when MulthFin is at the low quantile 

(0.1–0.2), the impact coefficient gradually changes from −2 (at the low quantile) to 0 (at the high 

quantile). Under D5, when MultiFin is at the middle (0.4–0.6), the impact coefficient gradually 

increases from −1 (at the low quantile) to +3 (at the high quantile); When MultiFin is at the middle 

and high quantile (0.6–0.8), the impact coefficient gradually decreases from +1.2 to 0; when 

MultiFin is at the high quantile (0.9–1), the impact coefficient is almost around +1. 

By comparing the risk spillover impact characteristics of FinTech on MultiFin under different 

time periods in Figure 4, we have the following findings. First, from the perspective of impact 

direction, in most cases, it is a positive impact close to +1. Second, from the perspective of the peak 

impact intensity, the peak of the positive impact intensity is under D2, and the peak of the negative 

impact intensity is under D1, which indicates that FinTech has the largest risk spillover impact on the 

bank in the short term. Third, from the perspective of the quantile where the peak occurs, both the 

positive peak and the negative peak occur at the low quantile of MultiFin. Fourth, from the 

perspective of the change form of the influence direction, the main form is from the negative to the 

positive, and the turning point mainly occurs at the middle quantile of MultiFin. 
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Figure 4. Estimation of the impact coefficients of FinTech on MultiFin at different time 

scales. 

3.2.3. The heterogeneous impact of FinTech on Security 

This section reflects the heterogeneous risk spillover impact of FinTech on Security with 

frequencies D1–D5. The specific impact parameter estimation results are shown in Figure 5, where 

(a)–(e) represent D1–D5, respectively. 
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Figure 5. Estimation of the impact coefficients of FinTech on Security at different time 

scales. 

We can summarize the heterogeneous risk spillover impact of FinTech on Security from Figure 5. 

Under D1, the impact coefficients are at the positive area, on the whole, showing a wave shape. 

When Security is at (0.3–0.5) and (0.6–0.8), the impact coefficient reaches a peak of 1.6, while when 

Security is at (0.6–0.7) and (0.8–1), the impact coefficient reaches a low peak of 2.5. Under D2, in 

most cases, FinTech has a positive risk spillover impact on security, but when Security is at the 

middle quantile (0.4), the impact coefficient reaches a negative peak of −0.5, and when Security is at 

the high quantile (0.9–1), the impact coefficient reaches a positive peak of 2.3. Under D3, in most 

cases, FinTech has a positive risk spillover impact on Security, with a strong positive impact at both 

ends, that is, when Security is at the low quantile (0.3–0.5), the impact coefficient is about 2.6, and 

when Security is at the high quantile (0.9–1), the coefficient reaches 2.5. Under D4, in most cases, 

the impact is positive, and the positive impact intensities at both ends are large, that is, when Security 

is at the low quantile (0.1–0.3), the impact coefficient reaches the positive peak of about 1.5, while 

when Security is at the high quantile (0.9–1), the coefficient reaches 1.4, and when Security is at the 
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middle quantile (0.4–0.8), the coefficient is about 0. Under D5, in most cases, the impact is positive. 

When Security is at the low quantile (0.1–0.2), the impact coefficient gradually increases from −1 (at 

the low quantile) to +2.6 (at the high quantile); when Security is at the middle quantile (0.3–0.7), the 

impact coefficient gradually decreases from +1.2 to 0 minus; when Security is at the high quantile 

(0.7–1), the impact coefficient rises from 0 to about 1.5. 

By comparing the risk spillover impact characteristics of the FinTech industry on Security in 

different time periods in Figure 5, we have the following findings. First, from the perspective of 

impact direction, most of the cases are positive. Second, from the perspective of impact intensity 

peak, the positive impact intensity peak is at D3 and D5, and the negative impact intensity peak is at 

D5, which indicates that the risk spillover impact in the long-term is the largest. Third, from the 

perspective of the quantile where the peak occurs, both the positive peak and the negative peak are 

easy to appear at the low and high quantile of the security. Fourth, from the change form of the 

impact direction, it is mainly U-shaped. 

3.2.4. The heterogeneous impact of FinTech on Insurance 

This section reflects the heterogeneous risk spillover impact of FinTech on Insurance with 

frequencies D1–D5. The specific impact parameter estimation results are shown in Figure 5, where 

(a)–(e) represent D1–D5, respectively. 

We can summarize the heterogeneous risk spillover impact of FinTech on Insurance from Figure 6. 

Under D1, the impact coefficient is about 0 in most cases. When Insurance is at the low quantile 

(0.4–0.6), the impact coefficient reaches a negative peak of −2 when FinTech is at the low quantile 

(0.3–0.7), and reaches a positive peak of 2.5 when Fintech is at the high quantile (0.7–1). Under D2, 

it is about 0 in most cases, showing a U-shape. However, when Insurance is at the middle quantile 

(0.3–0.5), the impact coefficient reaches the negative peak of −1. When Insurance is at the high 

quantile (0.9–1), the impact coefficient reaches the positive peak of 3.4. Under D3, in most cases, the 

impact is positive. When Insurance is at the high quantile (0.8–1), the impact coefficient is about 3.8, 

while when Insurance is at the middle quantile (0.5–0.6), the coefficient reaches the negative peak 

value −1. Under D4, when Insurance is at the low quantile (0.2–0.3), the impact coefficient reaches a 

negative peak of −3, and then gradually rises. When Insurance is at the high quantile (0.9–1), the 

coefficient reaches a positive peak of 2.5. Under D5, when Insurance is at the low quantile (0.1–0.2), 

the impact coefficient gradually increases from −1 (at the low quantile) to +1.8 (at the high quantile). 

By comparing the risk spillover impact characteristics of FinTech on Insurance in different time 

periods in Figure 6, we have the following findings. First, from the perspective of the impact 

direction, it is a positive impact in most cases. Second, from the perspective of impact intensity peak, 

the positive peak is at D3, and the negative peak is at D4, which indicates that in the medium term, 

FinTech has the largest risk spillover impact on Insurance. Third, from the perspective of the quantile 

where the peak occurs, both the positive peak and the negative peak tend to occur at the low quantile 

and the high quantile of Insurance. Fourth, from the perspective of the change direction, the 

short-term is U-shaped, while the long-term is from the negative to the positive. 
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Figure 6. Estimation of the impact coefficients of FinTech on Insurance at different time 

scales. 

3.2.5. The heterogeneous impact of FinTech on Real Estate 

This section reflects the heterogeneous risk spillover impact of FinTech on Real Estate with 

frequencies D1–D5. The specific impact parameter estimation results are shown in Figure 7, where 

(a)–(e) represent D1–D5, respectively. 

We can summarize the heterogeneous risk spillover impact of FinTech on Real Estate from 

Figure 7. In most cases, the impact coefficient is around 0, and the coefficient at both ends is 

obviously heterogeneous. Under D1, when Real Estate is at the low quantile (0.1–0.3), the impact 

coefficient gradually increases from −2 (at the low quantile of FinTech) to +2 (at the high quantile); 

when Real Estate is at the high quantile (0.9–1), the impact coefficient reaches a positive peak of 2.5. 

Under D2, when Real Estate is at the low quantile (0.1–0.3) and the high quantile (0.8–1), the impact 

coefficient reaches 4.5. Under D3, when Insurance is at the low quantile (0.1–0.2) and FinTech is at 

the high quantile (0.8–1), and when Insurance is at the high quantile (0.9–1) and FinTech is at the 

low quantile (0.1–0.3), the impact coefficient reaches a positive peak of about 5. Under D4, when 
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Insurance is at the low quantile (0.1–0.2), the impact coefficient reaches a negative peak of −6, and 

then gradually rises. When Insurance is at the high quantile (0.9–1), the coefficient reaches a positive 

peak of 2.5. Under D5, when Insurance is at the low quantile (0.1–0.2) and FinTech is at the high 

quantile (0.8–1), the impact coefficient reaches a positive peak of 2.6; when FinTech is at the low 

quantile (0.2–0.4), the impact coefficient gradually increases from −2 (at the low quantile of 

Insurance) to 1.8 (at the high quantile). 

By comparing the risk spillover impact characteristics of FinTech on Real Estate under different 

time periods in Figure 7, we have the following findings. First, from the perspective of the impact 

direction, it is a positive impact in most cases. Second, from the perspective of impact intensity peak, 

the positive peak is at D3, and the negative peak is at D4, which indicates that in the medium term, 

FinTech has the largest risk spillover impact. Third, from the perspective of the quantile where the 

peak occurs, both the positive peak and the negative peak tend to occur at the low and high quantile 

of Real Estate. Fourth, from the impact direction change form, it is mainly U-shaped. 

 

Figure 7. Estimation of the impact coefficients of FinTech on Real Estate at different 

time scales. 
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3.3. Discussion of the empirical results 

This part is the further analysis and discussion of the empirical results we obtained above. 

First, in general, the peak of the positive risk spillover impact of FinTech on the traditional 

industries is mainly concentrated in the high quantile (the high-risk area) of FinTech, while the peak 

of the negative impact is mainly concentrated in the low quantile (the low-risk area) of FinTech. 

Under the condition of the past development and the present internal macroeconomy, FinTech in 

China is exposed to higher risk than traditional finance [25]. Specific to the five industries, we can 

find that the impact directions for Bank, Multi Finance, Insurance and Real Estate are mainly from 

the negative to the positive, and the turning points are concentrated in the middle-risk area of 

FinTech. The impact for Security is mainly from the positive to the negative and then the positive, in 

a U-shape. This finding can be explained as follows. When FinTech’s own risk is low, it shows a 

more obvious privilege in information technology. The use of big data and artificial intelligence 

technology solves the problems of information asymmetry, reduces the high financing cost, increases 

the cost of credit default, and improves management efficiency [42]. At this stage, FinTech has made 

up for the shortcomings of traditional finance and reduced the risks of the latter to a certain extent. 

Therefore, our empirical results show that the peak of negative impact is mainly concentrated in the 

low-risk area of FinTech. However, when FinTech’s own risk is high, which means its liquidity risk, 

leverage, maturity mismatch and operational risk are all high, it is unable to make up for its 

information advantage. Moreover, FinTech has strengthened the infection of risk among various 

assets, so the network effect and long tail effect will further amplify the risk. Therefore, our empirical 

results show that the positive impact peak is mainly concentrated in the high-risk areas of FinTech. 

This result is consistent with what Li et al. [15] discovered that the spillover effect is stronger in 

economic recession. 

Second, from the perspective of the trading frequency, the risk spillover impact volatility of 

FinTech on the five traditional financial industries mainly changes from the negative to the positive 

in high-frequency and low-frequency trading, and takes a U-shape in medium-frequency trading. The 

impact intensity of risk spillover varies significantly from different frequencies. Specifically, under 

high-frequency trading, the effects for Bank and Multi Finance are stronger; Under low-frequency 

trading, the effects on Insurance and Real Estate are greater. Li, Yang, & Huang [43] verify that 

FinTech enterprises can react quickly to signals issued by the central bank and they can help 

reallocate the market’s resources. In recent years, commercial banks have developed more short-term 

intermediate businesses in order to improve their income [44]. These businesses, especially the 

development and operation of financial derivatives which need to use Internet and digital technology, 

have brought great risks to banks, and are more vulnerable to FinTech [45]. Multi Finance can 

promote enterprises to rapidly become a banking institution and a quasi-listed enterprise. In recent 

years, it has changed from the traditional mode to the Internet integration mode. Therefore, in the 

short term, the impact for Bank and Multi Finance is strong. Compared with the first two industries, 

the business of Insurance always lasts longer, especially the contract period of life insurance is as 

long as several decades, and so is Real Estate. Just as Lee et al. [4] suggests that the business model 

of Insurance FinTech is the most commonly accepted by traditional insurance industry. The two 

industries possess the characteristic of low liquidity, so the risk spillover effects of FinTech on 

Insurance and Real Estate are strong in low-frequency transactions. 



20869 

AIMS Mathematics  Volume 7, Issue 12, 20850–20872. 

4. Conclusions 

Based on the return rates of FinTech and the five traditional financial industries from 2019 to 2022, 

this paper uses the DCC-GJR-GARCH-COVAR model to measure systemic risk, and then uses 

wavelet analysis method and quantile-on-quantile regression model to analyze the asymmetry of risk 

spillover effect of FinTech on the traditional financial industries under different frequencies and risk 

states. We draw the following conclusions. 

First, in general, the peak of the positive risk spillover impact of FinTech on the traditional 

industries is mainly concentrated in the high quantile (the high-risk area) of FinTech, while the peak 

of the negative impact is mainly concentrated in the low quantile (the low-risk area) of FinTech. 

Specific to the five industries, we can find that the impact directions for Bank, Multi Finance, 

Insurance and Real Estate are mainly from the negative to the positive, and the turning points are 

concentrated in the middle risk area of FinTech. The impact for Security is mainly from the positive 

to the negative and then the positive, in a U-shape. 

Second, from the perspective of the trading frequency, the risk spillover impact volatility of 

FinTech on the five traditional financial industries mainly changes from the negative to the positive 

in high-frequency and low-frequency trading, and takes a U-shape in medium-frequency trading. The 

impact intensity of risk spillover varies significantly from different frequencies. Specifically, under 

high-frequency trading, the effects for Bank and Multi Finance are stronger; Under low-frequency 

trading, the effects on Insurance and Real Estate are greater. 

According to our findings, we suggest that the policymakers should attach importance to the 

risk regulation of the FinTech industry, especially in an economic recession period. Also, the eye 

should be kept on different traditional financial industries and their trading frequencies to reach the 

precise regulation objective. 

This paper stands at a macro perspective to study the risk spillover effect that FinTech drives on 

traditional finance. We believe more details can be dug out if the traditional financial industries are 

isolated to discuss. In addition to trading frequency and risk state, the spillover effect under more 

conditions such as management quality or information service are worth discovering. 
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