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1. Introduction

Let G be a finite group and let H be a subgroup of G. Denote by C(G) and C(H) the spaces of
complex-valued class functions on G and on H, respectively. Frobenius reciprocity for class functions
on G states that ResG

H and IndG
H are Hermitian adjoint with respect to the Hermitian inner product

defined by

⟨ f , g⟩ =
1
|G|

∑
x∈G

f (x)g(x) and ⟨h, k⟩H =
1
|H|

∑
x∈H

h(x)k(x), (1.1)

for all f , g ∈ C(G), h, k ∈ C(H). In other words, if f is a class function on H and if g is a class function
on G, then

⟨IndG
H f , g⟩H = ⟨ f ,ResG

Hg⟩, (1.2)

where ResG
H is a linear transformation from C(G) to C(H) and IndG

H is a linear transformation from
C(H) to C(G). This result is crucial and plays fundamental roles in proving well-known results in the
representation theory of finite groups such as Mackey’s irreducibility criterion; see, for instance, [9,
Theorem 8.3.6].

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20221130


20616

The present article stems from the study of left regular representation of a finite gyrogroup in a
series of articles [10–12]. It is well known that the conjugation relation in any group G may be viewed
as a group action of G on itself by the formula g · x = gxg−1 for all g, x ∈ G. This suggests studying
Frobenius reciprocity in the setting of group actions. In this article, we generalize Frobenius reciprocity
to the family of functions that are invariant under a given group action. We remark that there are other
versions of Frobenius reciprocity; see, for instance, [2, Theorem 10.8, p. 233] and [4, Theorem 2.3].

Let F be a field and let X be a non-empty set with an action of a group G (that is, X is a G-set).
Define L(X) = { f : f is a function from X to F}. Recall that L(X) is a vector space. Furthermore, G
acts linearly on L(X) by the formula

(a ⋆ f )(x) = f (a−1 · x), x ∈ X, (1.3)

for all a ∈ G, f ∈ L(X), where ⋆ is the induced G-action on L(X) and · is the given G-action on X.
Therefore, we can speak of the fixed subspace of L(X):

Fix (L(X)) = { f ∈ L(X) : a · f = f for all a ∈ G}.

It is not difficult to check that a · f = f for all a ∈ G if and only if f (a · x) = f (x) for all a ∈ G, x ∈ X.
Therefore, the fixed subspace of L(X) associated with the action given by (1.3) can be expressed as

LG(X) = { f ∈ L(X) : f (a · x) = f (x) for all a ∈ G, x ∈ X}. (1.4)

In the case when X is a finite-dimensional vector space, (1.3) induces an action of G on the space
F[X] of polynomial functions on X. The study of this action along with the corresponding fixed
subspace is a fundamental topic in invariant theory [3, 5–7]. The following example indicates that
several familiar families of functions in the literature may be viewed as LG(X) with appropriate group
actions.

Example 1.1. Let X be a non-empty set and let F be a field.

(a) If G = Sym (X) and let G acts on X by evaluation, then LG(X) is the family of constant functions.

(b) If G is a group and let G acts on itself by conjugation, then LG(G) is the usual family of class
functions.

(c) Suppose that A is an abelian group. Fix t ∈ A and set G = ⟨t⟩ = {nt : n ∈ Z}. Then, G acts on A
by addition and LG(A) is the family of periodic functions defined on A with period t.

(d) Let C∞ = C ∪ {∞} be the extended complex plane. Recall that a modular function f : C∞ → C∞

must satisfy the condition that

f
(
az + b
cz + d

)
= f (z), z ∈ C∞,

where a, b, c, d ∈ Z and ad − bc = 1 [1, p. 34]. Therefore, modular functions are elements in

LG(C∞), where G is the modular group and acts on C∞ by the formula
[
a b
c d

]
· z =

az + b
cz + d

.
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(e) Let (K,⊕) be a gyrogroup [13]. As in Section 4 of [10], the space

Lgyr(K) = { f ∈ L(K) : f (a ⊕ gyr[x, y]z) = f (a ⊕ z) for all a, x, y, z ∈ K}

arises as a representation space of K associated with a gyrogroup version of left regular
representation. Using the change of variable, w = a ⊕ z, we obtain that

Lgyr(K) = { f ∈ L(K) : f (a ⊕ gyr[x, y](⊖a ⊕ z)) = f (z) for all a, x, y, z ∈ K}.

Let G be the subgroup of Sym (K) generated by the set

{La ◦ gyr[x, y] ◦ L−1
a : a, x, y ∈ K},

where La is the left gyrotranslation by a defined by La(z) = a ⊕ z for all z ∈ K and gyr[x, y] is the
gyroautomorphism generated by x and y. It is clear that G acts on K by evaluation. Furthermore,
Lgyr(K) = LG(K).

In Section 2, we study basic properties of arbitrary group actions related to their corresponding fixed
subspaces. In Section 3, we reduce to the case of a finite action (that is, an action of a finite group on a
finite set) and compute the dimension of the fixed subspace. This leads to some interesting properties
of fixed-point-free actions. Once the usual Hermitian inner product on L(X) is introduced, where X
is a finite G-set, an orthogonal decomposition of L(X) is obtained and several interesting results such
as Fourier expansion, Bessel’s inequality, and Frobenius reciprocity are established for the case of
functions invariant under the action of G on X. In Section 4, we conclude our work.

2. Basic properties

Let G be a group and let X be a G-set. Recall that the action of G on X induces an equivalence
relation ∼ given by

x ∼ y if and only if y = a · x for some a ∈ G, (2.1)

for all x, y ∈ X. Recall also that the orbit of x ∈ X under the action of G is given by orb x = {a·x : a ∈ G}.
Hence, the collection {orb x : x ∈ X} forms a partition of X. This partition leads to a characterization of
elements in LG(X), as we will see shortly, and eventually to a standard basis for LG(X) if there are only
finitely many orbits of G on X. Suppose that X is a G-set and let P be the partition of X determined
by (2.1). Note that f ∈ LG(X) if and only if f (a · x) = f (x) for all x ∈ X, a ∈ G if and only if f is
constant on orb x for each x ∈ X. This leads to a natural question: Can a space of functions on a set
endowed with a partition be viewed as LG(X) for a suitable group action? The answer to this question
is affirmative. In fact, by [5, Corollary 1.1.7], if X is a non-empty set and if P = {Xi : i ∈ I} is a partition
of X, then the permutation group S P = {σ ∈ Sym (X) : σ(Xi) = Xi for all i ∈ I} acts on X by evaluation
and induces its orbits on X as the cells of the partition.

Let X be a G-set and let P be the partition of X determined by the equivalence relation (2.1). For
each C ∈ P , the indicator function δC is defined by

δC(x) =

1 if x ∈ C;
0 if x ∈ X \C.

(2.2)

As noted earlier, δC belongs to LG(X) for all C ∈ P . In fact, we obtain the following theorem.
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Theorem 2.1. Suppose that X is a G-set and let P be the partition of X determined by the equivalence
relation (2.1). Then, B = {δC : C ∈ P} is a linearly independent set in LG(X). Furthermore, P is finite if
and only if B forms a basis for LG(X). In particular, dim(LG(X)) ≥ |P | and equality holds if P is finite.

Proof. By definition, B is linearly independent. Assume that P is finite, say P = {C1,C2, . . . ,Cn}.
Fix ci ∈ Ci for all i = 1, 2, . . . , n. Then, f = f (c1)δC1 + f (c2)δC2 + · · · + f (cn)δCn for all f ∈ LG(X)
and so B spans LG(X). To prove the converse, suppose that P is infinite. Assume to the contrary
that B forms a basis for LG(X). Define f by f (x) = 1 for all x ∈ X. Then, f ∈ LG(X) and so
f = a1δC1 + a2δC2 + · · · + anδCn for some C1,C2, . . . ,Cn ∈ P . Since P is infinite, there is an orbit
C ∈ P\{C1,C2, . . . ,Cn}. Choose c ∈ C. Then, f (c) = 1, whereas

(a1δC1 + a2δC2 + · · · + anδCn)(c) = a1δC1(c) + a2δC2(c) + · · · + anδCn(c) = 0.

Hence, f , a1δC1 + a2δC2 + · · · + anδCn , a contradiction. This shows that B is not a basis for LG(X).
Since B is linearly independent, it follows that dim (LG(X)) ≥ |B| = |P |. Moreover, if P is finite,

then B is a basis for LG(X) and so dim (LG(X)) = |P |. □

According to Theorem 2.1, {δC : C ∈ P} does not form a basis for LG(X) in the case when P is
infinite. It turns out that {δC : C ∈ P} forms a basis for the following subspace of LG(X):

LG
fs(X) = { f ∈ LG(X) : f is non-zero on finitely many orbits in X}, (2.3)

so that the dimension of LG
fs(X) equals |P |.

Next, let us state some properties between group actions and their corresponding spaces. Their
proofs are straightforward and hence are omitted.

Theorem 2.2. Let G be a group and let X be a G-set. Then, the following are equivalent:

(1) L(X) = LG(X);

(2) |orb x| = 1 for all x ∈ X;

(3) G acts trivially on X.

Theorem 2.3. Let F be a field and let X be a G-set. Then, the following are equivalent:

(1) The action of G on X is transitive;

(2) dim (LG(X)) = 1;

(3) LG(X) = { fα : α ∈ F} = span f1, where fα(x) = α for all x ∈ X, α ∈ F.

We close this section with the following result, which indicates that LG(X) is an invariant of the
action of G on X. Therefore, in certain circumstances, one can use the notion of LG(X) to distinguish
inequivalent group actions.

Proposition 2.1. Let X and Y be G-sets. If Φ : X → Y is an equivalence, then the map τ defined by

τ( f ) = f ◦ Φ−1, f ∈ L(X), (2.4)

is a linear isomorphism from L(X) to L(Y) that restricts to a linear isomorphism from LH(X) to LH(Y)
for any subgroup H of G. Consequently, if X and Y are equivalent as G-sets, then L(X) � L(Y) and
LH(X) � LH(Y) as vector spaces for any subgroup H of G.
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Proof. The proof that τ is a linear isomorphism is straightforward. Let H be a subgroup of G and let
f ∈ LH(X). We claim that τ( f ) ∈ LH(Y). Let a ∈ H and let y ∈ Y . By surjectivity, there is an element
x ∈ X such that y = Φ(x). Thus, τ( f )(a · y) = τ( f )(a · Φ(x)) = τ( f )(Φ(a · x)) = f (Φ−1(Φ(a · x))) =
f (a · x) = f (x) = f (Φ−1(y)) = ( f ◦ Φ−1)(y) = τ( f )(y). Hence, τ( f ) ∈ LH(Y) and so τ maps LH(X) to
LH(Y).

Let g ∈ LH(Y) and set f = g ◦ Φ. Note that f is a map from X to F and that

f (a · x) = g(Φ(a · x)) = g(a · Φ(x)) = g(Φ(x)) = f (x)

for all a ∈ H and x ∈ X. Hence, f ∈ LH(X). Furthermore, τ( f ) = f ◦ Φ−1 = (g ◦ Φ) ◦ Φ−1 = g. This
proves that τ is surjective. Therefore, the restriction τ : LH(X)→ LH(Y) is a linear isomorphism. □

The converse to Proposition 2.1 is not, in general, true. That is, the condition that “LH(X) � LH(Y)
as vector spaces for some subgroup H of G” does not imply that “X � Y as G-sets”. In fact, let X
be a set having at least two distinct elements, namely that x, y ∈ X and x , y. Then, H = {idG} acts
transitively on {x} and on {x, y} by evaluation. By Theorem 2.3, dim (LH({x})) = 1 = dim (LH({x, y}))
and so LH({x}) � LH({x, y}). However, {x} and {x, y} are not equivalent G-sets.

3. The case of finite actions

If G is a finite group and if X is a finite G-set (that is, if the action is finite), we may use the Cauchy-
Frobenius lemma (also called the Burnside lemma) to compute the dimension of LG(X). Moreover,
the space L(X) (and hence also LG(X)) possesses a standard Hermitian inner product (the base field
is assumed to be the field of complex numbers). This allows us to prove further related properties
between group actions and their corresponding spaces, including Bessel’s inequality and Frobenius
reciprocity.

3.1. Dimensions and fixed points

Using results in the previous section, we obtain a formula for computing the dimension of LG(X),
where G and X are finite, in terms of fixed points of X. As a consequence of this result, we obtain an
interesting result of free (also called fixed-point-free) actions.

Lemma 3.1. Let G be a finite group and let X be a finite G-set. For any subgroup H of G,

dim (LH(X)) =
1
|H|

∑
a∈H

|Fix a|, (3.1)

where Fix a = {x ∈ X : a · x = x}.

Proof. Let orbH x = {a · x : a ∈ H} and let P = {orbH x : x ∈ X}. As proved earlier, dim(LH(X)) equals

|P |, the number of orbits of H on X. By the famous Cauchy-Frobenius lemma, |P | = 1
|H|

∑
a∈H

|Fix a|. □

Lemma 3.2. Let G be a finite group and let X be a finite G-set. For any subgroup H of G,

|G| dim (LG(X)) − |H| dim (LH(X)) =
∑

a∈G\H

|Fix a|. (3.2)
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Proof. Note that FixH a = FixG a for all a ∈ H because H acts on X by the action inherited from G. It
follows from Lemma 3.1 that

|G| dim (LG(X)) − |H| dim (LH(X)) =
∑
a∈G

|Fix a| −
∑
a∈H

|Fix a| =
∑

a∈G\H

|Fix a|. □

Recall that an action of a group G on a set X is free if stab x = {e} for all x ∈ X; that is, if for all
a ∈ G, x ∈ X, a · x = x implies a = e. It is clear that an action of G on X is free if and only if Fix a = ∅
for all a ∈ G \ {e}. By Lemma 3.2, the ratio of dim (LH(X)) and dim (LG(X)) is simply the index of H
in G when the action of G on X is free, as shown in the following theorem.

Theorem 3.1. Let G be a finite group with a subgroup H and let X be a finite non-empty set. If G acts
freely on X, then

dim (LH(X))
dim (LG(X))

= [G : H], (3.3)

where [G : H] denotes the index of H in G.

Proof. Since G acts freely on X, Fix a = ∅ for all a ∈ G \ H. By Lemma 3.2,

|G| dim (LG(X)) − |H| dim (LH(X)) =
∑

a∈G\H

|Fix a| = 0.

Hence,
dim (LH(X))
dim (LG(X))

=
|G|
|H|
= [G : H]. □

3.2. Orthogonal decomposition and Frobenius reciprocity

In this section, let G be a (finite or infinite) group and let X be a finite G-set unless otherwise stated.
We also suppose that F = C. Thus, L(X) admits the Hermitian inner product defined by

⟨ f , g⟩ =
1
|X|

∑
x∈X

f (x)g(x), (3.4)

where ·̄ denotes complex conjugation.

Proposition 3.1. L(X) forms a complex inner product space. If P = {orb x : x ∈ X}, then

B =


√
|X|
|C|
δC : C ∈ P


forms an orthonormal basis for LG(X).

Proof. As an application of results in Section 2, B forms a basis for LG(X). Next, we prove that B is

orthonormal. Let
√
|X|
|C|
δC,

√
|X|
|D|
δD ∈ B with C,D ∈ P . If C , D, then

⟨

√
|X|
|C|
δC,

√
|X|
|D|
δD⟩ =

1
√
|C||D|

∑
x∈X

δC(x)δD(x) = 0,
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because for each x ∈ X, either x ∈ C or x ∈ D. If C = D, then

⟨

√
|X|
|C|
δC,

√
|X|
|D|
δD⟩ =

1
√
|C||D|

∑
x∈X

δC(x)δD(x) =
1
|C|

∑
x∈X

|δC(x)|2 = 1,

because
∑
x∈X

|δC(x)|2 = |C|. □

One advantage of the inner product defined by (3.4) is shown in the following theorem, which
indicates that the action of G on X is preserved by this inner product.

Proposition 3.2. The action given by (1.3) is unitary in the sense that ⟨a · f , a · g⟩ = ⟨ f , g⟩ for all
f , g ∈ L(X), a ∈ G. In particular, the map f 7→ a · f , f ∈ L(X), is a unitary operator on L(X) for all
a ∈ G.

Proof. The proposition follows from the fact that the map x 7→ a−1 · x is a bijection from X to itself. □

To obtain an orthogonal decomposition of L(X), we define a map σ by

σ( f ) =
∑
x∈X

f (x), f ∈ L(X). (3.5)

Theorem 3.2. Let σ be the map defined by (3.5). Then, the following assertions hold:

(1) σ is a linear functional from L(X) to C.

(2) kerσ is an invariant subspace of L(X) under the action given by (1.3).

(3) kerσ = (span f1)⊥, where f1(x) = 1 for all x ∈ X.

(4) dim (kerσ) = |X| − 1.

(5) ker
(
σ
∣∣∣
LG(X)

)
is an invariant subspace of LG(X) and its dimension equals the number of orbits on

X minus 1. Here, σ
∣∣∣
LG(X)

is the restriction of σ to LG(X).

(6) LG(X)⊥ ⊆ kerσ; equality holds if and only if the action of G on X is transitive.

Proof. The proofs of Parts (1), (3) and (5) are immediate. Part (2) holds because the map x 7→ a−1 · x
is a bijection from X to itself. To prove Part (4), note that span f1 is a finite-dimensional subspace
of L(X). By the projection theorem in linear algebra and Part (3), L(X) = span f1 ⊕ kerσ and so
dim(kerσ) = |X| − 1. That LG(X)⊥ ⊆ kerσ is clear. By Theorem 2.3 and Part (3), LG(X)⊥ = kerσ if
and only if LG(X) = span f1 (since LG(X) and span f1 are finite-dimensional subspaces of L(X)) if and
only if the action of G on X is transitive. This proves Part (6). □

Corollary 3.1. Let G be a group and let X be a finite G-set. Then,

(1) L(X) = LG(X) ⊥O LG(X)⊥;

(2) L(X) = span f1 ⊥O kerσ;

(3) LG(X) = span f1 ⊥O ker
(
σ
∣∣∣
LG(X)

)
.
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Here, ⊥O denotes orthogonal direct sum decomposition.

Proof. Part (1) follows from the projection theorem. Part (2) follows as in the proof of Part (4) of
Theorem 3.2. Part (3) holds since span f1 is a subspace of LG(X). □

According to Proposition 3.1, we have an orthonormal basis for LG(X), which is an orthonormal set
in L(X). Thus, several prominent results in linear algebra can be deduced from this fact.

Theorem 3.3. Let G be a group and let X be a finite G-set. Suppose that

P = {orb x : x ∈ X} = {C1,C2, . . . ,Cn}.

Fix the ordered (orthonormal) basis of LG(X):

B =


√
|X|
|C1|
δC1 ,

√
|X|
|C2|
δC2 , . . . ,

√
|X|
|Cn|
δCn

 .
Then, the following assertions hold:

(1) (Fourier expansion) The Fourier expansion with respect to B of a function f ∈ L(X) is

f̂ =

 1
|C1|

∑
x∈C1

f (x)

 δC1 +

 1
|C2|

∑
x∈C2

f (x)

 δC2 + · · · +

 1
|Cn|

∑
x∈Cn

f (x)

 δCn; (3.6)

that is, the Fourier coefficients of f are given by

⟨ f ,

√
|X|
|Ci|
δCi⟩ =

1
√
|X||Ci|

∑
x∈Ci

f (x), (3.7)

for all i = 1, 2, . . . , n.

(2) (Bessel’s inequality) For all f ∈ L(X),

n∑
i=1

1
|Ci|

∣∣∣∣∣∣∣∑x∈Ci

f (x)

∣∣∣∣∣∣∣
2

≤
∑
x∈X

| f (x)|2. (3.8)

(3) If G acts non-trivially on X, then there exists a function f ∈ L(X) with ∥ f̂ ∥ < ∥ f ∥. That is, the
equality in Bessel’s identity is not attained.

Proof. Recall that the Fourier coefficients of f are

⟨ f ,

√
|X|
|Ci|
δCi⟩ =

1
|X|

∑
x∈Ci

f (x)

√
|X|
|Ci|
=

1
√
|X||Ci|

∑
x∈Ci

f (x)

for all i = 1, 2, . . . , n. Hence, the Fourier expansion of f with respect to B is
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f̂ = ⟨ f ,

√
|X|
|C1|
δC1⟩

√
|X|
|C1|
δC1 + · · · + ⟨ f ,

√
|X|
|Cn|
δCn⟩

√
|X|
|Cn|
δCn

=

 1
√
|X||C1|

∑
x∈C1

f (x)


√
|X|
|C1|
δC1 + · · · +

 1
√
|X||Cn|

∑
x∈Cn

f (x)


√
|X|
|Cn|
δCn

=

 1
|C1|

∑
x∈C1

f (x)

 δC1 + · · · +

 1
|Cn|

∑
x∈Cn

f (x)

 δCn .

This proves Part (1).
Recall that Bessel’s inequality states that ∥ f̂ ∥ ≤ ∥ f ∥. Hence,

n∑
i=1

∣∣∣∣∣∣∣∣⟨ f ,
√
|X|
|Ci|
δCi⟩

∣∣∣∣∣∣∣∣
2

≤ ⟨ f , f ⟩.

Direct computation shows that
n∑

i=1

∣∣∣∣∣∣∣∣⟨ f ,
√
|X|
|Ci|
δCi⟩

∣∣∣∣∣∣∣∣
2

=
1
|X|

n∑
i=1

1
|Ci|

∣∣∣∣∣∣∣∑x∈Ci

f (x)

∣∣∣∣∣∣∣
2

and that ⟨ f , f ⟩ =

1
|X|

∑
x∈X

| f (x)|2. Hence, (3.8) follows. This proves Part (2).

Suppose that G acts non-trivially on X. By Theorem 2.2, LG(X) ⊊ L(X). This implies that B is
not an orthonormal basis for L(X) and so there exists a function f in L(X) with ∥ f̂ ∥ < ∥ f ∥ by [8,
Theorem 9.17]. This proves Part (3). □

Next, we extend Frobenius reciprocity from the space of class functions to that of functions invariant
under a given group action in a natural way. Let G be a group and let X be a G-set. Recall that a (non-
empty) subset Y of X is invariant if a · y ∈ Y for all a ∈ G, y ∈ Y; that is, if G · Y = Y . It is not difficult
to check that the following are equivalent:

(1) Y is an invariant subset of X;

(2) For all a ∈ G, x ∈ X, a · x ∈ Y if and only if x ∈ Y .

Let X be a G-set and let Y be an invariant subset of X. Define a map ResX
Y from L(X) to L(Y) by

ResX
Y f (y) = f (y), y ∈ Y, (3.9)

for all f ∈ L(X). Also, for each f ∈ L(Y), define f̃ by

f̃ (x) =

 f (x), if x ∈ Y;
0, otherwise,

(3.10)

for all x ∈ X. Then, f̃ ∈ L(X). In fact, we have the following lemma.

Lemma 3.3. The map ϵ : L(Y)→ L(X) given by ϵ( f ) = f̃ is linear and maps LG(Y) to LG(X).
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Proof. The proof that ϵ is linear is straightforward. By the remark above, ϵ( f ) ∈ LG(X) for all f ∈
LG(Y). □

Theorem 3.4. Let X be a G-set with an invariant subset Y. Then, ResX
Y : L(X) → L(Y) is linear and

maps LG(X) surjectively onto LG(Y).

Proof. The proof that ResX
Y is linear is straightforward. Let f ∈ LG(Y). By Lemma 3.3, f̃ ∈ LG(X) and

ResX
Y f̃ (y) = f̃ (y) = f (y) for all y ∈ Y . So ResX

Y f̃ = f . This proves that ResX
Y is surjective. □

Let G be a finite group, let X be a finite G-set, and let Y be an invariant subset of X. Define a map
IndX

Y on L(Y) by

IndX
Y f (x) =

|X|
|G||Y |

∑
b∈G

f̃ (b−1 · x), x ∈ X, (3.11)

for all f ∈ L(Y). Then, IndX
Y is a linear transformation from L(Y) to LG(X), as shown in the following

theorem.

Theorem 3.5. The map IndX
Y defined by (3.11) is a linear transformation from L(Y) to LG(X).

Proof. The proof that IndX
Y is linear is straightforward. Let f ∈ L(Y). Given a ∈ G and x ∈ X, we have

by inspection that

IndX
Y f (a · x) =

|X|
|G||Y |

∑
b∈G

f̃ (b−1 · (a · x))

=
|X|
|G||Y |

∑
b∈G

f̃ ((b−1a) · x)

=
|X|
|G||Y |

∑
c∈G

f̃ (c−1 · x)

= IndX
Y f (x).

The third equality holds since if b runs over all of G, then so does a−1b (that is, the change of variable
c = a−1b is permitted). Thus, IndX

Y f ∈ LG(X). □

The following theorem asserts that the linear transformations ResX
Y and IndX

Y are Hermitian adjoint
with respect to the Hermitian inner product defined earlier. This is a group-action version of Frobenius
reciprocity.

Theorem 3.6. (Frobenius reciprocity) Let G be a finite group, let X be a finite G-set, and let Y be an
invariant subset of X. Then,

⟨IndX
Y f , g⟩ = ⟨ f ,ResX

Y g⟩ (3.12)

for all f ∈ LG(Y), g ∈ LG(X).

Proof. Direct computation shows that
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⟨IndX
Y f , g⟩ =

1
|X|

∑
x∈X

IndX
Y f (x)g(x) =

1
|X|

∑
x∈X

 |X|
|G||Y |

∑
b∈G

f̃ (b−1 · x)

 g(x)

=
1
|G||Y |

∑
x∈X

∑
b∈G

f̃ (b−1 · x)

 g(x) =
1
|G||Y |

∑
x∈Y

∑
b∈G

f (b−1 · x)

 g(x)

=
1
|G||Y |

∑
x∈Y

|G| f (x)g(x) =
1
|Y |

∑
x∈Y

f (x)g(x)

=
1
|Y |

∑
x∈Y

f (x)ResX
Y g(x) = ⟨ f ,ResX

Y g⟩.

The fifth equality holds since f ∈ LG(Y), which implies that f (b−1 · x) = f (x) for all b ∈ G, x ∈ Y . □

We remark that the inner product used on the right hand side of (3.12) is computed by the same
formula as in (3.4) with Y in place of X. This makes sense because if Y is an invariant subset of X, then
the G-action on X restricts to the G-action on Y . In other words, the restriction of the Hermitian inner
product of L(X) to L(Y) does define an inner product on L(Y).

4. Conclusions

We show that every group action is associated with a vector space over an arbitrary field, and in
certain circumstances this notion can be used to distinguish non-equivalent group actions. We then
study algebraic properties of group actions compared with properties of their corresponding spaces.
We also prove several prominent results, including Bessel’s inequality and Frobenius reciprocity.
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