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1. Introduction

1.1. Selection principles

Covering properties of a topological space is one of the most active research fields and has a long
history which appears in papers [1–4]. More recently, the theory known as infinite combinatorial
topology or selection principles in mathematics was introduced by M. Scheepers [5, 6] applying
selection principles to different open covers of a topological space and initiated a systematic study
of selection principles. One of the most important features of the theory is to gather topology with
the other fields of mathematics such as game theory, Ramsey theory, algebraic structures, etc. The
theory has been widely studied and is still being studied. It also gives new viewpoints and frames for
theoretical and applicable areas (see [7–9]). Several topological properties and concepts are defined
and characterized by way of two classical selection principles stated in [6] as follows:

Let X be an infinite set, andA and B are the families of subsets of it.
S 1(A,B) is the selection principle: For every sequence (An : n ∈ N) of members ofA, there exists

a sequence (bn : n ∈ N) such that for each n ∈ N, bn ∈ An and {bn : n ∈ N} ∈ B.
S f in(A,B) is the selection principle: For every sequence (An : n ∈ N) of members of A, there is a

sequence (Bn : n ∈ N) such that Bn ⊂ An where Bn is a finite set for all n ∈ N and
⋃

n∈N Bn ∈ B.
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In [3] Menger introduced the Menger basis property for metric spaces. In [1], Hurewicz introduced
a property which is nowadays known as the Menger property (MP) and proved that the Menger basis
property is equivalent to the MP. It is known that a topological space X having the MP is equivalent
to X ∈ S f in(O,O) in Scheepers’ notation where O is the family of open covers of X and defined as the
following:

X has the MP if for all the sequence (Dn)n∈N whereDn is an open cover of X for each n, there exists
a finite subset Cn ⊂ Dn such that

⋃
n∈N

⋃
Cn = X.

Hurewicz showed that the statement that a metrizable space is σ-compact if and only if it has MP
is equivalent to Menger conjecture. In [2], he introduced a property which is stronger than the MP
currently referred to as the Hurewicz Property that is defined as the following.

Let X be a topological space and (Dn : n ∈ N) be any sequence of open covers of X. If there is
a sequence (Cn : n ∈ N) such that each Cn is the finite subset of Dn for each n and all member x of
X, | {n ∈ N : x <

⋃
Cn} |< ω holds. It is well known that every σ-compact topological space has

the Hurewicz property, and every topological space which has the Hurewicz property has the Menger
property.

The Menger property has recently been studied extensively [10–12]. Also, general forms of the
Menger property have been studied. Kočinac [13, 14] introduced the almost Menger property. A
topological space X called almost Menger if every sequence (Dn)n∈N of open covers of X there is
a sequence (Cn)n∈N where each Cn is finite subset of Dn for eacn n ∈ N and X =

⋃
n∈N

⋃
Cn.

Kocev [15] studied this notion systematically. Also, the weak Menger property has been introduced
in [16] and studied in [17, 18]. These generalizations of the Menger property got their place in many
papers [19–24].

1.2. Relatively topological spaces and set covering properties

In [25], a cardinal function sL was defined by Arhangel’skii. Let X be a topological space. Then
the sL(X) of X is the minimal cardinality κ such that for every subset S ⊂ X and every open cover D
of S , there is a subfamily D∗ ⊂ D providing | D∗ |≤ κ and S ⊂

⋃
D∗. If sL(X) = ω, then the space X

is called s-Lindelöf space.
In any topological subject, it could be important to know “how a given subspace of a topological

space is located in the space”. Let X be a topological space, and denote with P(X) the power set of X.
Let Y ⊂ X and P ⊂ P(X). The properties of the subset Y or each member of P depend on how Y or
members of P are placed in X. That is why it is so natural that two investigation areas arise. One of
them is assigning a relative S of the subset Y of X for given a topological property S , and second one
is assigning a property P-S showing how every member P located in X. With his collaborators, A.V.
Arhangel’skii first applied these investigations [25–27]. In this sense, the same investigations have
been applied to selection principles, too (see [21, 28–31]).

Motivated by the definition of an “s-Lindelöf cardinal function” of Arhangel’skii and this line of
investigations, in [32] Kočinac and Konca defined set-Menger, set-Rothberger, set-Hurewicz spaces
and their weaker forms considering the Menger, Rothberger and Hurewicz covering properties. Later,
they defined in [33] the star versions of related spaces, and they initiated the investigation new sorts of
selective covering properties known as set covering properties (see also [34]).

Definition 1.1. [32] Let X be a topological space and P ⊂ P(X) such that ∅ < P. X is said to be:
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(1) P-Menger if for all S ∈ P and each sequence (Dn)n∈N of open covers of S , there is a sequence
(D∗n)n∈N) whereD∗n is the finite subfamily ofDn for each n and S ⊂

⋃
n∈N

⋃
D∗n.

(2) Almost P-Menger if S ⊂
⋃

n∈N
⋃
D∗n.

If P = P \ {∅} it is said that X is set-Menger (for short SM) or almost set-Menger (ASM), respectively.

In this sense, we extend this investigation and introduce the i j-almost-set-Menger (i j-ASM)
property and study it in bitopological spaces. Bitopological selection principles, which is the active
research field, have been discussed in several papers [35–43]. The paper is generated as follows. In
Section 2, we introduce the i j-almost-set-Menger property in bitopological context. After giving some
examples for this kind of spaces, we investigate the equivalences of these spaces to other spaces like
set-Menger and i j-almost Lindelöf. We also look at the behavior of i j-almost-set-Menger spaces under
some different types of mappings defined in bitopological spaces. Later, in Section 3, We keep in
sight the preservation of this property under union, subspaces and products. We introduce the class of
i j-almost Pγ-set and investigate some properties in Section 4.

2. Definitions, equivalences and examples

We use usual notations and terminology for topological spaces as in [44]. Our notation and
terminology will follow [45] for bitopological spaces. By N,P and R, we denote the sets of natural,
irrational and real numbers, respectively. During the paper, by (X, σ) we denote a topological space
while (X, σ1, σ2) (sometimes X) denotes a bitopological space (or shortly, bispace) which is a set X
equipped with two topologies, in general unrelated, σ1 and σ2 (see [46]). For any A ⊂ X, σi-cl(A)
denotes closure of A, and σi-int(A) denotes the interior of A with respect to the topology σi (i = 1, 2).

Definition 2.1. A bitopological space (X, σ1, σ2) is said to be i j-almost-set-Menger (i j-ASM, for short)
(i, j = 1, 2) if, for all nonempty A ⊂ X and for each (Dn)n∈N sequence of σi-open covers of σi-
cl(A), there exists a sequence (Cn)n∈N of finite families such that Cn ⊂ Dn for each n ∈ N and A ⊂⋃

n∈N
⋃

V∈Cn
σ j-cl(V)

In the light of this definition, we can give the following proposition.

Proposition 2.1. Let (X, σ1, σ2) be a bitopological space,
(1) If (X, σ1) is a Menger space (or SM), then (X, σ1, σ2) is 12-ASM.
(2) If (X, σ1) is ASM and σ2 ≤ σ1 (σ2 is coarser than σ1), then (X, σ1, σ2) is 12-ASM.

Proof. (1) Obvious from the corresponding definitions.

(2) Let A ⊂ X, and (Dn)n∈N be any sequence of σ1-open covers of σ1-cl(A). Since (X, σ1) is ASM, then
there exists a sequence (Cn)n∈N where Cn ⊂ Dn is finite for each n ∈ N and A ⊂

⋃
n∈N

⋃
V∈Cn

σ1-
cl(V) holds. Since σ2 ≤ σ1, then σ1-cl(V) ⊂ σ2-cl(V) for all V ∈ Cn and n ∈ N. This shows that
(X, σ1, σ2) is 12-ASM.

�

Example 2.1. AssumeR equipped with cocountable topologyσ1 and the Sorgenfrey topologyσ2. Since
(R, σ1) is SM, (R, σ1, σ2) is 12-ASM.
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Example 2.2. Assume the bispace (R, σ1, σ2) where σ1 and σ2 are the Smirnov’s deleted topology
and usual topology, respectively (see [47]). The topological space (R, σ1) is Menger (and SM) and
σ2 ≤ σ1. So the bispace (R, σ1, σ2) is 12-ASM.

On the other hand, the assertion converse in Proposition 2.1(1) does not hold in general as the
following example illustrates.

Example 2.3. Let P be the irrational numbers set and a ∈ P fixed point. Assume particular point
topology σ1 = {U ⊆ R : a ∈ U} ∪ {∅} and σ2 = {U ∩ P : U ∈ σ1}. Then, the followings are obtained.

(1) Since a ∈ U for all U ∈ σ1 it is obvious that σ2 ≤ σ1.

(2) D = {{x, a} : x ∈ R} is an open cover for (R, σ1). ChooseDn = D for all n ∈ N, then (Dn)n∈N is the
sequence of open covers of (R, σ1). This sequence assures that (R, σ1) is not Menger (so not SM).

(3) Since each nonempty open subset is dense in (R, σ1), then (R, σ1) is ASM.

(4) (R, σ1, σ2) is 12-ASM with the statement 1.

That is why it is so natural to discuss under what conditions the converse assertion in
Proposition 2.1(1) holds. In this sense, we firstly give the following definition.

Definition 2.2. [48] A bispace (X, σ1, σ2) is said to be an i j-regular space (i, j = 1, 2, i , j) if, for
each element x ∈ X and each σi-closed set F with x < F, there are a σi-open set U and σ j-open set V
such that x ∈ U, V ⊃ F and U ∩ V = ∅.

Theorem 2.1. If (X, σ1, σ2) is i j-ASM and an i j-regular bispace, then (X, σi) is SM.

Proof. Let A ⊂ X and (Dn)n∈N be a sequence of σi-open covers of σi-cl(A). Then, for each n ∈ N
and x ∈ σi-cl(A), we can choose Un

x ∈ Dn such that Un
x contains x. Since (X, σ1, σ2) is an i j-regular

bispace, there exist Vn
x ∈ σi for each x ∈ σi-cl(A) and Un

x such that x ∈ Vn
x ⊂ σ j-cl(Vn

x ) ⊂ Un
x (see [48]).

Now let Gn = {Vn
x : x ∈ σi-cl(A)} for all n ∈ N. (Gn) is a σi-open cover of σi-cl(A) for all n ∈ N and

σ j-cl(Gn) = {σ j-cl(Vn
x ) : Vn

x ∈ Gn}

is a refinement of Dn. On the other side, since (X, σ1, σ2) is i j-ASM, there is a sequence (Cn)n∈N such
that Cn is the finite subset of Gn and A ⊂

⋃
n∈N

⋃
V∈Cn

σ j-cl(V). For each n ∈ N and V ∈ Cn we can
choose UV ∈ Dn such that σ j-cl(V) ⊂ UV due to that σ j-cl(Gn) refines Dn. Let G∗n = {UV : V ∈ Cn}.
Then each G∗n ⊂ Dn is finite and

⋃
n∈N

⋃
G∗n ⊃ A which completes the proof. �

The class of i j-ASM bispaces can be characterized in terms of i j-regular open sets. We now give
the characterization such this spaces with i j-regular open sets.

Definition 2.3. [45,49] Let (X, σ1, σ2) be a bispace and A ⊂ X. A subset A of X is i j-regular open set
(respectively i j-regular closed set) if A = σi-int(σ j-cl(A)

(
respectivelyA = σi-cl(σ j-int(A)

)
.

It can easily be seen that every i j-regular open set in (X, σ1, σ2) is σi-open.

Theorem 2.2. A bispace (X, σ1, σ2) is i j-ASM if and only if for each A ⊂ X and every sequence (Dn)n∈N

of covers of σi-cl(A) by i j-regular open sets in X, there is a sequence (Cn)n∈N where each Cn is finite
subset ofDn for all n, and A ⊂

⋃
n∈N

⋃
V∈Cn

σ j-cl(V).
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Proof. (⇒) Obvious.
(⇐) Let A ⊂ X and (Dn)n∈N be the sequence of σi-open covers of σi-cl(A). If we put Cn = {σi-
int(σ j-cl(U)) : U ∈ Dn} for all n, we obtain a sequence (Cn)n∈N of covers of σi-cl(A) by i j-regular
open sets in X. Then, by assumption, there is C∗n ⊂ Cn for all n such that C∗n is the finite subset and
A ⊂

⋃
n∈N

⋃
σ j-cl(C∗n) where σ j-cl(C∗n) = {σ j-cl(V) : V ∈ C∗n}. For every n ∈ N and every V ∈ Cn,

there is UV ∈ Dn such that V = σi-int(σ j-cl(UV)). Then, the sequence (D∗n)n∈N is the desired one where
D∗n = {UV : V ∈ C∗n}. For seeing this, one can observe that σ j-cl(UV) is a ji-regular closed subset of X,
and

σ j-cl(V) = σ j-cl(σi-int(σ j-cl(UV))) = σ j-cl(UV).

Thus, A ⊂
⋃

n∈N
⋃
σ j-cl(D∗n). �

We now give the relations between i j-ASM and i j-Almost Lindelöf bispaces.

Definition 2.4. [50] A bipsace (X, σ1, σ2) is said to be i j-almost Lindelöf (for short i j-AL) if for every
σi-open coverD of X, there is a countable subset {Vn : n ∈ N} ofD such that X =

⋃
n∈N σ j-cl(Vn).

In the following theorem, we see that every i j-ASM bispace is i j-AL.

Theorem 2.3. Every i j-ASM bispace is i j-AL.

Proof. Let (X, σ1, σ2) be a bispace andD be any σi-open cover of X. LetDn = D for each n ∈ N and
A ⊂ X. Put B = X \ A. Since D is a σi-open cover of X, then Dn is a σi-open cover of both σi-cl(A)
and σi-cl(B). Then, we clearly obtain a sequence (Dn)n∈N of σi-open covers of σi-cl(A) and σi-cl(B).
Since (X, σ1, σ2) is i j-ASM, there exist CA

n ,C
B
n ⊂ Dn where CA

n and CB
n are finite for all n ∈ N with

A ⊂
⋃

n∈N
⋃

U∈CA
n
σ j-cl(V) and B ⊂

⋃
n∈N

⋃
U∈CB

n
σ j-cl(U). Since CA

n and CB
n are finite, then the family

Wn = CA
n ∪ C

B
n is a finite family for each n ∈ N. ThenW =

⋃
n∈NWn is a countable subfamily of D,

which is clearly providing that X = A ∪ B ⊂
⋃

n∈N
⋃

W∈Wn
σ j-cl(W). So, X is i j-AL. �

The following example shows the inverse implication, in general not true.

Example 2.4. Consider R endowed with the two topologies; σ1 is the Sorgenfrey topology, and σ2 is
the family of sets U \C, where U ∈ σ1 and C ⊂ R and | C |≤ ω. The bispace (R, σ1, σ2) is 12-AL, since
(R, σ1) is Lindelöf. But it fails to be 12-ASM since (R, σ1) is not almost Menger so not ASM (see [17])
and σ1-cl(U) = σ2-cl(U) for every σ1-open set U.

It is a quite natural question under what conditions these properties are equivalent. Let us give the
definition of P-space.

Definition 2.5. [51] A space X is called P-space if every intersection of countably many open sets is
open.

Theorem 2.4. Let (X, σ1, σ2) be i j-AL. If (X, σi) is a P-space, then (X, σ1, σ2) is i j-ASM.

Proof. Let A ⊂ X and (Dn)n∈N be a sequence of σi-open covers of σi-cl(A). We may suppose that
every Dn is closed under finite unions without loss of generality. Now, if we put G = {

⋂
n∈NUn :

Un ∈ Dn}, then since (X, σi) is P-space, we obtain an σi-open over of σi-cl(A) . On the other hand,
since (X, σ1, σ2) is i j-AL, σi-cl(A) is i j-AL. Then there is a countable subset G∗ = {Gn : n ∈ N} of G
providing σi-cl(A) ⊂

⋃
n∈N σ j-cl(Gn). Let Gn =

⋂
m∈NUn

m where Un
m ∈ Dm. Since Gn ⊂ Un

n for each
n ∈ N, we clearly obtain A ⊂

⋃
n∈N σ j-cl(Un

n). So (X, σ1, σ2) is i j-ASM. �
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Corollary 2.1. Let (X, σ1, σ2) be an i j-regular bispace, and (X, σ1) is P-space. Then, the following
expressions are equivalent:

(1) (X, σ1) is Menger,

(2) (X, σ1) is ASM,

(3) (X, σ1, σ2) is i j-ASM,

(4) (X, σ1, σ2) is i j-AL,

(5) (X, σ1) is Lindelöf.

In what follows, we study some behaviors of i j-ASM bispaces under some types of mappings.

Definition 2.6. [45] Let (X, σ1, σ2) and (Y, ρ1, ρ2) be bispaces and f : X → Y be a mapping. f is
said to be d-continuous (pairwise continuous) if the mappings fi : (X, σi) → (Y, ρi) are continuous
(i-continuous) for i = 1, 2.

Theorem 2.5. Let (X, σ1, σ2) be i j-ASM bispace, and let (Y, ρ1, ρ2) be a bispace. If f : X → Y is a
d-continuous surjection, then (Y, ρ1, ρ2) is i j-ASM

Proof. Let B ⊂ Y , (Dn)n∈N be a sequence of open sets of Y providing ρi-cl(B) ⊂
⋃
Dn for all n ∈ N

and A = f −1(B). Since f is d-continuous, f −1(U) ∈ σi for all n ∈ N and U ∈ Dn. Moreover, by the
d-continuity of f , we obtain σi-cl(A) ⊂ f −1(ρi-cl(B)) ⊂ f −1(

⋃
Dn) for all n ∈ N. Then, (DA

n )n∈N is
the sequence of σi-open covers of σi-cl(A) where DA

n = { f −1(U) : U ∈ Dn} for each n ∈ N. Since
(X, σ1, σ2) is an i j-ASM bispace, then there is a CA

n ⊂ D
A
n such that CA

n is finite for all n ∈ N, and
A ⊂

⋃
n∈N

⋃
V′∈CA

n
σ j-cl(V ′) holds. We can choose a UV′ ∈ Dn such that V ′ = f −1(UV′) for all V ′ ∈ CA

n

and n ∈ N. Let Cn = {UV′ : V ′ ∈ CA
n }. Then each Cn is the finite subset ofDn for all n, and

B = f (A) ⊂ f (
⋃
n∈N

⋃
V′∈CA

n

σ j-cl(V ′))

⊂
⋃
n∈N

⋃
V′∈CA

n

ρ j-cl( f (V ′))

=
⋃
n∈N

⋃
V∈Cn

ρ j-cl(V)

which concludes that (Y, ρ1, ρ2) is i j-ASM. �

Definition 2.7. [52] A mapping f : (X, σ1, σ2) → (Y, ρ1, ρ2) is 12-continuous if f ∗ : (X, σ1) → (Y, ρ2)
is continuous.

Proposition 2.2. Let (X, σ1, σ2) be 12-ASM bispace and f : (X, σ1, σ2)→ (Y, ρ1, ρ2) is 21-continuous.
If σ2 ≤ σ1, then (Y, ρ1, ρ2) is 12-ASM.

Definition 2.8. [53] Let (X, σ1, σ2) and (Y, ρ1, ρ2) be bispaces and f : (X, σ1, σ2) → (Y, ρ1, ρ2) be a
mapping. f is i j-strongly-θ-continuous if each x ∈ X and every U ∈ ρi such that f (x) ∈ U, there exists
an open set V ∈ σi such that x ∈ V and f (σ j-cl(V)) ⊂ U.

Clearly, if f is an i j-strongly-θ-continuous mapping, then f is i-continuous.
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Theorem 2.6. Let (X, σ1, σ2) and (Y, ρ1, ρ2) be bispaces, and f : (X, σ1, σ2)→ (Y, ρ1, ρ2) is i j-strongly-
θ-continuous and surjective. Then, (Y, ρi) is SM.

Proof. Let B ⊂ Y and (Dn)n∈N be a sequence of ρi-open covers of ρi-cl(B). Let A = f −1(B) and x ∈ σi-
cl(A). We obtain f (x) ∈ f (σi-cl( f −1(B))) = ρi-cl(B) for all x ∈ σi-cl(A), since f is i-continuous. Then,
we can choose a Un

x ∈ Dn such that f (x) ∈ Un
x for each n ∈ N. Since f is i j-strongly-θ-continuous,

there is a σi-open Vn
x such that x ∈ Vn

x and f (σ j-cl(Vn
x )) ⊂ Un

x . Then, (DA
n )n∈N is a sequence of σi-open

covers of σi-cl(A) where DA
n = {Vn

x : x ∈ σi-cl(A)}. Since (X, σ1, σ2) is i j-ASM, there is CA
n ⊂ D

A
n

such that CA
n is a finite subset for each n ∈ N providing that A ⊂

⋃
n∈N

⋃
CA

n . Let Fn be a finite subset
of σi-cl(A) for each n ∈ N and let CA

n = {Vn
x : x ∈ Fn}. Then, Cn = {Un

x : x ∈ Fn} is the finite subset of
Dn for each n ∈ N. Indeed, we have

f ( f −1(A)) = B ⊂ f (
⋃
n∈N

⋃
x∈Fn

σ j-cl(Vn
x ))

⊂
⋃
n∈N

⋃
x∈Fn

f (σ j-cl(Vn
x ))

⊂
⋃
n∈N

⋃
x∈Fn

Un
x

=
⋃
n∈N

⋃
Cn.

So, (Y, ρi) is SM. �

Since every i j-strogly-θ-continuous mapping is i-continuous, we can give the following result.

Corollary 2.2. If f : (X, σ1, σ2)→ (Y, ρ1, ρ2) is an i-continuous mapping, and (X, σ1, σ2) is i j-regular
and an i j-ASM bispace, then (Y, ρi) is SM.

What about the pre-images of i j-ASM bispaces? We need some definitions for looking at the
behavior.

Definition 2.9. [45] Let (X, σ1, σ2) and (Y, ρ1, ρ2) be bitopological spaces. A mapping f : X → Y is
called d-closed if induced mappings fi : (X, σi)→ (Y, ρi) are closed for i = 1, 2.

Definition 2.10. A bispace (X, σ1, σ2) is called d-compact if the spaces (X, σi) are compact for i = 1, 2.

Definition 2.11. [54] Let (X, σ1, σ2) and (Y, ρ1, ρ2) be bispaces and f : X → Y is d-closed and
d-continuous mapping. f is called perfect if for all y ∈ Y, the set f −1(y) is d-compact in X.

Definition 2.12. [55] Let (X, σ1, σ2) and (Y, ρ1, ρ2) be bispaces and f : X → Y be a mapping. f is
called i j-preopen if f (V) ⊂ ρi − int(ρ j − cl( f (V))) for all V ∈ σi.

Proposition 2.3. [56] f : (X, σ1, σ2) → (Y, ρ1, ρ2) is an i j-preopen mapping if and only if f −1(ρi −

cl(U)) ⊂ σi − cl( f −1(U)) for all U ∈ ρi.

Theorem 2.7. Let (Y, ρ1, ρ2) be i j-ASM, and f : (X, σ1, σ2) → (Y, ρ1, ρ2) is a perfect ji-preopen
mapping. Then, (X, σ1, σ2) is i j-ASM.
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Proof. Let A ⊂ X and (Dn)n∈N be the sequence of open covers of σi-cl(A). Let B = f (A) ⊂ Y and
y ∈ ρi-cl( f (A)). Then, there is a finite subset Cn

y of Dn for each n ∈ N such that f −1(y) ⊂
⋃
Cn

y . Let⋃
Cn

y = Vn
y . Since f is i-closed, Un

y = Y \ f (X \ Vn
y ) is a ρi-open neighbourhood of y. For every n ∈ N,

let Hn = {Un
y : y ∈ ρi-cl( f (A))}. Then, (Hn)n∈N is a sequence of ρi-open covers of ρi-cl( f (A)). Since

(Y, ρi, ρ j) is i j-ASM, there is finite H∗n ⊂ Hn for all n such that f (A) ⊂
⋃

n∈N
⋃

H∈H∗n ρ j-cl(H). Let
Fn ⊂ f (A) be finite for all n ∈ N and H∗n = {Un

yi
: i ∈ Fn}. Then, D∗n =

⋃
i∈Fn
Cn

yi
⊂ Dn is finite for all

n ∈ N. Then, since f is ji-preopen, we have the following:

A ⊂ f −1( f (A)) ⊂
⋃
n∈N

⋃
i∈Fn

f −1(ρi-cl(Un
yi

))

⊂
⋃
n∈N

⋃
i∈Fn

σ j-cl( f −1(Un
yi

))

⊂
⋃
n∈N

⋃
i∈Fn

σ j-cl(Vn
yi

)

=
⋃
n∈N

⋃
i∈Fn

σ j-cl(∪Cn
yi

)

=
⋃
n∈N

⋃
U∗∈D∗n

σ j-cl(U∗).

Hence, (X, σ1, σ2) is i j-ASM. �

Definition 2.13. A mapping f : (X, σ1, σ2) → (Y, ρ1, ρ2) is called k-continuous if the inverse image of
every ρi-open set is i j-regular open.

Theorem 2.8. A k-continuous surjection image of an i j-ASM bispace is i j-ASM.

3. Union, subspaces and products

We consider the preservation of i j-ASM property under union, subspaces and products in this
section.

Theorem 3.1. Being i j-ASM bispace is closed under countable union.

Proof. Let {(Xn, σ1n, ρ1n) : n ∈ N} be countable family of i j-ASM bispaces and X =
⋃

n∈N Xn. Suppose
that τ and σ are the first and second topologies on X, respectively. Let A ⊂ X and (Dn)n∈N be the
sequence of τ-open covers of τ-cl(A). Without loss of generality, we may assume that An ⊂ Xn for
each n ∈ N such that A =

⋃
n∈N An. Let Nn be an infinite subset of N, Nn ∩ Nm = ∅ for each n,m ∈ N

and N =
⋃

n∈N Nn. Since σin-cl(An) ⊂ τ-cl(A) for each n ∈ N, Sn = (Dk : k ∈ Nn) is the sequence of
σin-open covers of σin-cl(An). Since (Xn, σ1n, ρ2n) is i j-ASM, there is finite Ck ⊂ Dk for each k ∈ Nn

and n ∈ N such that An ⊂
⋃

k∈Nn

⋃
V∈Ck

ρ jn-cl(V) holds. Then D = {
⋃

k∈Nn
σ-cl(Ck) : n ∈ N} is the

desired cover of A. �

Theorem 3.2. Every σi-closed and σ j-open subspace of an i j-ASM bispace is i j-ASM.

Proof. Let (A, σ1A, σ2A) be a σi-closed and σ j-open subspace of i j-ASM (X, σ1, σ2). Let B any subset
of A and (Dn)n∈N be sequence of σiA-open covers of σiA-cl(B). Then we can choose VU for each
U ∈ Dn and n ∈ N such that U = A ∩ VU . LetD∗n = {VU : U ∈ Dn}. Since A is σi-closed, we have

AIMS Mathematics Volume 7, Issue 12, 20579–20593.
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σiA-cl(B) = A ∩ σi-cl(B) = σi-cl(A ∩ B) = σi-cl(B).

Then, (D∗n)n∈N is sequence of σi-open covers of σi-cl(B). Since (X, σ1, σ2) is i j-ASM, there is a
finite subset C∗n of D∗n for each n ∈ N such that

⋃
VU∈C

∗
n
σ j-cl(VU) is a cover of B. Let Cn = {U =

A ∩ VU : VU ∈ C
∗
n} for each n ∈ N. As A ∈ σ j and for all n ∈ N and U ∈ Cn, we have

σ jA(U) = σ jA(A ∩ VU) = A ∩ σ j-cl(VU)

holds and thus B ⊂
⋃

n∈N
⋃

U∈Cn
σ jA-cl(U). Hence (A, σ1A, σ2A) is i j-ASM. �

In this manner, being i j-ASM bispace is not hereditary property as the following example illustrates.

Example 3.1. An i j-ASM bispace whose a subspace is not i j-ASM.

Consider the set X = [0,Ω] is the set of ordinals such that α ≤ Ω for all α ∈ X where Ω denotes
the first uncountable ordinal together with the order topology σ1 and σ2 is the discrete topology on X.
Then the bispace (X, σ1, σ2) is 12-ASM, since (X, σ1) is compact so it is ASM (see [47]). If we consider
the subset Y = X \ {Ω} with its corresponding topologies σ1Y and σ2Y , the bispace (Y, σ1Y , σ2Y) is not
12-AL (see [57]), so by the Theorem 2.3, it is not 12-ASM.

Theorem 3.3. Let (X, σ1, σ2) be i j-ASM bispace and (Y, ρ1, ρ2) be a d-compact bispace. Then (X ×
Y, σ1 × ρ1, σ2 × ρ2) is i j-ASM.

Proof. Let A and B be any subsets of X and Y , respectively, and (Dn)n∈N be any sequence of σi × ρi-
open covers of σi-cl(A) × ρi-cl(B) = σi × ρi-cl(A × B). Without loss of generality, we can assume that
Dn = An × Bn whereDn is a σi-open cover of σi-cl(A), and Bn is a ρi-open cover of ρi-cl(B) for each
n ∈ N. Let x ∈ σi-cl(A). Since Y is ρi-compact, ρi-cl(B) is ρi-compact. Then, we can choose a finite
subset Cn of Dn for each n ∈ N such that {x} × ρi-cl(B) ⊂

⋃
Cn. Say Cn = A

(n)
x × B

(n)
x for all n. If

U (n)
x =

⋂
A

(n)
x , one can observe that

{x} × ρi-cl(B) ⊂
⋃(

(
⋂
A

(n)
x ) × B(n)

x

)
⊂

⋃(
A

(n)
x × B

(n)
x

)
for each n ∈ N. Let Gn = {U (n)

x : x ∈ σi-cl(A)} for each n ∈ N. Then, (Gn)n∈N is a sequence of
σi-open covers of σi-cl(A). Since (X, σ1, σ2) is i j-ASM, there is a finite subset Hn of Gn such that
Hn = {U (n)

xn
k

: k ∈ Fn} where Fn is the finite subset of σi-cl(A) for each n ∈ N, and

A ⊂
⋃

n∈N
⋃
σ j-cl(Hn)

holds. If we chooseD∗n =
⋃(
A

(n)
xn

k
× B

(n)
xn

k

)
, thenD∗n is the finite subset ofDn and we have

A × B ⊂ σi-cl(A) × B ⊂
(⋃

n∈N

⋃
σ j-cl(Hn)

)
× B

⊂
⋃
n∈N

⋃
U∈D∗n

(
σ j × ρ j-cl(U)

)
.

So, (X × Y, σ1 × ρ1, σ2 × ρ2) is i j-ASM. �

Definition 3.1. [6] An open cover D of a topological space (X, σ) is an ω-cover if X < D and each
finite subset of X is contained in some element ofD.
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Theorem 3.4. Let (X, σ1, σ2) be a bispace. The power bitopological space (Xn, σn
1, σ

n
2) (see [58]) is

i j-ASM if and only if for every A ⊂ X and for every sequence (Dn)n∈N of σi-ω-covers of σi-cl(A), there
is a sequence (Cn)n∈N where Cn ⊂ Dn is finite for each n ∈ N and for all finite subset F of A, there is at
least n ∈ N and V ∈ Cn such that F ⊂ σ j-cl(V).

Proof. (⇒) Let A ⊂ X and (Dn)n∈N be a sequence of σi-ω-covers of σi-cl(A). Let Kt be infinite
subset of N with Kt ∩ Kn = ∅ for all t, n ∈ N and N =

⋃
t∈N Kt. For every n ∈ N and k ∈ Kt, let

Dt
k = {U t : U ∈ Dk}. Then (Dt

k)k∈Kt is a sequence of σt
i-open covers of (σi-cl(A))t = σt

i-cl(At). Since
(Xt, σt

1, σ
t
2) is i j-ASM, there is a finite subset Ct

k ⊂ D
t
k for each k ∈ Kt and At ⊂

⋃
k∈Kt

⋃
V∈Ct

k
σt

j-
cl(V) holds. For every k ∈ Kt and V ∈ Ct

k, we can choose UV ∈ Dk such that V = U t
V . Now say

Ck = {UV : V ∈ Ct
k} for each k ∈ Kt. Then, the sequence (Ck)k∈Kt is the desired sequence. It obviously

is that each Ck is finite subset of Dk and if F = {x1, x2, ..., xp} ⊂ A, then there is an at least k ∈ Kp and
V ∈ Cp

k such that (x1, x2, ..., xp) ∈ σp
j -cl(V). On the other hand, V = U p

V for an UV ∈ Dk. Then, we have

σ j-cl(V) = σ
p
j -cl(U p

V) =
(
σ j-cl(UV)

)p

and hence F ⊂ σ j-cl(UV).
(⇐) Let A ⊂ Xt and (Dn)n∈N be a sequence of σt

i-open covers of σt
i-cl(A). Let Dn = {U (n)

k : k ∈ S n}

for each n ∈ N and A = A1 × A2 × ... × At. Let Fp ⊂ σi-cl(Ap) be finite subset for each p ∈ {1, 2, ..., t}.
Then, F1 × F2 × ... × Ft is a finite subset of Xt. Then, there is a finite subset S F1

n ⊂ S n such that
F1 × F2 × ... × Ft ⊂

⋃
k∈S F1

n
U (n)

k . On the other hand, there is a σi-open set VFp for each p ∈ {1, 2, ..., t}

such that Fp ⊂ VFp and VF1 ×VF2 × ...×VFp ⊂
⋃

k∈S F1
n

U (n)
k (see [47]). Then, for all finite subsets FAp of

σi-cl(Ap) for each p ∈ {1, 2, ..., t}, C(p)
n = {VFAp

: FAp ⊂ σi-cl(Ap) is finite } is a σi-ω-cover of σi-cl(Ap)
for each n ∈ N. By assumption, there is finite subset G(p)

n ⊂ C
(p)
n for each n ∈ N and p ∈ {1, 2, ..., t}, and

for every finite subset P of Ap, one can find a n ∈ N and G ∈ G(p)
n such that P ⊂ σ j-cl(G). Let R(p)

n be a
finite index set for each n ∈ N and p ∈ {1, 2, ..., t}. Assume that, G(p)

n = {VFr
Ap

: r ∈ R(p)
n }. In this sense,

if Kn = {k ∈ S
Fr

Ap
n : p ∈ {1, 2, ...t} and r ∈ R(p)

n }, then⋃
n∈N

⋃
k∈Kn

σt
j-cl(U (n)

k ) ⊃ A

holds. To see this, let x = (x1, x2, ..., xt) ∈ A. Then, {xp} ⊂ Ap for each p ∈ {1, 2, ..., t}. Thus, there is
nxp ∈ N and Gxp ∈ G

(p)
nxp

such that {xp} ⊂ σ j-cl(Gxp). Let Gxp = VF
rxp
Ap

for some rxp ∈ R(p)
nxp

. Then, we

have

{(x1, x2, ..., xp)} ⊂ σ j-cl
(
VF

rx1
A1

)
× ... × σ j-cl

(
VF

rxt
At

)
⊂ σt

j-cl
(
VF

rx1
A1
× ... × VF

rxt
At

)
⊂

⋃
k∈S

F
rx1
Ap

n

σt
j-cl(U (n)

k ).

Hence, there is k ∈ Kn such that x ∈ σt
j-cl(U (n)

k ). So, (Xt, σt
1, σ

t
j) is i j-ASM. �

Question 3.1. An i j-ASM bispace (X, σ1, σ2) such that (X2, σ2
1, σ

2
2) is not i j-ASM?
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4. i j-Almost Pγ-sets

The concept of a γ-set was introduced by Gerlits and Nagy in [59]. Later, in [15] Kocev introduced
the concept of an almost γ-set and studied. In this section, we will give the definition of i j-almost
Pγ-set based upon the definitions of γ-set and almost γ-set. We will investigate the characterization
of this class of i j-almost Pγ-sets with i j-regular open sets and their preservation under d-continuous
surjection.

Definition 4.1. Let (X, σ1, σ2) be a bitopological space and A ⊂ X and let D be an infinite σi-open
cover of A. If the set {U ∈ D : x < σ j-cl(U)} is finite for all x ∈ A, then we say that D is an i j-almost
Pγ-cover of A.

Definition 4.2. A bispace (X, σ1, σ2) is called i j-almost Pγ-set (shortly i j-APγS if for all A ⊂ X and
for any sequence (Dn)n∈N of σi-ω-covers of σi-cl(A), there is a sequence (Un)n∈N such that Un ∈ Dn

for each n ∈ N and the set {Un : n ∈ N} is an i j-almost Pγ-cover of A.

Based upon this definiton, We can give following proposition,

Proposition 4.1. Let (X, σ1, σ2) be a bispace. If (X, σ1) is γ-set (see [59]), then (X, σ1, σ2) is i j-APγS .

Remark 4.1. Statement converse in Proposition 4 is not true in general.

Example 4.1. Endow the real line by the two topologies: σ1 is the particular point topology (see
Example 2.3), and σ2 is the indiscrete topology. Then, the bispace (R, σ1, σ2) is clearly 12-APγS ,
while (X, σ1) is not a γ-set.

Theorem 4.1. A bispace (X, σ1, σ2) is i j-APγS if and only if for every A ⊂ X and every sequence
(Dn)n∈N of σi-ω-open covers of σi-cl(A) by i j-regular open subsets of X, there is a sequence (Un)n∈N

such that Un ∈ Dn for each n ∈ N and the set {Un : n ∈ N} is an i j-almost Pγ-cover of A.

Proof. (⇒) It is an obvious consequence from the fact that every i j-regular open set is σi-open.
(⇐) Let (Dn)n∈N be a sequence of σi-ω covers of σi-cl(A). Then, (D∗n)n∈N is the sequence of σi-ω
covers of σi-cl(A) by i j-regular open sets of X whereD∗n = {σi-int(σ j-cl(U) : U ∈ Dn} for eacn n ∈ N.
There exists a sequence (U∗n)n∈N with U∗n ∈ D

∗
n for every n ∈ N and D∗ = {U∗n : n ∈ N} is Pγ-cover of

the set A. On the other hand, we can choose an Un ∈ Dn such that U∗n = σi-int(σ j-cl(Un). Then, one
can easily see thatD = {Un : n ∈ N} is the desired cover of A. Hence, (X, σ1, σ2) is i j-APγS . �

Theorem 4.2. d-continuous surjection of an i j-APγS bispace is i j-APγS .

Proof. Let (X, σ1, σ2) be i j-APγS and f : (X, σ1, σ2) → (Y, ρ1, ρ2) be a d-continuous surjection. Let
B ⊂ Y , f −1(B) = A, and (Dn)n∈N be a sequence of ρi-ω-open covers of ρi-cl(B) by i j-regular open
subsets of Y . Since f is i-continuous, σi-cl(A) ⊂ f −1(ρi-cl(B)) holds, and (Cn)n∈N is the sequence of
σi-ω covers of σi-cl(A) where Cn = { f −1(U) : U ∈ Dn} for each n ∈ N. Since (X, σ1, σ2) is i j-APγS ,
there is a sequence (Vn)n∈N providing that Vn ∈ Cn for each n ∈ N and C = {Vn : n ∈ N} is i j-almost
Pγ-cover of A. On the other side, there is a Un ∈ Dn such that Vn = f −1(Un) for each n ∈ N. Then,
D∗ = {Un : n ∈ N} is an i j-almost Pγ-cover of B. To see this, let y ∈ B and f (x) = y for some x ∈ A.
Since C is an i j-almost Pγ-cover of A, the set Fx = {Vn ∈ C : x < σ j-cl(Vn)} is finite. Then, there is
n0 ∈ N such that x ∈ σ j-cl(Vn) for all n > n0. Then, f (x) = y ∈ f (σ j-cl(Vn)), and thus y ∈ ρ j-cl(Un)
for all n > n0. Therefore, we conclude that the Fy = {Un ∈ D

∗ : y < ρ j-cl(Un)} is finite, and since C is
infinite,D∗ is infinite. So, (Y, ρ1, ρ2) is i j-APγS . �
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5. Conclusions

In this paper, we dealed with the almost-set-Mengerness in bitopological spaces. Further
investigations may be the similar properties of almost-set-Hurewicz and almost-set-Rothberger
property (we began to investigate) in bitopological spaces. we now give the related definitions as
the followings.

Definition 5.1. A bitopological space (X, σ1, σ2) is called:

(1) i j-almost-set-Hurewicz (for short, i j-ASH) if for all A ⊂ X and for every sequence (Dn)n∈N of
σi-open covers of σi-cl(A) there is a sequence (Cn)n∈N such that Cn is a finite subset ofDn and each
x ∈ A belongs to all but finitely many sets σ j-cl(∪Cn). (in other words, the set {∪Cn : n ∈ N} is
i j-almost Pγ-cover of A.)

(2) i j-almost-set-Rothberger (i j-ASR) if for all A ⊂ X and for every sequence (Dn)n∈N of σi-open
covers of σi-cl(A) there is a sequence (Un)n∈N such that Un ∈ Dn and A ⊂

⋃
n∈N σ j-cl(Un).

Also, we give the definition of an i j-weakly-set-Menger bispace as follows:

Definition 5.2. (X, σ1, σ2) is said to be i j-weakly-set-Menger (for short, i j-WSM) if for all A ⊂ X
and for every sequence (Dn)n∈N of σi-open covers of σi-cl(A), there is a sequence (Cn)n∈N such that
Cn ⊂ Dn is a finite subset for each n ∈ N and A ⊂ σ j-cl

(⋃
n∈N

⋃
Cn

)
It would be interesting to study and investigate the properties of i j-WSM bispaces in bitopological

context as well as the relations between those kind of bispaces and i j-ASM bispaces. Furthermore, if
these properties have game-theoretic characterization can be scrutinized in bitopological context and
those ones can open a way to applicable area. The possible applications of statistical convergence to
the open covers of topological spaces and selection properties were given in [60, 61]. This notions
also can be studied and extended under the convergence in binary metric spaces and their induced
topologies [62]. Also, the results obtained may be generalized to fuzzy bitopological spaces and
associated with the fixed point theory [63, 64].

We also define i j-weakly-set-Hurewicz (i j-WSH) and i j-weakly-set-Rothberger (i j-WSR)
bitopological spaces in a similar way.
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32. L. D. R. Kočinac, Ş. Konca, Set-Menger and related properties, Topol. Appl., 275 (2020), 106996.
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