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1. Introduction

Integration and fractional-order derivatives are the sole topics covered in the mathematical
area known as fractional calculus (FC). Different phenomena in science and engineering may be
described using non-integer order integrations and derivatives, such as fractional integration and
fractional derivatives. L’Hospital asked Leibniz in 1695, “What is the physical meaning of fractional
derivatives?” This subject inspired many well-known scientists of the 18th and 19th centuries to
focus on fractional calculus, which has several applications in applied technology and science [1–4].
Numerous research, including [5–12], have shown that fractional extensions of integer order models
successfully represent real occurrences. The classic derivatives are those that are local. On the other
hand, the Caputo fractional derivative is nonlocal, allowing us to examine changes near a location using
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classical derivatives. We can still analyze changes in an interval using Caputo fractional derivatives.
By virtue of this property, the fractional Caputo operator can be used to model a wider range of
physical phenomena, including steady dynamics [13, 14] , diffusion processes [15], continuum and
numerical kinematics [16], electromagnetism [17], thermoelastic metals [18], plasma physics [19],
spherical flame propagation [20], visco-elastic materials [21], and so on [22–25].

Fractional-order differential problems have been studied for years due to their widespread usage
in applications. Fractional-order partial differential problems are used to explain several phenomena
in the fields of electro-magnetics, viscoelasticity, acoustics, plasma physics, material science, and
electrochemistry. Fractional differential equations have intriguing numerical solutions. For fractional
differential equations, there is no method that provides an exact solution. The only procedures that
can yield approximations are linearization and series solutions [26–29]. Nonlinear phenomena are
present in many engineering and scientific fields, including nonlinear spectroscopy, chemical kinetics,
fluid physics, solid-state physics, quantum mechanics, computational biology, thermodynamics, and
others. Several higher-order nonlinear partial differential equations define the idea of nonlinearity
(PDEs). There are nonlinear models for any physical system that can describe actual occurrences.
The literature has documented the use of integral transform methods for solving fractional differential
equations. Numerous academics have examined specific important methods for solving practical issues
and numerical simulations arising from the novel integral transformation [30–37].

In this article, homogeneous fractional regularized long wave equations are examined. According
to some researchers, these equations are superior than the traditional Korteweg-de Vries (KdV)
equation [38]. To investigate three particular regularized long wave equations, we use the Yang
transformation combinations with the Caputo and Caputo-Fabrizio operators [39]. Following the
production of the analytical findings and analysis of the numerical computations of the results, the
nonlinear regularized long wave equations [40, 41] are obtained.

Dδ
=
ϕ(ψ,=) − ϕψψ=(ψ,=) + ϕψ(ψ,=) + ϕ(ψ,=)ϕψ(ψ,=) = 0, (1.1)

with the initial condition
ϕ(ψ, 0) = 3υ sec h2(δζ), (1.2)

and
Dδ
=
ϕ(ψ,=) − 2ϕψψ=(ψ,=) + ϕψ(ψ,=) = 0, (1.3)

with the initial condition
ϕ(ψ, 0) = e−ψ, (1.4)

and
Dδ
=
ϕ(ψ,=) + ϕψψψψ(ψ,=) = 0, (1.5)

having initial source
ϕ(ψ, 0) = sinψ. (1.6)

Equation (1.1) is called as a general fractional regularized long-wave equation, the Eqs (1.3) and
(1.5) show the regularized fractional long wave equations.

The magnetohydrodynamic waves in plasma, rotating tube flow, stress waves in compressed gas
bubble mixtures, longitudinal dispersive waves in elastic rods, and ion-acoustic waves in plasma
are only a few applications for the regularized long wave equations. In engineering and applied

AIMS Mathematics Volume 7, Issue 11, 20401–20419.



20403

sciences, the regularized long wave equation is a great model for a number of important physical
structures. Researchers study several liquid flow phenomena that call for diffusions, such shock or
viscous conditions. It may be used to solve nonlinear wave diffusion issues and simulate dissipation.
This dissipation may occur via a variety of methods, depending on the problem modeled, including
viscosity, heat conduction, chemical reaction, mass diffusion, thermal radiation, or others [42].
Numerous important engineering phenomena, including minor frequency long and shallow waves,
are described by fractional regularized long wave equations. Many experts in ocean shallow liquid
waves are interested in the nonlinear waves modeled using fractional-order regularized long wave
equations. In the representation of ocean nonlinear waves, fractional regularized long wave equations
were used. In fact, the enormous surface waves of the tsunami are described by fractional regularized
long wave equations. Massive internal waves in the ocean’s core caused by temperature changes that
might sink marine ships could be described as fractional regularized long wave equations in the current,
exceedingly complicated framework.

Using the homotopy perturbation transform approach to resolve fractional-order regularized
long wave equations is the main goal of this study. The fractional partial differential equations
solution methodology provided by the homotopy perturbation transform method makes use of the
Yang transformation approach. The rapid converging series output from the suggested homotopy
perturbation transform technique, which might lead to a closed form solution, is required. As opposed
to the variational iteration technique or the Adomian decomposition method, the proposed approach
solves fractional nonlinear problems without the need of a Lagrange multiplier. By not needing
linearization, predetermined assumptions, perturbation, or discretization, these strategies prevent
round-off errors.

The following is the article: Some fundamental definitions are required to formulate the issue in
Section 2. In Section 3, a unique integral transformation is used to explain the procedure. The primary
findings, graphical representations, and numerical simulations are presented in Section 4. Finally,
Section 5 summaries the significant results of the research investigation.

2. Preliminaries concepts

In this section, we discuss several fundamental ideas, concepts, and terms associated with fractional
derivative operators involving index and exponential decay as a kernel, as well as the specific effects
of the Yang transform.

Definition 2.1. The fractional Caputo derivative is defined as follow [43, 44]:

c
0Dδ
=
F(=) =

 1
Γ(r−δ)

∫ =
0

F(r)(y1)

(=−ϕ)δ+1−r dϕ, r − 1 < δ < r
dr

d=rF(=), δ = r

where Γ show that the gamma function.

Definition 2.2. The fractional Caputo-Fabrizio derivative is defined as follow [43, 44]:

CF Dδ
=

(F(=)) =
(2 − δ)B(δ)

2(1 − δ)

∫ =

0
exp

(
−
δ
(
= − ϕ

)
1 − δ

)
F′(=)d=

where F ∈ H1(a,b) (Sobolev space), a < b, δ ∈ [0, 1] and B(δ) represents a normalization term as
B(δ) = B(0) = B(1) = 1.
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Definition 2.3. The fractional Caputo-Fabrizio integral operator is expressed as [43, 44]:

CFIδ
=

(F(=)) =
2(1 − δ)

(2 − δ)B(δ)
F(=) +

2δ
(2 − δ)B(δ)

∫ =

0
F (ϕ) dϕ

Definition 2.4. The Yang transformation is expressed as follow [43, 44]:

Y[F(ϕ)] = Y (ω) =

∫ ∞

0
F(ϕ) exp

(
−
ϕ

ω

)
dϕ, ϕ > 0.

Following is the Yang transformation of a variety of vital expressions:

Y[1] = ω

Y[ϕ] = ω2

...

Y

[
ϕδ

Γ(δ + 1)

]
= ωδ+1

Definition 2.5. The inverse Yang transformation Y−1 is defined as

Y−1[Y (ω)] = h(=) =
1

2πι

∫ υ+ι∞

υ−ι∞

h
(

1
ω

)
eω=ωdω = Σ residues o f h

(
1
ω

)
eω=ω.

Definition 2.6. The Yang transformation Caputo-Fabrizio operator is given as [43, 44]:

Y
{

c
0Dδ
=

(F(=)), s
}

= ϕ−δQ(s) −
δ−1∑
κ=0

ϕ1−δ−κ(s)F(κ)(0), r − 1 < δ < r, ϕ > 0.

Definition 2.7. The fractional Caputo-Fabrizio Yang transformation derivative is given as [43, 44]:

Y
{
CF
0 Dδ

e(F(ϕ)), ω
}

=
Y[F(ϕ) − ωF(0)]

1 + δ(ω − 1)

3. Road map of the proposed method

Consider the fractional order partial differential equation CF Dδ
=
ϕ(ψ,=) + L(ϕ(ψ,=)) + N(ϕ(ψ,=)) = g(ψ,=),

G(ψ, 0) = h(ψ),
(3.1)

where the term ϕ(ψ,=) represents the source term. Implement Yang transform to Equation (3.2), and
one can achieve

Y[ϕ(ψ,=) − vG(ψ, 0)]
1 + δ(v − 1)

= −Y[L(ϕ(ψ,=)) + N(ϕ(ψ,=))] + Y[g(ψ,=)],

Y[ϕ(ψ,=)] = vh(ψ) − (1 + δ(v − 1))[Y[L(ϕ(ψ,=)) + N(ϕ(ψ,=))] + Y[g(ψ,=)]. (3.2)

AIMS Mathematics Volume 7, Issue 11, 20401–20419.



20405

Applying inverse of Yang transform, we achieve

ϕ(ψ,=) = G(ψ,=) − Y−1[(1 + δ(v − 1))[Y[L(ϕ(ψ,=)) + N(ϕ(ψ,=))] + Y[g(ψ,=)]], (3.3)

where the term ϕ(ψ,=) represents the source term and the given I.C (initial condition). Now, we utilize
HPM:

ϕ(ψ,=) =

∞∑
q=0

ρqϕq(ψ,=). (3.4)

We decompose the nonlinear term N(ϕ(ψ,=)) as

N(ϕ(ψ,=)) =

∞∑
q=0

ρqHq(ϕ), (3.5)

where Hq(ϕ) represents the He’s polynomial and is calculated through the formula:

Hq(ϕ1, ϕ2, ϕ3, · · · , ϕq) =
1

Γ(q + 1)
∂q

∂ρq

N  ∞∑
i=0

ρiϕi


ρ=0

, q = 1, 2, 3, · · · . (3.6)

Putting Eqs (3.4) and (3.5) in Eq (3.3), we achieve

∞∑
q=0

ρqϕq(ψ,=) = G(ψ,=) − ρ

Y−1

(1 + δ(v − 1))Y

L ∞∑
q=0

ρqϕq(ψ,=) + N
∞∑

q=0

ρqHq(ϕ)



 , (3.7)

We achieve the following terms by comparing coefficients of ρ in (3.7):

ρ0 : ϕ0(ψ,=) =ϕ(ψ,=),
ρ1 : ϕ1(ψ,=) =Y−1 [

(1 + δ(v − 1))Y
[
L(ϕ0(ψ,=)) + H0(ϕ)

]]
,

ρ2 : ϕ2(ψ,=) =Y−1 [
(1 + δ(v − 1))Y

[
L(ϕ1(ψ,=)) + H1(ϕ)

]]
,

ρ3 : ϕ3(ψ,=) =Y−1 [
(1 + δ(v − 1))Y

[
L(ϕ2(ψ,=)) + H2(ϕ)

]]
,

...

ρq : ϕq(ψ,=) =Y−1
[
(1 + δ(v − 1))Y

[
L(ϕq(ψ,=)) + Hq(ϕ)

]]
.

(3.8)

Thus, we may write the acquired solution of Equation (3.1) as follows:

ϕ(ψ,=) = ϕ0(ψ,=) + ϕ1(ψ,=) + · · · . (3.9)

Convergence and Error Analysis

The following theorems are based on the method’s mechanism and address the original problem’s
(3.1) convergence and error analysis.

Theorem

Let ϕ(ψ,=) be the exact solution of (3.1) and let ϕ(ψ,=), ϕn(ψ,=) ∈ H and σ ∈ (0, 1), where
H denotes the Hilbert space. Then, the obtained solution

∑∞
q=0 ϕq(ψ,=) will converge ϕ(ψ,=) if

ϕq(ψ,=) ≤ ϕq−1(ψ,=) ∀q > A, i.e., for any ω > 0∃A > 0, such that ||ϕq+n(ψ,=)|| ≤ β,∀m, n ∈ N.
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Proof

We make a sequence of
∑∞

q=0 ϕq(ψ,=).

ϕ0(ψ,=) =ϕ0(ψ,=),
ϕ1(ψ,=) =ϕ0(ψ,=) + ϕ1(ψ,=),
ϕ2(ψ,=) =ϕ0(ψ,=) + ϕ1(ψ,=) + ϕ2(ψ,=),
ϕ3(ψ,=) =ϕ0(ψ,=) + ϕ1(ψ,=) + ϕ2(ψ,=) + ϕ3(ψ,=),

...

ϕq(ψ,=) =ϕ0(ψ,=) + ϕ1(ψ,=) + ϕ2(ψ,=) + · · · + ϕq(ψ,=),

(3.10)

To get the desired result, we have to prove that ϕq(ψ,=) forms a ”Cauchy sequence.” Further, let us
take

||ϕq+1(ψ,=) − ϕq(ψ,=)|| = ||ϕq+1(ψ,=)|| ≤ σ||ϕq(ψ,=)|| ≤ σ2||ϕq−1(ψ,=)|| ≤ σ3||ϕq−2(ψ,=)|| · · ·
≤ σq+1||ϕ0(ψ,=)||.

(3.11)

For q, n ∈ N, we acquire

||ϕq(ψ,=) − ϕn(ψ,=)|| =||ϕq+n(ψ,=)|| = ||ϕq(ψ,=) − ϕq−1(ψ,=) + (ϕq−1(ψ,=) − ϕq−2(ψ,=))
+ (ϕq−2(ψ,=) − ϕq−3(ψ,=)) + · · · + (ϕn+1(ψ,=) − ϕn(ψ,=))||
≤||ϕq(ψ,=) − ϕq−1(ψ,=)|| + ||(ϕq−1(ψ,=) − ϕq−2(ψ,=))||

+ ||(ϕq−2(ψ,=) − ϕq−3(ψ,=))|| + · · · + ||(ϕn+1(ψ,=) − ϕn(ψ,=))||
≤σq||ϕ0(ψ,=)|| + σq−1||ϕ0(ψ,=)|| + · · · + σq+1||ϕ0(ψ,=)||
=||ϕ0(ψ,=)||(σq + σq−1 + σq+1)

=||ϕ0(ψ,=)||
1 − σq−n

1 − σq+1σ
n+1.

(3.12)

Since 0 < σ < 1, and ϕ0(ψ,=) is bounded, let us take β = 1 − σ/(1 − σq−n)σn+1||ϕ0(ψ,=)||, and we
obtain Thus, {ϕq(ψ,=)}∞q=0 forms a “Cauchy sequence” in H. It follows that the sequence {ϕq(ψ,=)}∞q=0
is a convergent sequence with the limit limq→∞ ϕq(ψ,=) = ϕ(ψ,=) for ∃ϕ(ψ,=) ∈ H . Hence, this ends
the proof.

Theorem

Let
∑k

h=0 ϕh(ψ,=) is finite and ϕ(ψ,=) represents the obtained series solution. Let σ > 0 such that
||ϕh+1(ψ,=)|| ≤ ||ϕh(ψ,=)||, then the following relation gives the maximum absolute error.

||ϕ(ψ,=) −
k∑

h=0

ϕh(ψ,=)|| <
σk+1

1 − σ
||ϕ0(ψ,=)||. (3.13)
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Proof

Since
∑k

h=0 ϕh(ψ,=) is finite, this implies that
∑k

h=0 ϕh(ψ,=) < ∞.
Consider

||ϕ(ψ,=) −
k∑

h=0

ϕh(ψ,=)|| =||
∞∑

h=k+1

ϕh(ψ,=)||

≤

∞∑
h=k+1

||ϕh(ψ,=)||

≤

∞∑
h=k+1

σh||ϕ0(ψ,=)||

≤σk+1(1 + σ + σ2 + · · · )||ϕ0(ψ,=)||

≤
σk+1

1 − σ
||ϕ0(ψ,=)||.

(3.14)

This ends the theorem’s proof.

4. Applications

4.1. Example

Initially, we implement the Yang transform method with the help of the Caputo derivative to solve
the initial condition of problem (1.1). By applying the Yang transformation, we achieved

ϕ(ψ,$) = $δY
[
ϕψψ=(ψ,=) − ϕψ(ψ,=) − ϕ(ψ,=)ϕψ(ψ,=)

]
+$2ϕ(ψ, 0). (4.1)

We apply the Yang perturbation transformation technique to analysis Eq. (4.1), we get

∞∑
=0

ρ ε̃ (ψ,$) =ρ$δY


 ∞∑
=0

ρ ϕ (ψ,=)


ψψ=

−

 ∞∑
=0

ρ ϕ (ψ,=)


ψ

 − ρ$δY


 ∞∑
=0

ρ Ψ (ψ,=)


 +$2ϕ(ψ, 0).

(4.2)

Now we apply inverse Yang transformation to Eq (4.2), we get

∞∑
=0

ρ ϕ (ψ,$) =ρY−1

$δY


 ∞∑
=0

ρ ϕ (ψ,=)


ψψ=

−

 ∞∑
=0

ρ ϕ (ψ,=)


ψ




− ρY−1

$δY


 ∞∑
=0

ρ Ψ (ψ,=)



 + Y−1[$2ϕ(ψ, 0)].

(4.3)
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The Ψ (ψ,$) values in Eq (4.3) are terms show that the non-linear functions in Eq (3.6), and are
investigated as follows:

Ψ0(ϕ) =ϕ0(ϕ0)ψ,
Ψ1(ϕ) =ϕ0(ϕ1)ψ + ϕ1(ϕ0)ψ,
Ψ2(ϕ) =ϕ0(ϕ2)ψ + ϕ1(ϕ1)ψ + ϕ2(ϕ0)ψ,

...

(4.4)

We then achieve the terms of the Caputo operator solution by investigating the associated powers of ρ:

ρ0 : ϕ0(ψ,=) =Y−1[$23υ sec h2(δψ)] = 3υ sec h2(δψ),
ρ1 : ϕ1(ψ,=) =Y−1[$δY[L(ϕ0(ψ,=))]] − Y−1[$δY[Ψ0(ψ,=)]] = 3υδ{1 + 6υδ + cosh(2δψ)}

sech4(δψ) tanh(δψ)
=δ

Γ(δ + 1)
,

ρ2 : ϕ2(ψ,=) =Y−1[$δY[L(ϕ1(ψ,=))]] − Y−1[$δY[Ψ1(ψ,=)]] = −
3
32
υδ2{−8 − 96υ − 576υ2+

3(−3 − 16υ + 144υ2) cosh(2δψ) + 48υ cosh(4δψ) + cosh(6δψ)} sech8(δψ)
=2δ

Γ(2δ + 1)
,

...

(4.5)

The analytical solutions of the given problem is

ϕ(ψ,=) =

(
3υ sech2(δψ) + 3υδ{1 + 6υδ + cosh(2δψ)} sech4(δψ) tanh(δψ)

=δ

Γ(δ + 1)
−

3
32
υδ2

{−8 − 96υ − 576υ2 + 3(−3 − 16υ + 144υ2) cosh(2δψ) + 48υ cosh(4δψ) + cosh(6δψ)} sech8(δψ)

=2δ

Γ(2δ + 1)
,+ · · ·

)
,

(4.6)

The exact solution is, ϕ(ψ,=) = 3υ sech2(δ(ψ − (1 + υ)=)).
In contrast, we solve the problem by combining the Yang transformation with the Caputo-Fabrizio
operator. Next, we solve the problem using the Yang transformation:

ϕ(ψ,$) = (1 + δ($ − 1))Y
[
ϕψψ=(ψ,=) − ϕψ(ψ,=) − ϕ(ψ,=)ϕψ(ψ,=)

]
+$2ϕ(ψ, 0). (4.7)

To Eq (4.7), we apply the Yang perturbation transform method and obtain as

∞∑
=0

ρ ϕ (ψ,$) =ρ(1 + δ($ − 1))Y


 ∞∑
=0

ρ ϕ (ψ,=)


ψψ=

−

 ∞∑
=0

ρ ϕ (ψ,=)


ψ


− ρ(1 + δ($ − 1))Y


 ∞∑
=0

ρ Ψ (ψ,=)


 +$2ϕ(ψ, 0).

(4.8)
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By taking the inverse YT of Eq (4.8), we get

∞∑
=0

ρ ϕ (ψ,=) =ρY−1

(1 + δ($ − 1))Y


 ∞∑
=0

ρ ϕ (ψ,=)


ψψ=

−

 ∞∑
=0

ρ ϕ (ψ,=)


ψ




− ρY−1

(1 + δ($ − 1))Y


 ∞∑
=0

ρ Ψ (ψ,=)



 + Y−1[$2ϕ(ψ, 0)].

(4.9)

The Ψ (.) terms in Eq (4.9) are the nonlinear polynomials described in Eq (3.5). By repeating the
methods for nonlinear polynomials, we arrive at the following results:

ρ0 : ϕ0(ψ,=) =Y−1[$23υ sec h2(δψ)] = 3υ sec h2(δψ),
ρ1 : ϕ1(ψ,=) =Y−1[(1 + δ($ − 1))Y[ϕ0(ψ,=)]] − Y−1[(1 + δ($ − 1))Y[Ψ0(ψ,=)]]

= −3υδ{1 + 6υδ + cosh(2δψ)} sech4(δψ) tanh(δψ)
{
1 + δ= − δ

}
,

(4.10)

ρ2 : ϕ2(ψ,=) = Y−1[(1 + δ($ − 1))Y[ϕ1(ψ,=)]] − Y−1[(1 + δ($ − 1))Y[Ψ1(ψ,=)]] =

−
3
32
υδ2{−8 − 96υ − 576υ2 + 3(−3 − 16υ + 144υ2) cosh(2δψ) + 48υ cosh(4δψ) + cosh(6δψ)} sech8(δψ){

(1 − δ)2δ= + (1 − δ)2 +
δ2=2

2

}
,

...

(4.11)

Now find the solution, based on the Caputo-Fabrizio operator, the analytical result is given as:

ϕ(ψ,=) =

n∑
σ=0

ϕσ(ψ,=)

=3υ sech2(δψ) − 3υδ{1 + 6υδ + cosh(2δψ)} sech4(δψ) tanh(δψ)
{
1 + δ= − δ

}
−

3
32
υδ2{−8 − 96υ − 576υ2 + 3(−3 − 16υ + 144υ2) cosh(2δψ) + 48υ cosh(4δψ) + cosh(6δψ)} sech8(δψ){

(1 − δ)2δ= + (1 − δ)2 +
δ2=2

2

}
+ · · ·

(4.12)

The exact solution is (δ = 1) solution, ϕ(ψ,=) = 3υ sech2(δ(ψ − (1 + υ)=)).
The analytical solution the fractional-order regularized long wave equations with the help of

homotopy perturbation transform method. Example 4.1 is graphical simulation is shown in Figure
1 (a) the exact and (b) the analytical solution at δ = 1. Figure 1 is a graphical depiction of the solution
acquired by the offered methods and the exact outcome of Example 4.1. Figure 1, (c) and (d) show that
depicts the results of proposed techniques with different fractional order δ, respectively.
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Figure 1. Example 4.1 solutions figure (a) Actual result (b) Analytic result at δ = 1, (c)
Analytic result at different fractional-order of δ (d) = = 0.5.

4.2. Example

Second, we employ the Yang transform method with the help of the Caputo derivative to solve the
initial condition of problem (1.5). The result of applying the Yang transformation is:

ϕ(ψ,$) = $δY
[
2ϕψψ=(ψ,=) − ϕψ(ψ,=)

]
+$2ϕ(ψ, 0). (4.13)

We apply the Yang perturbation transformation technique to investigate Eq (4.13), we get

∞∑
=0

ρ ϕ (ψ,$) =ρ$δY


 ∞∑
=0

ρ ϕ (ψ,=)


ψψ=

−

 ∞∑
=0

ρ ϕ (ψ,=)


ψ

 +$2ϕ(ψ, 0). (4.14)

Now we use inverse Yang transformation to Eq (4.14), we get
∞∑
=0

ρ ϕ (ψ,=) =ρY−1

$δY


 ∞∑
=0

ρ ϕ (ψ,=)



 + Y−1

[
$2ϕ(ψ, 0)

]
. (4.15)

AIMS Mathematics Volume 7, Issue 11, 20401–20419.



20411

We then achieve the terms of the Caputo operator solution by investigating the associated powers of ρ:

ρ0 : ϕ0(ψ,=) =Y−1[$2e−ψ] = e−ψ,

ρ1 : ϕ1(ψ,=) =Y−1[$δY[L(ϕ0(ψ,=))]],

=e−ψ
=δ

Γ(δ + 1)
,

ρ2 : ϕ1(ψ,=) =Y−1[$δY[L(ϕ1(ψ,=))]],

=e−ψ
=2δ

Γ(2δ + 1)
,

...

(4.16)

The analytical series form solution is given as

ϕ(ψ,=) = e−ψ + e−ψ
=δ

Γ(δ + 1)
+ e−ψ

=2δ

Γ(2δ + 1)
+ · · · (4.17)

The exact solution is ϕ(ψ,=) = e(=−ψ).
In contrast, we solve the problem by combining the Yang transform with the Caputo-Fabrizio operator.
First, we solve the problem using the Yang transform:

ϕ(ψ,$) = (1 + δ($ − 1))
(
Y

[
ϕψψ=(ψ,=) − ϕψ(ψ,=)

])
+$2ϕ(ψ, 0). (4.18)

To Eq (4.18), apply the Yang perturbation transformation method, we get

∞∑
=0

ρ ϕ (ψ,$) = (1 + δ($ − 1))
(
Y


 ∞∑
=0

ρ ϕ (ψ,=)


ψψ=

−

 ∞∑
=0

ρ ϕ (ψ,=)


ψ

 ) +$2ϕ(ψ, 0). (4.19)

By inverse Yang transform of the above equation, we have

∞∑
=0

ρ ϕ (ψ,=) = ρY−1

(1 + δ($ − 1))Y


 ∞∑
=0

ρ ϕ (ψ,=)



 + Y−1[$2ϕ(ψ, 0)]. (4.20)

Both sides comparing

ρ0 : ϕ0(ψ,=) =Y−1[$2e−ψ] = e−ψ,

ρ1 : ϕ1(ψ,=) =Y−1
[
(1 + δ($ − 1))Y

[
(ϕ0)ψψ= − (ϕ0)ψ

]]
=e−ψ

{
1 + δ= − δ

}
,

ρ2 : ϕ2(ψ,=) =Y−1
[
(1 + δ($ − 1))Y

[
(ϕ1)ψψ= − (ϕ1)ψ

]]
=e−ψ

{
(1 − δ)2δ= + (1 − δ)2 +

δ2=2

2

}
(4.21)

The series form solutions based on Caputo-Fabrizio operator is given as

ϕ(ψ,=) = e−ψ + e−ψ
{
1 + δ= − δ

}
+ e−ψ

{
(1 − δ)2δ= + (1 − δ)2 +

δ2=2

2

}
+ · · · , (4.22)
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The exact solution is ϕ(ψ,=) = e(=−ψ).
The analytical solution the fractional-order regularized long wave equations with the help of

homotopy perturbation transform method. Example 4.2 is graphical simulation is shown in Figure
2 (a) the exact and (b) the analytical solution at δ = 1. Figure 2 is a graphical depiction of the solution
acquired by the offered methods and the exact outcome of Example 4.2. Figure 2, (c) and (d) show that
depicts the results of proposed techniques with different fractional order δ, respectively.

Figure 2. Example 4.2 result figure (a) Actual result, (b) Analytic result at λ = 1, (c) Analytic
result at different fractional-order of δ (d)= = 0.5.

4.3. Example

Finally, we apply the Yang transformation in the sense of Caputo and Caputo-Fabrizio operators to
analysis the problem in Eq (1.5). To Eq (1.5), now use the Yang transformation with the help of Caputo
derivative:

ϕ(ψ,$) = $δY
[
ϕψψψψ(ψ,=)

]
+$2ϕ(ψ, 0). (4.23)
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We apply the Yang perturbation transformation method to analysis equation (4.23), we get

∞∑
=0

ρ ϕ (ψ,$) =ρ$δY


 ∞∑
=0

ρ ϕ (ψ,$)


ψψψψ

 +$2ϕ(ψ, 0). (4.24)

The inverse Yang transformation to Eq (4.24)

∞∑
=0

ρ ϕ (ψ,=) =ρY−1

$δY


 ∞∑
=0

ρ ϕ (ψ,=)



 + Y−1

[
$2ϕ(ψ, 0)

]
. (4.25)

We then achieve the terms of the Caputo operator solution by investigating the associated powers of ρ:

ρ0 : ϕ0(ψ,=) =Y−1[$2 sinψ] = sinψ,
ρ1 : ϕ1(ψ,=) =Y−1[$δY[L(ϕ0(ψ,=))]],

= − sinψ
=δ

Γ(δ + 1)
,

ρ2 : ϕ1(ψ,=) =Y−1[$δY[L(ϕ1(ψ,=))]],

= sinψ
=2δ

Γ(2δ + 1)
,

...

(4.26)

The analytical series form solution to the given problem is

ϕ(ψ,=) = sinψ − sinψ
=δ

Γ(δ + 1)
+ sinψ

=2δ

Γ(2δ + 1)
+ · · · (4.27)

The exact solution is ϕ(ψ,=) = sinψe(−=).
In contrast, we solve the problem by combining the Yang transformation with the Caputo-Fabrizio
operator. Initially, we solve the problem using the Yang transformation:

ϕ(ψ,$) = (1 + δ($ − 1))
(
Y

[
ϕψψψψ(ψ,=)

])
+$2ϕ(ψ, 0). (4.28)

To Eq (4.28), the Yang perturbation transformation method apply. we get

∞∑
=0

ρ ϕ (ψ,$) = (1 + δ($ − 1))
(
Y


 ∞∑
=0

ρ ϕ (ψ,=)


ψψψψ


)

+$2ϕ(ψ, 0). (4.29)

Using the inverse Yang transform of the above equation, we get

∞∑
=0

ρ ϕ (ψ,=) = ρY−1

(1 + δ($ − 1))Y


 ∞∑
=0

ρ ϕ (ψ,=)



 + Y−1[$2ϕ(ψ, 0)]. (4.30)
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On both sides comparing

ρ0 : ϕ0(ψ,=) =Y−1[$2 sinψ] = sinψ,

ρ1 : ϕ1(ψ,=) =Y−1
[
(1 + δ($ − 1))Y

[
(ϕ0)ψψψψ

]]
=sinψ

{
1 + δ= − δ

}
,

ρ2 : ϕ2(ψ,=) =Y−1
[
(1 + δ($ − 1))Y

[
(ϕ1)ψψψψ

]]
=sinψ

{
(1 − δ)2δ= + (1 − δ)2 +

δ2=2

2

}
(4.31)

The series form solution is given as

ϕ(ψ,=) = sinψ + sinψ
{
1 + δ= − δ

}
+ sinψ

{
(1 − δ)2δ= + (1 − δ)2 +

δ2=2

2

}
+ · · · , (4.32)

The exact solution is ϕ(ψ,=) = sinψ exp(−=).

The analytical solution the fractional-order regularized long wave equations with the help of
homotopy perturbation transform method. Example 4.3 is graphical simulation is shown in Figure
3 (a) the exact and (b) the analytical solution at α = 1. Figure 2 is a graphical depiction of the solution
acquired by the offered methods and the exact outcome of Example 4.3. Figure 3, (c) and (d) show that
depicts the results of proposed techniques with different fractional order δ, respectively.
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Figure 3. Example 4.3 solutions figure (a) Actual result, (b) Analytic result at δ = 1, (c)
Analytic result at different fractional-order of δ (d) = = 0.5.

5. Conclusions

In this study, the Yang transform, a modified integral transformation method, is used to determine
the estimated solutions to a set of regularized fractional-order long-wave equations. We resolved the
mentioned issues starting with the fractional Caputo-Fabrizio operator Yang transform. The capacity
of the used system to provide a suitable convergence area for the outcome determines its dependability
and efficacy. The suggested method’s superiority to existing numerical approaches is shown by the
findings’ high accuracy and simplicity. Additionally, we have shown how the Caputo and Caputo-
Fabrizio fractional operators vary when it comes to examining analytical solutions to the example
problems. We presented the data in graphs to demonstrate the suggested method’s accuracy.
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