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1. Introduction

The fractional Gronwall inequalities are effective tools to study the qualitative and quantitative
properties of solution for fractional differential and integral equations [1-21] by giving the explicit
bounds of solutions. Further detail on fractional Gronwall inequalities mainly involving the Riemann-
Liouville fractional integrals [2—16], the Caputo fractional integrals [17], the Hadamard fractional
integrals [18], the Katugampola fractional integrals [19,20], and the generalized proportional fractional
integrals [21].

In [22], the authors produced the -Hilfer fractional derivative as the Riemann-Liouville fractional
derivative and the Caputo fractional derivative. In [23], considering the continuous dependence of
the solution on the order and the initial condition of y-fractional differential equations, the authors
presented the following theorem involving the y-fractional integral operator.

Theorem 1.1. [23] Let u,v be two integrable functions and g continuous with domain [a,b]. Let
W € C'([a, b]) be an increasing function such that '(t) # 0,t € [a,b]. Assume that (1) u and v are
nonnegative; (2) g is nonnegative and nondecreasing. If

u(t) < v() + g(t)f W ()W) = Y(5))* u(s)ds.
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Then

k
u(t) < v(r) + f Z (g(lf)r( Oy (5)0) = s (s)ds, 1 € [a b,
. & T(ak)

More inequalities related to y-fractional integral operator, see [24—26] for details.

As the generalizations of the classical fractional calculus operators, the y-fractional operator (i.e.
the fractional derivative and integral of a function f with respect to another function ¢) has wide
applications and properties [27-34] according to the choice of the y-function, which makes the
Riemann-Liouville, Hadamard, Katugampola, etc fractional integral operators and the properties of
above operators can be unified and considered as a whole.

Motivated by [23], in order to release the limitation of the number of nonlinear terms, new
generalized forms of Theorem 1.1 are presented in this article, which is effective in dealing with
neutral fractional differential equations involving -fractional integral operator.

The organization of this paper is: In Section 2, we give some preliminaries. In Section 3, main
results are obtained. In Section 4, the applications of (1.1) are given. In Section 5, an example is given
to illustrate our result. In Section 6, the paper is concluded.

2. Preliminaries

We introduce some basic definitions and properties of the calculus theory, please see the details
in [27,34].

Definition 2.1. /27, 34] Let f be an integrable function defined on [a,b] and ¢ € C'([a, b)) be an
increasing function with '(t) # 0, ¢t € [a, b]. The left y-Riemann-Liouville fractional integral operator
of order 'y of a function f is defined by

WD = f WO — W)W ()f(s)ds,y > 0.

Definition 2.2. [27,34] Lety € (n — 1,n), f € C"(la, b)) and y € C"([a, b)) be an increasing function
with /() # 0,t € [a, b]. The left y-Caputo fractional derivative of order y of a function f is defined
by

GDLNH® = G170 = )Y () f " (s)ds,

where n = [a] + 1, fI"(s) := (l//(t) d[)”f(t) on [a, b]

Theorem 2.1. [35] Let X be a Banach space, F : X — X be a completely continuous operator. If the
set E(F)={ye X :y=IFyforsomel € [0,1]}is bounded, then F has at least a fixed point.

3. Results
Theorem 3.1. Assume that x,a are integrable and nonnegative functions and b;, j = 1,2,--- ,m are
continuous integrable and nonnegative functions with t € [a,b]. Let € C'([a,b]) be an increasing

Sfunction with y'(t) # 0,t € [a,b]. If

x(t) < a(t) + ﬁl bi() [ W (W) — ()" x(s)ds, (3.1)
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then

x(r) <a(r) + Z bk(t) Z Z in: T(aj T (@), )x-x0(aj,)

J1=1 ja=1 Ji=1

provided that there exist a constant M > 0 such that

M3 3.3 3y Depen-Tefe,)
j|:] jzzl ]n 1 ,]n+1 1 r(ﬂil ajv)
lim =pel0.)

et o r( Z O‘jv)

where o, € {a),az, - ,ay},n € N,b(t) =max{b(t)} <M,j=1,2,--- ,m
Proof. Let

AX(1) = 3 by(0) [ W/ (5)0(0) = W) x(5)ds:
2

Then by (3.1), we get
x(t) < a(t) + Ax(2).

(i) INAGI0E wm)(v- . )amdr,

(3.2)

(3.3)

(3.4)

By the monotonicity of the operators A and (3.1) and mathematical induction, for ¢ € [a, b], we have

x() < a(t)+Ax(t) < a(t) + A(a(t) + Ax(2)) = a(t) + Aa(t) + A%x(t)

n—1
<a(t) + Aa(t) + A*(a(t) + Ax(2))--- < 3 Aka(t) + A"x(¢), 3-5
k=0
i.e.
n—1
x(t) < 3 Ara(r) + A"x(1), (3.6)
k=0
where A%(t) = a(t).
For t € [a, b], by mathematical induction, we will show that
n n g @ ej)r),) T@),) Xp=
Ax() SB'() Y Y - X S [Ty (W) - w»(v 1 )x(T)dT, (3.7)
A==l e (z @)
neN,and lim A"x(r) =0
For n = 1, the conclusion in (3.7) holds naturally. Using the change of variables 8 = ﬁ;)):ﬁ:)) and
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the Beta function ~22X6D _ B(a;, /), we have

A2x(t)

IA

IA

F((lj-l-ﬁj)

A(Ax(t))
z b (0) [ W ()W) — ()" S b,(5) [ v @W(s) - w(@)™ " x(r)drds

J2=1

z bi(t) 3 by (1) [ ()@ —w()® ™ [* 9 (@ (s) — ()2 x(r)drds

J2—

z bi(1) 3 bi(®) [/ @x(0) [T 9 ()W) = ()%™ W(s) - w(r) ™ dsdr

Jl— Jz—
zl bi(1) 3 bi(®) [ @x) [ v ()W) - wa)mn~!
J1 Jj2=1

N1 =Sl W -y tdsar
Z b]l(t) Z b]z(t)f l// (T)X(T)f (1 —9)%1_190’2_1619(1//(1‘) (//(T))a/1+a/2
J1=1 J2=1

m m Ta; @) @),)

Y X by (0by () [Ty (@) - p(m) ™+ x(x)dr

J1=1 ja= 1

b (1) z ; T [Ty @W) - @) x(D)dr, 1 € [a,b].

For t € [a, b], we can suppose

& Tl (@)xxT(@;,)

A bW L 5 D ((300) [ @) - s\ soar.
Jk= aj,

J1=1 ja=1

For n = k + 1, using the non-increasing properties of b;(¢), j = 1,2,--- ,m,t € [a, b], we have

Ak+1x(t)

Since b(t),j = 1,2,---

AAX) < 3 b @) [0S0 = () s ()

Jk+1=
X 3o 5 T [y () - w5 e
= ()

k+1

IA

P 3 ey Moo ) | Voo - st xer.
iz aim ()

v=1

such that b(r) = max{b;(t)} <M, j=1,2,--- ,m. So we have

A<M S S o S

Consider the infinite series of number . M" > > --- >

e rame RACIZOR st 5 sar,
h=lp=l e=l (Z"fv)

e I(ajy)-(ej,)

n
n=1 J1=1 ja=1 Jn=1 F( )y ﬂ’jy)
v=1

to the infinite series of number and the asymptotic approximation in [36], we get

AIMS Mathematics

(3.8)

(3.9)

(3.10)

,m are all continuous functions on [a, b], then there exist a constant M > 0

(3.11)

, by virtue of the ratio test
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m F(ajl )F((sz )“‘r(ajn )F(ajnJrl )

Wi 8.5 S

jlzl j2:1 jn:ljnJrl:l r(nilajv)
lim TENTE— — =p €0,1), (3.12)
e § 8§ Moy Ty

n
s At o $a)

v=1

which implies that A”x(¢) is convergent. Hence the conclusion in (3.2) holds.
Theorem 3.2. Under the hypotheses of Theorem 3.1 and let a(t) be a nondecreasing function for
t € la,b). Then

Ilaj) (@), )xxI(a,)

(Za ) f Y ()W) - lﬂ(r))(” o 1)dr]. (3.13)

s i+ Lo 3 3

J1=1 Ji=1

Proof. Since a(t) ia a nondecreasing function, for a, j = 1,2, -- ,m, then we get

k+1

@ - s ande < aw [ oo - sl e

<
o ("*1 ) (3.14)
o W) —yla)t
(£er)
v=1
So from (3.2) and (3.14), we have
« M Tlaj)x-xT(aj,) (kilajv—l)—l
x() < a(n)+ Z b (1) 21 21 W | v @@ - gt a(dt
J1 Jk r aj,—1
y=1 (kil ) | (315)
& Taj)x-xCay) rt,, @y =
= ao[1+ ] Zbk(r) S o 3 M ) - () dr.
J1=1 Jk=1 F( glajv—l)
4. Applications
Consider the following neutral fractional equations involving -fractional integral operator
D) |x(r) - zl ol 8i(t, X(t)| = f(t, x(0)), to,1 € J = [a, ], 4.1)

wherey > 0,y; >0,i=1,2,--- ,L
(Hy) For the functions f, g; € C(J X R, R), there are some constants ¢;, ¢ > 0 such that

llgi(t, 9) — gi(t, Pl < cillp —ll, | f (@) = f(t, ol <cllg—¢ll, 1€ J. 4.2)

(H?) For the functions f, g; € C(J X R, R), there are some constants c;, ¢ > 0 such that

ligi(z, DI < (L +1lglD,  f (Pl < (L +lglD), t € J.

1
_ ciW@)-y@) | c@b)—y(@)”
(Hp) H = ; o~ T Torh < 1.

By using Definitions 2.1 and 2.2, we get the following result.
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Lemma 4.1. Under the hypotheses (H,), (H,). x(t) satisfies (4.1) if and only if x(t) satisfies the equality

x(t) = X(1) + Zl] ,OILZ"g,-(t, x(1)) + tol:;f(t, x(1)), to,t € J, 4.3)
i=1

where

1
X(to) = x(to) + ) 11} gilt0, x(19)).
i=1

Theorem 4.1. Under the hypotheses (H,),(H,). Then (4.1) has a unique solution on J.

Proof. For x € C(J,R), denote by

B, ={xeC'(J,R:|xl <r},r>0

with z
i) —y(a)  c(b) — Y(a))”
o + [ Y SO T WO ROV,
p (it 1D Iy+1)
On B,, we define the operator I'x as
)
Tx)(@) = X(1o) + Z tolg"gi(t, x(1)) + tollf (t, x(1)), to, 1 € J. 4.4)
i=1
By (H,), (H;), we have
1
IOl < [IX(0)ll + ; IItolz’gf(t, x(O)Il + IIzOIZf(t, x())ll
1
< Xl + X% tolfciIIXIl + tOIlCIIXII
C O 43)
< Xl + [El e + |
l
B —Y@)i | cWb)-Y@)”
< IX()Il + [z} OOl WP | < 1, 1ot €,
Then for x,y € C(J,R), by (H,), we get
!
ITx =Tyl = |l ; [tolz'gi(t, x(1) — zoll'gi(t, y)l + [tollf (¢, x(2)) — tollf (&, ylll
=
< ; tolz’llgi(l, x(1)) — gi(t, yO)ll + zollllf(t, x(1) — f(@&, y@)ll
l
Yi Y
< E woly cillx = yll + 4 Lcllx =yl 4.6)

IA

| % cin )1+ e, I 1]llx =y

1

IA
~1

W) | cWO-v(t))
[Z T(y+1) T(y+1) ]”x_y”
< Hlx-yll <llx =yl

i.e. the operator I has a unique solution on J.
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Theorem 4.2. Under the hypotheses (H}), (H,). Then (4.1) has at least one solution on J.
Proof. Consider the Cauchy problem (4.1). Define the operator I as in (4.4).

Claim 1: T is continuous. Let x, be a sequence such that x, — x € C'(J,R). Then since g;, f are
continuous and (H7), then we have

A

1
ITx,) (@) = T < 21 iy 1y L8t Xu(1)) — it XA + iy L Lf (2, % (2)) = £ (2, XD
= 4.7)

IA

1
g Zcily1+ col)1]llx = x,ll > 0, € J.

Thus (T'x,) — (I'x) in C'(J,R) and T is continuous.

Claim 2: I" maps bounded sets into bounded sets in C!(J, R). Denote by B, as in Theorem 4.1. Then
as (4.5), we get that ||(T'x)|| < r, ¢ € J, which implies that ||l'x|| < r and the operator I' is uniformly
bounded.

Claim 3: T maps bounded sets into equi-continuous sets of C'(J,R). For any x € B,, where B, is
defined as in Claim 2. As t; — 1, for ¢, 1, € J, we have

|(Tx)(22) — X))
1
;1 |[tolligi(t27 -x(t2)) tolllgl(tb X(tl)) | + |t0 f(tZa X(IQ)) 1o ,pf(tl’ .X(tl))l

IA

IA

il s L W) = w(s) ™ = ) = w(s)) W (s)gi(s, X())lds
+ [T 1@ (n) = w(s) ™'y (5)gi(s, X(5))lds]

L @) = g™ = (t) = Y)Y~ ()£ (s, x(5))ldls
" f () = w() ™ ()£ (s, x(s)lds]
,21 £ o (9)gils, (s + 7 m) I @) = gy (5)giCs, x(s))lds]
5L W () (s, x(Dlds + s [ 1@W(02) — ()9 () f (s, x(5))lds]
,:1 |75 [ W $)eil + Ix(s)Dds + 7 7 1W(02) = () ()ei(1 + x(s)lds]
+ 75 [ w (e + x(lds + 75 [ Wn) = w(s) 'y (s)e(l + |x(s)lds]
B 9G [ v s + 5GR [Fwe) =) (s)ds]
| fo v (s + o [P W) — ()Y~ (s)ds|
2 [ ) - ) + e

A2 (1)) — g (ng)) + LT |

Thus ||Tx)(%) — Tx)(#)|| — 0, as f; — f. As a consequence of Claims 1-3, it follows that T" :
C'(J,R) — C'(J,R) is continuous and completely continuous.

Claim 4: We show that the set K = {x € C'(J,R) : x = AI'x for some 0 < A < 1} is bounded. Let
x € K, then x = AI'x for some 0 < A < 1. Thus we have

IA

4.8)

IA

IA

N+

IA

x(1) = A X(to) + > o) 8i(t, x(0) + o I £t X(0) |, to,1 € (4.9)
i=1
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By (H7), we have

l
Xl < ||X(t0)||+;||tolligi(t’x(t))”+||tollf(t»x(t))”

IA

X (2ol + Z ol it x()I] + zollllf(f, x)Il (4.10)

IA

IX (o)l + ; ci 1+ eIl + z WLl + o LellxO, 0.1 € U,
and Theorem 3.2 implies that

1
ol < (XUl + X cadj' 1+ e Tj1)

T(a), )>< XT(@j,)

1+ 3 S 3 [ VW - uyE ™ r]

k=1 J1=1 Ji=1 F(Z aj,)

)
= (IXGo)ll + Z]lci,oll’l + e, 1)1+ z £y

J1=1

4.11)

T(aj, T(aj,)%-xT(a;,)

L (3 )
b —1
X3 EIEs W(b) —y(ay =",

where C = max{cy, -+, ¢, c}, @ € {yi, -+ ,¥, v}k € N and which shows that the set K is bounded.
By Theorem 2.1, the operator I" has a fixed point, which is a solution of problem (4.1).

5. An example

Consider the following neutral y-fractional differential equation
TD[x(0) — 11 gi(t, x(1)] = f(t, x(1)), t € J = [1,6], (6.1

where y = 3,7] = 4,i =1,g:(t, x(2)) = —smx(t) f(t, x(1) = l’”arctanx(t) Then gy, f are continuous
and satisfy the assumptions (H), (H,) with y(¢) = Vi,ep =L, ¢ = @ and

’

5
QW) )" | cwn) ~y@)’ _ Vo (V6 - 1)t  In6 (V6 - 1)
T(y1 + 1) T(y +1) 5 rh 4T

=0.8918 < 1.

Then by Theorem 4.1, (5.1) has a unique solution x(#) on the interval [1, 6].
By Theorem 4.2, (5.1) also has at least one solution x(¢) on the interval [1, 6].

6. Conclusions

In this paper, we obtained a new generalized Gronwall inequality involving y-ractional integral
operator that include the results in [23]. Furthermore, the Riemann-Liouville, the Hadamard, the
Katugampola fractional integrals etc can be considered uniformly. The feasibility of the main results
is checked by considering the existence of solutions of a type of neutral fractional differential
equation involving y-fractional derivative. In the future, we will consider the stabilities for the neutral
Y-fractional differential equation.
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