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Abstract: A repeatedly infected person is one of the most important barriers to malaria disease
eradication in the population. In this article, the effects of recurring malaria re-infection and
decline in the spread dynamics of the disease are investigated through a supervised learning based
neural networks model for the system of non-linear ordinary differential equations that explains the
mathematical form of the malaria disease model which representing malaria disease spread, is divided
into two types of systems: Autonomous and non-autonomous, furthermore, it involves the parameters
of interest in terms of Susceptible people, Infectious people, Pseudo recovered people, recovered
people prone to re-infection, Susceptible mosquito, Infectious mosquito. The purpose of this work
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is to discuss the dynamics of malaria spread where the problem is solved with the help of Levenberg-
Marquardt artificial neural networks (LMANNs). Moreover, the malaria model reference datasets are
created by using the strength of the Adams numerical method to utilize the capability and worth of
the solver LMANNs for better prediction and analysis. The generated datasets are arbitrarily used
in the Levenberg-Marquardt back-propagation for the testing, training, and validation process for the
numerical treatment of the malaria model to update each cycle. On the basis of an evaluation of the
accuracy achieved in terms of regression analysis, error histograms, mean square error based merit
functions, where the reliable performance, convergence and efficacy of design LMANNs is endorsed
through fitness plot, auto-correlation and training state.

Keywords: neural networks; Levenberg-Marquardt artificial neural networks; supervised learning
Mathematics Subject Classification: 68T07, 92B20

1. Introduction

Malaria is a mosquito-borne disease that is spread by one-celled Plasmodium parasites [1].
Malaria’s ability to continue increasing mortality and morbidity causes significant public health and
economic challenges in developing countries [2]. About two billion people are constantly at risk
of infection around the world [3], some areas of Africa have been severely affected, with children
and women making up the majority of the victims. Malaria kills at least one millions of people
per year in Sub-Saharan Africa, according to the World Health Organization (WHO) and it has the
potential to become even worse as a result of climate change and the (HIV) [4,5]. Malaria spread
in humans by bites from an infected anopheles Mosquito. Medical symptoms including discomfort,
headaches, body aches, fever, nausea, sweats and vomiting appear a few days after the bites. After a
blood meal, mosquitoes collect infection from an infected person. Malaria is a life-threatening disease
that can be prevented and treated if caught early. Current methods of controlling the disease include
pesticides, medicines, treated bed nets and treatments to prevent the disease. In certain areas, these
measures resulted in significant reductions in morbidity and mortality [6]. However, if the disease is
not managed appropriately and treated, symptoms may worsen. The most significant impediment to
malaria elimination is the occurrence of recurring malaria, which can be categorized as relapse and
re-infection [7,8]. On the other hand, the appearance of the relapse symptoms of recurrence of non-
parasites in the liver, such as later the parasites have cleared their blood [9–11]. Reinfection, on the
other hand, is not caused by medication failure; rather, it is the recurrence of malaria diseases reported
by parasite infection from innovative infectious mosquito bites.

Various mathematical models (see, for example, [12–15]), which describe the dynamic transmission
of malaria population has evolved since the early works of May and Anderson [16], Macdonald [17],
and Ross [18]. Anguelov et al. [12] suggested a mathematical model that would use sterile insect
technology to reduce the number of wild lady anospheles mosquitos. Ghosh [13] has developed a
model of the dynamics of malaria with this assumption after the density of the mosquito population
increased in terms of the attractiveness of the environment. The authors of [14] used the stability
principle of differential equations to investigate malaria dynamic behavior with nonlinear infection
forces. Niger and Gumel [19] developed a deterministic model to evaluate the impact of re-infection
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on the dynamics of malaria transmission. The impact of relapse on the slow and fast dynamics of a
malaria disease model were studied by Li et al. [20]. The authors of [21] investigated a malaria model
in which the recovered people not only arrival to the susceptible individuals class, but also back to
the infectious individuals class (relapse). A number of many other mathematical malaria models of
relapse have been discussed in the works [22–24]. However, we have implemented a complex model
of six classes based on the current scenarios, Susceptible people (S 1), infectious people (I1), pseudo
recovered people (R1), Recovered people prone to re-infection (R2), mosquito Susceptible (S 2) and
mosquito infection (I2) classes, i.e. malaria model for numerical investigation [25]. Recently, the
proposed malaria model is mathematically analysis through various methods some of them as [26–29].

The power of artificial intelligence-based computing solvers has been misused, leading to the
widespread application of technology and applied science to estimate and solve many problems.
Recent research in bioinformatics, reactive transport systems, nano-fluidics, atomic physics, plasma
physics, electricity energy, nanotechnology, Van-der-Pol oscillatory systems, entropy optimization
system in the fluid flow system and functional mathematics has been reported to be of paramount
importance (see [30–43] and references cited in it). The above outcomes are motivational affinities
for the malaria model to investigate in the artificial intelligence base, numerical computing solver.
According to our review of the literature, Levenberg-Marquardt artificial neural networks (LMANNs)
have yet to be used to resolve initial value problems (IVBs) of non-linear ordinary differential equation
(ODE) systems that describe malaria dynamics. The following is an emphasis on the revolutionary
contributions of the work to be implemented in malaria models for Levenberg-Marquardt artificial
neural networks (LMANNs).

• The effect of the malaria model, which is expressed by a non-linear system containing six ordinary
differential equations corresponding to the initial value problems (IVPs), is investigated using
the supervised learning infrastructure based on 2 layers structure of the Levenberg-Marquardt
artificial neural networks (LMANNs).
• Using the Adams numerical method, the mean square error (MSE) analysis of computationally

achieved results to compute merit function designed by LMANNs considering six class reference
solutions based on malaria epidemic model performed efficiently by index. Moreover, the
comparative study validates the outcomes attained through the designed solver.
• Levenberg-Marquardt back-propagation is used to carry through validation, testing, and training

in order to obtain decision variables for artificial neural networks (ANNs) for each epoch index
increment. To meet this goal, we have considered a model of six complex classes based on
the Susceptible people (S 1), the infections people (I1), the Pseudo recovered people (R1), the
recovered people prone to re-infection (R2), the susceptible mosquitoes (S2) and the infections
mosquitoes (I2).
• Accurate performance, convergence and reliability of (LMANNs) to resolve the malaria model

with reference dataset for variation of two different parameters are endorsed by correlation,
regression curve and histograms with error analysis and comparative study.

Section 2 provides a brief description of mathematical models of the malaria consisting system of
nonlinear differential equations, LMANNs methodology is given in Sect. 3, the numerical analysis and
discussion are provided in Sect. 4 for various cases of malaria dynamics, we conclude the research
article in the last section.
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2. Modelling of mathematical for malaria models

The following 4 classes of the human population are considered for the development of transmission
dynamics with the rehabilitation and re-infection of the malaria model, namely, the S 1(t) denoted
susceptible people class at time t, I1(t) is an infectious people class, R1(t) denotes a pseudo-recovered
people with the possibility of infection reactivation (relapse), and R2(t) is a recovered people with the
possibility of re-infection. Hence, the total number of human population N1(t) is calculated as follows:
N1(t) = S 1(t) + I1(t) + R1(t) + R2(t), on the other hand, the total number of mosquito population N2(t)
is divided into 2 groups: susceptible class S 2(t) and infectious class I2(t), N2(t) = S 2(t) + I2(t) The
dynamics of malaria transmission, including re-infection and relapse, are defined by the system of
non-linear initial value problem for deterministic mathematical model below;

dS 1

dt
= λ1 −

φ1αS 1(t)V1(t)
N1

− δ1S 1(t), (2.1)

dI1

dt
=
φ1αI2(t)(S 1(t) + τR2(t))

N1
− (ψ + δ1)I1(t) + ηR1(t), (2.2)

dR1

dt
= ρψI1(t) − (η + δ1)I1(t), (2.3)

dR2

dt
= (1 − ρ)ψI1(t) −

φ1ατR2(t)I2(t)
N1

− δ1R2(t), (2.4)

dS 2

dt
= λ2 −

φ2αS 2(t)(I2 + βR1(t)
N1

− δ2S 2, (2.5)

dI2

dt
=
φ2αS 2(t)(I2 + βR1(t))

N1
− δ2I2, (2.6)

S 1[0] = 440, I1[0] = 30, R1[0] = 10, R2[0] = 20, S 2[0] = 950, I2[0] = 50. (2.7)

Where, in the nomenclature table, definitions of each parameter on the malaria model (2.1)–(2.7) are
given. For the dynamics of malaria, a graphical representation of the malaria model is shown in Figure
1 to more evidently decode the information.
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Figure 1. Six classes based deterministic mathematical model of malaria dynamics.

Consider the malaria model equations as a dynamical system

The Eqs (2.8)–(2.14) mathematical explanation of the dynamical system of the malaria model.

dS 1

dt
= 100 − 1.66 × 10−03S 1(t)v1(t) − 5.48 × 10−05S 1(t), (2.8)

dI1

dt
= 1.66 × 10−03I2(t)(S 1(t) + 0.85R2(t)) − 5.48 × 10−07I1(t) + 2.8 × 10−03R1(t), (2.9)

dR1

dt
= 0.0025I1(t) − 2.8 × 10−03I1(t), (2.10)

dR2

dt
= 0.0075I1(t) − 1.42 × 10−03R2(t)I2(t) − 5.48 × 10−05R2(t), (2.11)

dS 2

dt
= 1000 − 9.6 × 10−04S 2(t)(I2 + 0.01R1(t)) − 0.066S 2, (2.12)
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dI2

dt
= 9.6 × 10−04S 2(t)(I2 + 0.001R1(t)) − 0.066I2, (2.13)

S 1[0] = 440, I1[0] = 30, R1[0] = 10, R2[0] = 20, S 2[0] = 950, I2[0] = 50. (2.14)

3. Methodology

This section covers the most important aspects of our proposed mathematical modelling of
performance matrix. Three steps have been used to execute the mathematical modelling: In step one,
the malaria model is evaluated by changing two different parameters, which is pointed to as the input
reference dataset point for FFNN, step two, LMBNNs model layer structure formulation and training
of LMBNNs models is considered. LMBNNs is executed in step three with Levenberg-Marquardt
Solver. A graphical summary of the study presented is shown in Figure 2. It presents the Adams
Predictive Accuracy Method of the system (2.8)–(2.14). To increase the level of accuracy of the results
with the information provided by the predicted results, we first used the predictive solution and then
the whole numerical approach using the Adams method configuration. The predictor-corrector method
(2.8)–(2.14) of the equations may be given as (3.1)–(3.7).

dS 1

dt
= f (t, S 1, I1), S 1(t0) = S 10 , (3.1)

dI1

dt
= f (t, S 1, I1, R1, R2, V2), I1(t0) = I10 , (3.2)

dR1

dt
= f (t, I1, R1), R1(t0) = R10 , (3.3)

dR2

dt
= f (t, I1, R2, I2), S 1(t0) = S 10 , (3.4)

dS 2

dt
= f (t, R1, S 2, I2), S 2(t0) = S 20 , (3.5)

dV2

dt
= f (t, R1, S 2, I2), V2(t0) = V20 . (3.6)

In the case of the first equation of set (3.2)–(3.6), the relation of the predictor 2-step formula is given:

S 1p+1 = S 1p +
3
2

h f (tp, S 1p) −
1
2

h f (tp−1, S 1p−1), (3.7)

While, in the case of the first equation of set (3.2)–(3.6) the 2-step formula of the corrector relationship
is written as:

S 1p+1 = S 1p +
1
2

h f (tp+1, S 1p+1) + f (tp, S 1p), (3.8)
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Figure 2. Procedure for the flow design of the LMANNs Projected Methodology for malaria
model solving.

Accordingly, in set (3.2)–(3.6) the formulas are formulated for the predictive and accuracy method
for the remaining equations. The FFNN data-set can be configured with the Adams numerical method
summarized in Eqs (2.8)–(2.14) to solve the malaria model. However, in the study presented, we have
developed an FFNN data-set using the mathematical NDSolve routine with the algorithm Adams’ for
each scenario of malaria model. To solve each scenario of the malaria model, the layer structure of
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FFNN models with log sigmoid activation function and 40 numbers of neurons in the hidden layer are
used. The architecture designed by FFNN is shown in Figure 3. The Levenberg-Marquardt Method
(LMM) back-propagation is used to train FFNN, which entails explaining the merit function of the
error basis for FFNN-LMM. The merit function of mean square error (MSE) is built on metrics and
objective optimization the function is executed with LMM for each case.

Figure 3. Function fitting neural networks.

The following is a measure of the performance of a mathematical note by AE, merit figure, i.e.
MSE and regression coefficient:

AE = |S q − Ŝ q|, q = 1, 2, 3, 4, · · ·, m, (3.9)

MS E =
1
m

m∑
q=1

(S q − Ŝ q)2, (3.10)

R2 = 1 −

∑m
q=1(S q − Ŝ q)2∑m
q=1(S q − S q)2

. (3.11)

Here, S q, Ŝ q and S q stand for reference, qth estimates the input solution and the means, while the m
represents the total number of grids in the input. The R unit value, i.e., the parameter required for
successful modeling is the square root of R2, and the absolute and mean square error must be equal to
zero for successful modeling scenarios.

4. Numerical results and discussion

Simulated studies of numbers with the necessary explanations are presented here for the first order
non-linear ODE (2.1)–(2.7) system in which the malaria model by using the proposed LMANNs
method. The epidemic model is represented. The values of the several parameters of the malaria
model are discussed in Table 1.
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Table 1. An analysis of the malaria models constant parameters and their numerical values
[44].

Parameter Description Value
λ1 Recruitment rate in human population 100
λ2 Recruitment rate in mosquito population 1000
δ1 Human mortality rate in the natural environment 5.48 × 10−05

δ2 Mosquito mortality rate in the natural environment 6.6 × 10−02

β Human infectiousness in the R1 class caused a parameter modification 0.01
φ1 Probability of infection transmission in human 0.833
φ2 Probability of infection transmission in mosquitos 0.48
α Biting rate of mosquitoes 1
η Humans in the R1 class have a high rate of relapse 2.8 × 10−03

τ Human re-infection in the R2 class caused a parameter modification 0.85
ψ Infectious human recovery rate 0.01
ρ Percentage of infected people who recovered 0.25

Figure 2 explain the complete process workflow diagram of the offered LMANNs. In the neural
network toolbox in the Matlab setting, the offered LMANNs are implemented via ‘ntstool’ (neural time
series tool), while Levenberg-Marquardt back-propagation is used to train neural network weights.
The reference data-set of malaria model is created for 100 days as step-size inputs of 1.0 through
the Adams numerical approach solutions by using the built-in Mathematica environment NDSolve
function for a numerical non-linear system of ordinary differential equations results for every case
of the malaria model. The values for S 1, I1, R1, R2, S 2 and I2 classes for 101 input data-set points
that are randomly dispersed to yield a set for validation, testing, and training with 5%, 5%, and 90%
respectively. Two layered structure LMANNs the computational model based on neural networks with
Levenberg-Marquardt back production with 40 hidden layers is contracted for the results of the malaria
model that shown in Figure 3.

In scenario 1 we discussed 3 different cases of changing the values of τ = 0.06, 0.30 and 0.85
by keeping all other parameter are fixed to examine the behavior of Susceptible people class (S 1),
infectious people class (I1), pseudo recovered people class (R1), Recovered people prone to re-infection
class (R2), mosquito Susceptible class (S 2) and mosquito infection class (I2). The effects of changing
the human re-infection parameter (t) and constant rate of relapse (η) on the dynamical behavior of
recovered human and infectious population are shown in sub-Figure 4a-f and 5a-f. As shown in Figure
4b and 4d, increasing the re-infection parameter (τ) increases the population of infection people I1,
which reduces the human recovered population R2 over time. Similar, in scenario 2 with three different
cases by changing the values of η = 2.8 × 10−03, 2.8 × 10−02 and 2.8 × 10−01 with other parameter
are constant to examine the behavior of the Susceptible people class (S 1), infectious people class
(I1), pseudo recovered people class (R1), Recovered people prone to re-infection class (R2), mosquito
Susceptible class (S 2) and mosquito infection class (I2). It is seen in Figure 5c, increasing the constant
rate of relapse (η) decrease the population pseudo recovered people.

Figures 4–15 describe comparative outcomes by graphical results of various scenarios and cases.
Therefore, for the Susceptible people class (S 1), infectious people class (I1), pseudo recovered people
class (R1), Recovered people prone to re-infection class (R2), mosquito Susceptible class (S 2) and
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mosquito infection class (I2) the graphical and numerical outcomes of LMANNs are defined to explain
the performance corresponding to 100 days for case 1 − 3 with both scenarios.

(a) Numerical values of S 1 for scenario 1 (b) Numerical values of I1 for scenario 1

(c) Numerical values of R1 for scenario 1 (d) Numerical values of R2 for scenario 1

(e) Numerical values of S 2 for scenario 1 (f) Numerical values of I2 for scenario 1

Figure 4. Analysis through suggested LMANNs with the reference numerical outcome for
each classes of malaria model for scenario 1 with case 1–3.
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(a) Numerical values of S 1 for scenario 2 (b) Numerical values of I1 for scenario 2

(c) Numerical values of R1 for scenario 2 (d) Numerical values of R2 for scenario 2

(e) Numerical values of S 2 for scenario 2 (f) Numerical values of I2 for scenario 2

Figure 5. Analysis through suggested LMANNs with the reference numerical outcome for
each classes of malaria model for scenario 2 with case 1–3.

Numerical results are represented in sub-Figure 4a-f and 5a-f. For all cases of each malaria model
class, the numerical outcomes obtained by the offered technique are presented in Tables 3–8. The
graphical compression is expressed by performance analysis of computational scenarios in the sub-
Figure 6a, 6c, 6e, 7a, 7c and 7e. Performance consist of on mean square error (MSE) which is the
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difference between simulation and observation, the less value of MSE indicates the best performance.

(a) Result of MSE for scenario 1 with case 1 (b) Result of autocorrelation for scenario 1 with case 1

(c) Result of MSE for scenario 1 with case 2 (d) Result of autocorrelation for scenario 1 with case 2

(e) Result of MSE for scenario 1 with case 3 (f) Result of autocorrelation for scenario 1 with case 3

Figure 6. Comparison of mean square error (MSE) and auto-correlation for the various
parameter value of case 1–3 based on malaria model with scenario 1.
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(a) Result of MSE for scenario 2 with case 1 (b) Result of autocorrelation for scenario 2 with case 1

(c) Result of MSE for scenario 2 with case 2 (d) Result of autocorrelation for scenario 2 with case 2

(e) Result of MSE for scenario 2 with case 3 (f) Result of autocorrelation for scenario 2 with case 3

Figure 7. Comparison of mean square error (MSE) and auto-correlation for the various
parameter value of case 1–3 based on malaria model with scenario 2.
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(a) Histogram of scenario 1 with case 1 (b) Histogram of scenario 2 with case 1

(c) Histogram of scenario 1 with case 2 (d) Histogram of scenario 2 with case 2

(e) Histogram of scenario 1 with case 3 (f) Histogram of scenario 2 with case 3

Figure 8. Comparison of error histogram for various parameter value of case 1–3 based on
malaria model with scenario 1 and 2.
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(a) Regression of case 1 with scenario 1 (b) Regression of case 1 with scenario 2

(c) Regression of case 2 with scenario 1 (d) Regression of case 2 with scenario 2

Figure 9. Comparison of regression for case 1-2 based on malaria model with scenario 1-2.
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(a) Regression of case 3 with scenario 1 (b) Regression of case 3 with scenario 2

Figure 10. Comparison of regression for various parameter value of case 3 based on malaria
model with scenario 1 and 2.

It is noted that Figure 6c of the malaria model describes better performance with scenario 2
as compared to other cases of both scenario because the mean square error (MES) of case 2 is
the smallest best validation performance (BVP = 7.817 × 10−07 at epoch 1000). Figures 6a, 6c,
6e, 7a, 7c and 7e display the performance of all remaining cases with best validation performance
3.6665 × 10−06, 5.5209 × 10−06, 9.1707 × 10−07, 3.5802 × 10−06, 7.5891 × 10−06 along with 764, 554,
1000, 635 and 440 respectively. MSE has specific values for training, testing, and validating of both
scenarios in every case of malaria model are shown in Table 2 respectively. Figures 6b, 6, d, 6f, 7b, 7d
and 7f show the auto-correlation of both scenarios with three different cases. In the graph we define the
correlation through the area. For each input point, the error dynamics are additionally estimated using
an error histogram and the results of the graphically are presented in sub-Figure 8a-f of the malaria
model.

The reference zero-line error bin has an error of around [7.8×10−05, −2.4×10−04, 5.4×10−04, −1.9×
10−04, −4.3 × 10−04, and −1.5 × 10−03] for various cases, respectively. Specifies the value of the
maximum result of the proposed method on the zero lines. In sub-Figures 9a-d and 10a-b describes the
analysis of regression plots for validation, testing, and training of the malaria model. Regression value
(R=1) indicates that during computation, there is a very close correlation between output and target
values.
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(a) Training state of case 1 with scenario 1 (b) Training state of case 1 with scenario 2

(c) Training state of case 2 with scenario 1 (d) Training state of case 2 with scenario 2

(e) Training state of case 3 with scenario 1 (f) Training state of case 3 with scenario 2

Figure 11. Analysis of training state for case 1–3 based on malaria model with scenario 1-2.
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(a) Fitness plot of case 1 with scenario 1 (b) Fitness plot of case 1 with scenario 2

(c) Fitness plot of case 2 with scenario 1 (d) Fitness plot of case 2 with scenario 2

Figure 12. Analysis of training state for case 1–3 based on malaria model with scenario 1-2.

Figure 11a-f display the training state of both scenarios with three different case. The training state
show the better convergence rate. The value of both Mu and gradient corresponding to epoch show
either the convergence is slow or fast. Furthermore, for all three cases of the malaria model through
LMANNs, the convergence parameter achieved in terms of execution time, MSE, executed epochs,
back-propagation, Mu step-size, and performance is tabulated in Tables 2 and the time of all cases
describes the complexity of the suggested process. The back-propagation of step-size Mu and gradient
values are about [10−05, 10−05, 10−05, 10−04, 10−05 and 10−05] and [1.58 × 10−01, 1.63 × 10−02, 5.74 ×
10−03, 1.31 × 10−03, 1.13 × 10−01 and 5.26 × 10−02] as shown in sub Figure 11a–f for case 1–3 with
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both scenario, respectively witch shows the convergence for all scenarios along all case of the proposed
model through the designed solver is good.

(a) Fitness plot of case 3 with scenario 1 (b) Fitness plot of case 3 with scenario 2

Figure 13. Analysis of training state for case 1–3 based on malaria model with scenario 1-2.

Table 2. An analysis of the malaria models constant parameters and their numerical values
[44].

Sr. Case Time Training Testing Validation Performance Gradient Mu Epochs

1
1 7 4.1839 E-06 4.7212 E-06 3.6665 E-06 3.92 E-06 1.58 E-01 1.0 E-05 764
2 12 6.7394 E-07 1.2779E-06 7.8169 E-07 6.74 E-07 1.63 E-02 1.0 E-05 1000
3 7 4.0440 E-06 5.5209 E-06 6.7520 E-06 3.97 E-06 5.74 E-03 1.0 E-05 554

2
1 8 1.3049 E-06 1.0295 E-06 9.1707 E-07 1.30 E-06 1.31 E-03 1.0 E-04 1000
2 6 3.3948 E-06 1.0019 E-06 3.5802 E-06 3.15 E-06 1.13 E-01 1.0 E-05 635
3 7 9.7834 E06 1.2531 E-05 7.5891 E-06 9.13 E-06 5.26 E-02 1.0 E-05 440

Table 3. Numerical value for all malaria model classes in case 1 with scenario 1.

Time S1 I1 R1 R2 S2 I2
2 522.664700 111.683800 10.295100 20.847790 42.140950 49.145500

20 154.687700 397.825500 23.313140 59.600800 57.315190 35.957400
40 128.936900 468.748800 43.327700 119.339300 64.513980 31.715900
60 119.344200 504.681400 64.660130 183.060900 66.418080 30.581700
80 114.023100 527.573500 86.195060 247.273700 66.603650 30.279700

100 110.481700 544.144400 107.472800 310.543900 66.326200 30.199800
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Table 4. Numerical value for all malaria model classes in case 2 with scenario 1.

Time S1 I1 R1 R2 S2 I2
2 522.06370 112.44210 10.29530 20.05240 42.14060 49.14480

20 152.22690 404.61980 23.46260 50.09040 57.31130 35.95760
40 124.23480 487.09400 44.06840 93.73630 64.50090 31.71510
60 112.12350 537.86490 66.60800 135.13210 66.37660 30.58190
80 104.31010 577.37950 90.04990 171.93110 66.52300 30.27970

100 98.48940 611.03090 113.95860 204.00170 66.18720 30.19990

For every case of the malaria model, the results define the convergent performance and accuracy
of the proposed system. The small Mu value can be observed to lead the better convergent outcomes.
The analysis of fitness plots for the malaria model is shown in sub-Figures 12a-d and 13a-b, the error
defined is the difference between target and output for testing, training, and validation at every scenario
of input data-set point of malaria model.

The results obtained through LMANNs correspond to the reference (ref) of the Adams numerical
solution in every case for all six groups of the malaria model, so absolute errors (AEs) are calculated
to access the accuracy gauges. The absolute error (AEs) of all classes are shown in sub-Figure 14a–f
and 15a–f for S 1, I1, R1, R2, S 2 and I2 respectively, for scenarios 1-2 tabular in Tables 9–14. The range
of absolute error for Susceptible people class (S 1) is 10−03 to 10−04 of case 1 and 3 for scenario 1 and
case 1 for scenario 2, 10−03 to 10−05 of case 2 for both scenario and 10−03 to 10−04, 10−06 of case 3
for scenario 2 respectively. The range absolute error for infection people class (I1) is 10−03 to 10−04 of
case 1 2 and 3 for both scenario and 10−03 to 10−05 of case 2 for scenario 2 respectively. The range
of absolute error for pseudo recovered people class (R1), recovered people prone to re-infection class
(R2), mosquito susceptible class (S 2) and mosquito infection class (I2) are 10−03 to 10−04, 10−04 to 10−05

and 10−03 to 10−06 of case 1 for both scenario, 10−04, 10−03 to 10−05, 10−03 to 10−04, 10−04 to 10−05 of
case 2 for both scenario, 10−03 to 10−04, 10−03 to 10−05 of case 3 for both scenarios respectively. The
consistency of the suggested technique is shown by these ranges of absolute error for all groups of each
case with both scenario, which is up to 10 decimal places.

Table 5. Numerical value for all malaria model classes in case 3 with scenario 1.

Time S1 I1 R1 R2 S2 I2
2 522.66370 111.68510 10.29295 20.84474 42.14024 49.14545

20 154.68150 397.82150 23.30994 59.60180 57.31233 35.95972
40 128.94010 468.74800 43.32738 119.33990 64.51462 31.71600
60 119.34470 504.67770 64.66362 183.06130 66.41765 30.58183
80 114.02090 527.57560 86.19786 247.27580 66.60480 30.27979

100 110.48010 544.14320 107.47840 310.53990 66.32390 30.19985
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Table 6. Numerical value for all malaria model classes in case 1 with scenario 2.

Time S1 I1 R1 R2 S2 I2
2 522.66370 111.68510 10.29295 20.84474 42.14024 49.14545

20 154.68150 397.82150 23.30994 59.60180 57.31233 35.95972
40 128.94010 468.74800 43.32738 119.33990 64.51462 31.71600
60 119.34470 504.67770 64.66362 183.06130 66.41765 30.58183
80 114.02090 527.57560 86.19786 247.27580 66.60480 30.27979

100 110.48010 544.14320 107.47840 310.53990 66.32390 30.19985

Table 7. Numerical value for all malaria model classes in case 2 with scenario 2.

Time S1 I1 R1 R2 S2 I2
2 523.02000 111.23160 9.81475 20.84186 42.14138 49.14421
20 156.17700 393.79430 17.26435 59.32878 57.41004 35.95924
40 131.77870 458.33170 26.79951 118.05050 64.84626 31.71193
60 123.57210 487.09770 33.96635 179.81170 67.07518 30.58100
80 119.45720 503.29470 38.94678 241.16040 67.62930 30.27778

100 116.85930 514.23930 42.34726 300.83440 67.73335 30.19689

Table 8. Numerical value for all malaria model classes in case 3 with scenario 2.

Time S1 I1 R1 R2 S2 I2
2 526.02840 107.74570 6.08169 20.81147 42.17661 49.14320

20 158.80800 387.26660 3.38584 58.63798 57.62770 35.95841
40 134.76920 448.12890 4.07149 116.16140 65.31190 31.71772
60 126.54640 475.69770 4.36559 176.43680 67.72305 30.58002
80 122.10640 492.47110 4.53281 236.35900 68.39706 30.27578
100 119.07500 504.77440 4.65341 294.83760 68.57737 30.19504

Table 9. Absolute error (AEs) for all malaria model classes in case 1 with scenario 1.

Time S1 I1 R1 R2 S2 I2
2 5.7100E-04 2.2000E-03 2.0800E-03 2.5000E-03 7.9900E-04 4.4700E-04

20 5.2500E-03 3.0100E-03 2.3100E-03 4.0400E-04 1.6400E-03 3.2800E-04
40 4.1400E-03 3.2400E-04 4.1000E-04 3.9200E-04 1.6800E-03 7.0600E-04
60 1.4200E-03 1.4700E-03 2.9400E-03 5.6900E-04 3.5600E-04 1.4800E-04
80 2.3300E-03 1.0200E-03 2.6400E-03 9.4300E-04 1.1100E-03 8.0900E-05

100 1.2800E-03 5.8400E-04 5.9900E-03 1.7300E-03 2.2500E-03 1.0100E-04
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Table 10. Absolute error (AEs) for all malaria model classes in case 2 with scenario 1.

Time S1 I1 R1 R2 S2 I2
2 1.5500E-05 8.9500E-04 3.5300E-04 1.9000E-04 4.4000E-04 2.5000E-04

20 4.9600E-05 1.6400E-03 1.8300E-04 1.7700E-04 1.6700E-04 9.5500E-05
40 2.9400E-04 6.8100E-04 1.1200E-04 2.2200E-04 1.1500E-04 9.9500E-05
60 2.7000E-04 4.4000E-04 3.2000E-04 1.4300E-03 9.3600E-05 1.2200E-04
80 4.5000E-04 4.1900E-04 6.9800E-04 6.8200E-04 4.1300E-04 2.4000E-04

100 1.7100E-03 5.7200E-04 8.5200E-04 1.2800E-03 1.2400E-04 8.6800E-05

Table 11. Absolute error (AEs) for all malaria model classes in case 3 with scenario 1.

Time S1 I1 R1 R2 S2 I2
2 2.8400E-04 7.0800E-04 1.6200E-04 1.2600E-03 3.8700E-03 4.3000E-03

20 1.0000E-03 1.6500E-03 9.3500E-04 1.5500E-03 4.6100E-04 1.8100E-03
40 6.7600E-04 2.0300E-03 2.8600E-03 4.6500E-03 1.1500E-03 1.0300E-03
60 4.7400E-04 2.0600E-04 1.2100E-03 3.0000E-03 8.8100E-04 1.0500E-03
80 9.8800E-04 1.3000E-03 7.8100E-05 2.9500E-04 5.3000E-04 6.6500E-04

100 2.8000E-04 1.4600E-04 5.5700E-03 1.1500E-03 1.0800E-03 1.6100E-03

Table 12. Absolute error (AEs) for all malaria model classes in case 1 with scenario 2.

Time S1 I1 R1 R2 S2 I2
2 3.7400E-04 8.5600E-04 8.4200E-05 5.7200E-04 8.8800E-05 3.9500E-04

20 1.0300E-03 1.0300E-03 8.8600E-04 5.9200E-04 1.2200E-03 2.0000E-03
40 9.3000E-04 1.1300E-03 7.3100E-04 1.0600E-03 1.0400E-03 8.1800E-04
60 8.9300E-04 2.2600E-03 5.5300E-04 9.6800E-04 7.0200E-05 6.5900E-05
80 1.5800E-04 1.0800E-03 1.6400E-04 1.1500E-03 4.5100E-05 6.3200E-06

100 3.1400E-04 1.7600E-03 4.4000E-04 2.3300E-03 5.0000E-05 9.2500E-05

Table 13. Absolute error (AEs) for all malaria model classes in case 2 with scenario 2.

Time S1 I1 R1 R2 S2 I2
2 7.8600E-04 2.7700E-03 6.4500E-04 2.0200E-05 2.7700E-03 8.4500E-04

20 1.7400E-03 4.5800E-03 1.8900E-03 1.4200E-03 1.1000E-03 1.7000E-03
40 2.4800E-04 2.0800E-03 4.0000E-03 1.0300E-03 1.7100E-03 2.5800E-03
60 5.6100E-05 6.2800E-05 7.2700E-04 1.0600E-04 6.2100E-04 4.1800E-04
80 1.4400E-05 3.6900E-05 2.0200E-04 7.7400E-04 2.4200E-04 2.4700E-05

100 2.9100E-04 1.8400E-04 4.0600E-05 2.4100E-04 1.8700E-04 4.8900E-05
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(a) Absolute error of S 1 for scenario 1 (b) Absolute error of I1 for scenario 1

(c) Absolute error of R1 for scenario 1 (d) Absolute error of R2 for scenario 1

(e) Absolute error of S 2 for scenario 1 (f) Absolute error of I2 for scenario 1

Figure 14. Comparison of absolute error for all classes of malaria model for case 1-3 with
scenario 1.
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(a) Absolute error of S 1 for scenario 2 (b) Absolute error of I1 for scenario 2

(c) Absolute error of R1 for scenario 2 (d) Absolute error of R2 for scenario 2

(e) Absolute error of S 2 for scenario 2 (f) Absolute error of I2 for scenario 2

Figure 15. Comparison of absolute error for all classes of malaria model for case 1-3 with
scenario 2.
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Table 14. Absolute error (AEs) for all malaria model classes in case 3 with scenario 2.

Time S1 I1 R1 R2 S2 I2
2 8.1100E-04 3.3800E-03 2.1400E-03 1.0000E-03 1.2900E-03 1.7900E-03

20 4.1000E-03 4.6500E-03 1.7700E-03 1.0400E-03 1.7900E-03 1.3200E-03
40 3.1100E-03 3.2400E-03 6.3500E-04 2.0400E-04 5.6900E-04 4.1300E-03
60 4.2500E-04 3.7200E-03 7.8700E-04 1.2000E-03 5.7000E-04 7.2900E-04
80 7.3100E-06 4.0800E-03 7.1000E-04 1.5400E-03 3.3600E-04 4.3900E-04

100 1.6200E-03 9.8100E-04 9.0500E-05 4.4000E-03 2.4600E-04 2.1500E-04

5. Conclusions

Through neural networks with Levenberg-Marquardt back-propagation, the integrated computing
intelligent platform is presented to obtain the solution of the malaria mathematical model representing
the spread of malaria that is constructed based on a real dataset. The input dataset for the malaria
disease has been developed using the Adams numerical solver for various groups. The 5%, 5%, and
90% of reference data-sets are used as validation, testing, and training for LMANNs. The following key
findings of the malaria model can be observed based on the above numerical analysis and investigation.

• ODEs representing the radioactive spread of the malaria disease are analyzed with the support of
LMANN.
• Comparing the offered results with the numerical outcomes obtained by Adams method up-to 11

decimal point shows the consistency and accuracy of the suggested LMANNs.
• The feature of the suggested approach is further validated by numerically and graphically

explanation based on error histogram, regression dynamics, mean square error and Convergence
plots.
• The dynamics of malaria model are greatly influenced by the variation of parameters of interest.
• The efficiency of the computational process improves due to complexity mean square error

(MSE), time series, regression, and histogram.

The designed solver LMANN for the analysis of structures representing the fluid flow systems [45–
50] could be implemented in the future.
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