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Abstract: In this research study, some striking features of single-valued fixed point theorems on
multiplicative metric spaces have been established. Our displayed work consists of some unique fixed
point theorems under generalized contraction with maximum and minimum conditions. In support of
our work, we demonstrate some illustrative examples to justify all the conditions of our main theorems.
In addition, a nonlinear integral equation is presented as an application to express the validity of our
work. The offered outcomes in this study extend and improve many of the results proved in recent
decades.
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1. Introduction

The theory of fixed points is one of the interesting areas of research in mathematics. In 1890,
Picard [1] established the concept of fixed point theory by using the successive approximations
method and proved the existence of solutions of differential equations. In the field of mathematics,
many researchers have made their contributions to fixed point theory by applying different types of
contraction mappings and spaces. In 1922, Banach [2] proved a “Banach Contraction Principle”
which is stated as follows: “A single-valued contractive type mapping on a complete metric space has
a unique fixed point”. Since then, many mathematicians have generalized in many directions and
proved distinct contractive-type fixed point theorems in the framework of metric spaces for single-
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and multi-valued operations. Some of their findings in different types of metric spaces can be found
in [3-10].

In 1972, Grossman and Katz [11] established an advanced type of calculus called multiplicative
calculus by replacing the roles of difference and sum with the roles of division and multiplication,
separately. By applying the concept of multiplicative calculus, Bashirov et al. [12] proved the basic
theorem of multiplicative calculus and defined the notion of multiplicative metric space (MM-space).
The characterization of completeness in MM-space was discussed by Sarwar and Rom [13]. He
et al. [14] established some common fixed point theorems for weak commutative mapping on
MM-space. In [15], Jiang and Gu proved some common coupled FP results in MM-spaces with
applications. For more detail, we shall refer the readers to [16-26]and the references are therein.

In the present paper, we prove some new fixed point results for linear-mapping in multiplicative
metric spaces under the generalized contraction conditions. Our main results consist of the maximum
and minimum types regarding contraction conditions. We also present some demonstrative examples
and an application in support of our generalized results to validate our work.

2. Preliminaries

Definition 2.1. [12] Let W # 0 seT, Then, a mapping d* : W x W — R* is called a multiplicative
metric if it satisfies the following conditions:

(ml) d*(p,6) > 1 and d*(p,0) =1 & p =6, forall p,6 € W.

(m2) d*(p,6) = d*(6, p) for all p,6 € W.

(m3) d*(p,d) < d*(p,0.).d*(,,0) for all j,d,5, € W.

A pair (W, d*) is said to be an MM-space.

Example 2.2. [12] Consider W = R, containing all &-tuples of positive real numbers. Let d* :
(R.)¢ % (R;)* — R be defined as follows:

r ]
52

Te

S¢

d*(ﬁ,S) =

)

§1
where p = (11,72, ..., 7¢), 0 = (51, 82, ..., 5¢) € (RS, and | - | : Ry — [1, +00) is defined as
) |
€] = {f ifé&>1, andg if &€ < 1}.
Then, it is conclusive that all the given conditions of an MM-space are satisfied, and hence ((R+)§, d*)
is an MM-space.
Definition 2.3. [15,24] Let (W, d*) be an MM-space and {p,} be a sequence in W. Then,

(i) pgisconvergentto p € Wasé — +ooiff d*(pg, p) — 1 as & — +oo.

(i1) {p¢} is called a multiplicative Cauchy sequence if it holds that for all € > 1, there exists a natural
number & € N such that d*(pg, ps) < € for all €, ¢ > 6.
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(iii) (W, d*) is called multiplicative complete if every multiplicative Cauchy sequence in (W, d*) is
multiplicative convergent in W.

Lemma 2.4. [24] Let (W,d*) be an MM-space and {p:} be a sequence in W. If a sequence {p;} is
multiplicative convergent, then the multiplicative limit is unique.

Theorem 2.5. [24] Let (W, d*) be an MM-space and sequence {p¢} in W be multiplicative convergent,
Then, it is a multiplicative Cauchy sequence.

3. Main results

In this section, we define and prove some generalized contraction theorems on MM-spaces.

Definition 3.1. Let (W,d*) be an MM-space. A mapping I' : W — W is said to be a Generalized
multiplicative contraction (G,-contraction), if there exists Ay, A, A3 = 0 with (1, + 42, +213) < 1 and
satisfying:

en e wy [ d*(B.T)-d* (3T \" d*(5.Tp).d*3.15), |\"
@Ep L) = (@ p.o0 '('d*@,ré)-d*(&rﬁ)) '(max{ d*(p.T'8).d*3.Tp) }) O
forall p,o € W.

Theorem 3.2. Suppose (W,d*) is a complete MM-space and a function I' : W — W is a
G y-contraction satisfying (3.1). Then, I has a unique fixed point in W.

Proof: Fix p, in W, and a sequence {p,} in W is defined by p,.; = I'p, for & > 0. Now, from (3.2),

d*(P§+1, Pg) = d*(rpg, Fpg—l)

;12 ;13
d*(pe.Tpe) - d*(pe-1. Tper) ) _(max { d*(pe, Tpe), d* (pe-1, Tpe-1), })
~d*(pe, Upe-1) - d*(pe-1,T'pe) d*(pe, Tpe-i1), d*(pe-1,T'pe)

/12 /13

y d*(pe, pe+1) - d*(pe-1, Pe) d*(pe, Per1)s A*(Pe-1, Pe)s |\
d* (e pe_)Y ¢ Pe 1> D¢ Nmax & D¢ 15 D¢
(" (Pe. Pe-1)) - d*(pes pe) - d*(Pet, Pest) d*(pe, pe), d*(Pe_1, Pest)

IA

(d*(pes pe-)) -

A A3
1 [ A Pes pevt) - d*(Pe-i, Pe) d*(pe, pe+1), d*(pe-1, pe)s |
— (d* (pe. pe_)) - & Pe 15 Pé N max ¢ Pe 15 D¢
(" (Pe. Pe-1)) 1-d*(pe-1, Pes1) L, d*(pe-1, pes1)

7

ve
[ A (Pes pest) - d*(pe-t, pe)
< (d*(pe, pe_ i, & PEr 3 & Ad*(pe_y, - d*(pe,

A

= (@ (pes )™ - ( (@* (e pest)? - @ (Pt p)? ) (d* (Pt PO - d* (P pes)

After simplification, we obtain that

h /~11 + 2;12 + ;13
d* s < d* , Pe— s where h= ——— < 1. 3.2
(De+1> De) ( (Pe» Pe 1)) 2L -1, (3.2)
Similarly,
h A +2h+1
d*(pe-1s pe) < (d*(peaspe-r)) . where h= "= <1, (33)

1-22, — A3
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Now, from (3.2) and (3.3), and by induction, we have

h h? £
d*(pe, pev1) < (d*(]?g—upg)) < (d*(Pg—z,P.f—l)) <--- < (d*(Po,Pl))h — 1, asé— 4. (34)

Hence, the sequence {p;} in (W, d*) is contractive. Now, ¢ < ¢, and by using the triangular property of
(W, d*), we have that
d*(pe, pg) < d*(pg, pest) - A (Pests Pera) -+ d* (P2, Po-1) - d* (ps-1, Pg)
& pE+ o1 <
< (d*(po. )" - (@ (po. )" -+ (@*(po, p1))" - (@ (po, p1))'
< (d*(Po pl))(h§+h5“+---+h“’l+h<)
3
< (d*(po,pl))(ﬁ) -1, asé—> +oo.

Hence it is show that {p,} is a Cauchy sequence in (W, d*). By the completeness of (W, d*), there exists
k € W, so that lim p, = «, and therefore

E—+o0

é:lim d*(pe, k) = 1. (3.5)
E—+00

Now, we have to show that I'(x) = k. Then, from (3.1) and (3.5), we have that
d*(k,Tk) < d* (K, pe1) - d*(Per1, TK) = d* (K, pesr) - d*(Tpe, T)

d*(pe, Tpe) - d* (k, Tk) )”2 . (m . { d*(pe, T'pe), d* (&, Tx), })23
' d*(pfa FK) : d*(Ka pr) d*(pf’ FK)’ d*(K’ rpf)

d*(pe. pert) - d* (k. TK) )”2 . (m . { d*(pe, pest) d*(k,TK), })”3
: d*((pfa FK) : d*(K, p§+1) d*(p§7 FK)7 d*(K7 p§+1)

- (d*(k, I“K))222+23 as & > +oo.

< d*(k, pe+1) - (d*(Pg,K))i' (

= d* (K, pes1) - (d* (pe, O - (

Hence, we obtain that
d* (K, FK) S (d* (K, FK))2;12+/~13 = (d* (K, FK))(1—2;12—13) S 1

is a contradiction. Hence, we get that d*(I'k, k) = 1 implies that 'k = «, which shows that « is a FP of
I"in (W, d*).

Uniqueness: Suppose u € W is another FP of the mapping I', so that T'u = u. Now, we prove that
k = u. From the view of (3.1), we have

d*(k, ) = d* (T, T)

4 (6, TK) - d*(u, Ty \" 4% (6, Tx), d* (i, Tr), |\
T - d* T | ™ @k, Tw), d*(u, Tr)

d*(k, k) - d*(u, p1) )ﬂ2 _ (max{ d*(k, k), d* (u, p), })A3

swmmﬁ(

' d*(K’/J) : d*(:u’K) d*(K’lJ)’d*(/J’K)
_ (d*(K’ll))(;11+2;12+/~13) -

=wmmﬁ(
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This implies that o -
d*(K,[.l) < (d*(K,’u))(/h+2/12+/l3) = (d*(K’M))(l—/ll—Z/lz—/l3) <1,

is a contradiction. Hence, we get that d*(«, u) = 1 implies that x = u. Thus, I" has a unique fixed point
in W.

If we reduce and use separately the second and third term values of the statement of Theorem 3.2,
we get the following two corollaries.

Corollary 3.3. Let (W, d*) be a complete MM-space and let a function T : W — W satisfy,
d*(Cp.T8) < (@ (p.3)" - (d*(p.Tp) - d*(.18)) " - (max | @*(5.Tp).d*(E.T5) )"

forall p,6 € Wand Ay, A2, A3 > 0 with (A; + 2, + A3) < 1. Then, T has a unique FP in W.
Corollary 3.4. Let (W,d*) be a complete MM-space and let a function T : W — W satisfy,

d*(Tp.T8) < (@ (p.5)" - ( d*@.Tp) - d*(5.13) ) - (max| d*(5.T8).a*G.Tp) |) ",
for all p, 6 € WandA, 2,3 =0 with (A, + 22, +223) < 1. Then, T has a unique FP in W.

Now we present a supportive example for our first main result.

Example 3.5. Assume that W = [0, +oo[, and d* : W — R is a complete MM-space which is defined
as d*(p,6) = 27 for all p,6 € W. Now, we define a functionI" : W — W by I'(p) = & for p € W.
Now, from (3.2), we have

1P +2(>

285+85 10;7—105+18ﬁ+185‘

2‘ 200 | — 2‘ 200

P 5| |18p+185‘)

a*(Tp,15) = 2|57 < 2l

p t} 181)+180

200 | < 2(

200

=202 — 2l & (-3)| . 5lsbs (185+183)]

5 5 5 5
< (20~ 6)|)L0 (2118"“85\) (max{z\m,z\ b o5 ol

)

d*(p,Tp) - d*(5,T5) )210 .(max { d*(p,Tp),d*(6,T6), })é '

= (d*(p,0))® ( - d*(p.T5) - d*(3.Tp) d*(p,T6),d*(6,Tp)

Hence, all properties of Theorem 3.2 are satisfied for particular A, = 1, = % and A3 = é, and I has a
unique fixed point, that is, ['(0) = 0
Now, we present our second main result for minimum condition,

Theorem 3.6. Let (W,d*) be a complete MM-space and let a functionT : W — W satisfy;

*( = T * (< T8 2 *(= T * (S TR 28

-d*(p,T6) - d*(6,TP) d*(p,T6),d*(5,T'p)
forall p,6 € W and Ay, 12, A3 > 0 with (A; + 41,) < 1. Then, T has a unique fixed point in W.

Proof. Fix pyin W, and a sequence {p;} in W is defined pg,; = I'ps for & > 0. Now, from (3.6),
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d*(P§+1, pf) = d*(l“pg, rpf—l)

A pl
d*(pe, Tpe) - d*(pe-1, T pesr) ) ’ . (min{ d*(pe, Upe), d*(pe-1,Tpe-1), }) ’
d*(pe, T pe1).d*(pe-1,T'pe) d*(pe, T'pe-1), d*(pe-1,T'pe)

. A A3
df s Per1) - d*(Pe-i, pe) ) ’ _ (min{ d*(pe, Pes1), A*(Pe-1, Pe)s })
d*(pe, pe) - d*(Pe-1, Pesr) d*(pe, pe), d*(Pe-1, Pesr)

: 5
v { d*(Pes Pent) - d* (et pe) \ .| d*(pes Per1), d*(Pe-r, Pe)s
= (d* ) D Al | &y PéE+ & & X & PE & 3
(@ (pe: pe-1)) (de“mw M (et pen)

o @ Pepe) d (perip) "
< e Al.( & Dex §-15 Dé
@ Peet I\ g (peer. pe) - d* (pes Tpen)

< (d*(pes pf-l))21 : (

ﬂmmmww

= (@ (e pe- )" ( (@ (P pea)) - (@* (pecrs p) )

After simplification, we obtain that

h A +22
d*(Pes1s pe) < (d*(Pg,Pg—l)) , where h="1"""2 <1, (3.7)
1-24,
Similarly,
h A +22
d*(pf—l,l)f)S(d*(l’f—z,pf—l)) , where h = 1‘ 2;12 < 1. (3.8)
-2

Now, from (3.7) and (3.8) and by induction, we have

d*(pes peet) < (d*(Pe-r po)'
< (d*(pear pen) (3.9)

<... < (a”"(po,p]))hf — 1, asé& — +oo.

Hence, the sequence {p;} in (W, d*) is contractive. Now, ¢ < ¢, and by using the triangular property of
(W, d*), we have that
d*(pg,l?g) < d*(l?g,pgn) : d*(P§+1,pg-'+2) e 'd*(pg—l,pg—l) : d*(pg—l’pg)

< (@ o, p0)" (@ (o )" - (@ (po. p0) - (@d*(po. )"
< (d* (po, pr) I T

i

< (d*(Po,Pl))(ﬁ) -1, asé& ¢ — +oo.

Hence it is shown that {p,} is a Cauchy sequence in (W, d*). By completeness of (W, d*), there exists
k € W, so that flim D¢ = K, and therefore
—+400

Jim d*(pe.x) = 1. (3.10)
— 400 :
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Now, we have to show I'(k) = k. Then, from (3.1) and (3.10), we have that

d*(Ks FK) < d*(Ka pf+1) : d*(pf+l, FK) = d*(K’ pf+1) : d*(r‘pf’ FK)

. e [ @ peTp) - d T\ ([ d*(peTped* (T, |\
< d (K’p§+l) (d (ptf’K)) ( . d*(pg,rK) 'd*(K,Fpér) ) (mln{ d*(pg,l"K),d*(K,Fpg) })

;lz /~l3
A d*(p s P +1) * d*(Ka FK) . d*(p s P +])7d*(K7 FK)’
:d* , 'd* , /11_( & PE ) (mn{ & PE
(o Peat) (P T\ g Th) - d* (k, penr) MY (pen T, d* (k, pean)
- (d* &)™, asé&— +oo.

Hence, we obtain that

d* (1, TK) < (d*(k, T = (d* (k, Ti) 22 < 1,

is a contradiction. Hence, we get that d*(I'«, k) = 1 implies that '« = k, which shows that « is a FP of
I"in (W,d*).

Uniqueness: Suppose u is another fixed point of the mapping I" in (W, d*), so that I'u = u. Now, we
show that x = u. From the view of (3.6),

d*(k, 1) = d*(Tk,Tu)

o TR T\ ([ A TR, T, |\
< (@) ( d* (6, Tp).d* (11, T) ) '(mm{ d*(k, T), d* (u, TK) })

e (@ R0d* (). i2( | {d*(K,K),d*(,u,u), })‘
_(d (K’/J)) ( d*(K,/J).d*(/J,K) ) - | min d*(K,/l),d*(ﬂ,K)

— (d*(K u))21+222
Hence, o o
d* () < (d* ()" = (@ ) T < 1

is a contradiction. Hence, we get that d* («, u) = 1 implies that k = u. Thus, I' has a unique FP in W.

If we reduce and use separately the second and third term values of the statement of Theorem 3.6,
we get the following two corollaries.

Corollary 3.7. Let (W,d*) be a complete MM-space and let a function T : W — W satisfy,
d*(Cp.Tp) < (@*G.3)" - (d*(p.Tp) - d*(3.T8) " - (min {a*(5.Tp). a* 3.T5))) "
forall p,6 € W and Ay, A, A3 > 0 with (A; + 21, + A3) < 1. Then, T has a unique fixed point in W.
Corollary 3.8. Let (W, d*) be a complete MM-space and let a function T : W — W satisfy,
d*(Tp,T8) < (@* (3. 8)" - (d*B.Tp) - d* (5.T9)) " - (min [@* G.Tp), d* (5.T9)]) .
forall p,6 € W and A, 5, A3 > 0 with (A, + 2A,) < 1. Then, a function T has a unique fixed point.

Example 3.9. From Example 3.5, a function I' is a multiplicative contraction and holds all the

conditions of Theorem 3.6 with particular constants A; = 5, A, = £ and A3 = 0. A function I has a
unique fixed point, that is, 0.
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4. Application

For the validity of our main results, we present an application of a nonlinear integral equation (NIE)
for the existence of a unique solution. Let W = B([c,d],R) be the Banach space of all continuous
mappings on [c, d] with supremum norm

Ipll = sup |p(#)|, where p € B([c,d], R),
n€lc,d]

and the metric d* : W X W — R is defined as:

where p,d € B([c,d],R). 4.1)

d* (p,3) = sup |p(i) - 3| =

fiele,d]
The NIE is defined as:
p(in) = f E7, a1, p(in))di, 4.2)
with7i € [c,d] cRand E : [¢,d] X [¢,d] X R — R.
Theorem 4.1. Assume that the NIE is defined as in (4.2), and there exists A € (0, 1) so that

Irp - 18| < (D (T 5.5))’ (4.3)

ey

where

s ( ||,3—r,5~||-|5~—r(§|| )max{

2(0.p3) =il =31 sy

Then, the NIE (4.2) has a unique solution in W.

Proof. Define a functionT" : W — W by

d
Tj(it) = f E(i, ii, p(ii))dii, forall p e W, (4.5)

Now, we apply Theorem 3.1 to the integral operator I' to validate our work. We may have the following
three main cases:

() If ||p 5” is the minimum term in (4.4), then D (F p, ) ||p 5” Now from (4.1) and (4.3), we
have that

a* (tp.5) = |17 - 18] < (0 (1. 2.8))" = (13- 3l = (¢ (.5))

for all p, 5 € W. Hence, the operator I satisfies all the conditions of Theorem 3.1 with A =1, and
A, = A3 = 0. Thus, I has a unique FP in W, which is a unique solution of NIE (4.2).

@) I (Ip - Tpll - |5 — T3|| - |5 - || - || — T3]]) is the minimum term in (4.4), then

DT p.8) = (Ip = T4l |5 = 13| - 6 - 7] - [} T3] ).

AIMS Mathematics Volume 7, Issue 11, 19891-19901.
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Now, from (4.1) and (4.3), we have that
d* (rp.18) = |[rp - 18| < (D (T . 5))2
= (Ip =41l [}5 — 13]| - 5 -] - [} - T3]
= (@* (p.Tp) - d* (5,18) - a* (p.13) - a* (5.Tp))
for all p,5 € W. Hence, the operator I satisfy all the conditions of Theorem 3.1 with A = 1, and
Ay = A3 = 0. Thus, I" has a unique FP in W, which is a unique solution of NIE (4.2).

3) If (max {||ﬁ -I'pll, ||5 - F5|| , ||(~5 - Fﬁ” , ||15 - F5||}) is the minimum term in (4.4), then
D (T, 5.8) = max{l|p - T4ll. || - T3||. |5 - T3] || - 18]} .
Now, we may have the following four subcases:

@) If [|p—THll is the maximum term in {||p - Tpll. || - T3||. |5 - 5], || - T3]}, then
D(T, 5.8) = l|p - Tpll. Now, from (4.1) and (4.3), we have that

d* (Tp.T3) = ||rp - T3] < (D (T p, Es))2
= (Ip~Tpl)' = (@ (p.Tp))" forall p.3 € W
(1) If ||5 - FS” is the maximum term in {||[7 -I'pll, ||5 — FS” , ||3 - Fﬁ” , ||ﬁ - F3||}, then
D (T, 5.8) = || - I3||. Now, from (4.1) and (4.3), we have that
a* (15, 18) = [rp - 18]| < (D (T’ 5.5))’
= (5 -13]))" = (a* (5.78))" forall p,5 € W.
(iii) If [|5-Tp| is the maximum term in {||p - T5ll. || - T3||.[|8 - 5], |5 - T3]}, then
D (T, .8) = || - || Now, from (4.1) and (4.3), we have that
d* (1p.18) = |[rp - 18| < (D (T . 5))2
= (I5-ra])" = (@* (5.15)) forall .5 wW.
@v) If ||;5 - FS” is the maximum term in {ll[) -I'pll, ||5 - F5|| , ||5 - Fﬁ” , ||13 - FS”}, then
D (F, P, 5) = ||]5 - F5||. Now, from (4.1) and (4.3), we have that
d* (rp.18) = |[rp - 18| < (D (T . 5))2
= (o -18])" = (@* (5.73))' forall .5 W

Hence, from (i)—(iv), the operator I satisfies all the conditions of Theorem 3.1 with 1 = A3 and
A1 = A, = 0. Thus, T has a unique FP in W, which is a unique solution of a NIE (4.2).

AIMS Mathematics Volume 7, Issue 11, 19891-19901.
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5. Conclusions

In the present paper, we studied and showed some of the latest generalized fixed point theorems
by using the maximum and minimum conditions for single-valued contractive type mappings on MM-
spaces with illustrative examples. Our results extended and improved many results existing in the
literature of fixed point theory on MM-spaces. Further, we presented an application of an NIE to
support our work. This new concept will play a vital role in the theory of fixed point. By using this
new concept, one can prove some more generalized fixed point, common fixed point and coincidence
point results with the application of different types of integral equations.
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