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Abstract: The Bogoyavlenskii equation is used to describe some kinds of waves on the sea surface
and discussed by many researchers. Recently, the G′/G2 method and simplified tan(φ(ξ)

2 ) method
are introduced to find novel solutions to differential equations. To the best of our knowledge, the
Bogoyavlenskii equation has not been investigated by these two methods. In this article, we applied
these two methods to the Bogoyavlenskii equation in order to obtain the novel exact traveling wave
solutions. Consequently, we found that some new rational functions, trigonometric functions, and
hyperbolic functions can be the traveling wave solutions of this equation. Some of these solutions
we obtained have not been reported in the former literature. Through comparison, we see that the
two methods are more effective than the previous methods for this equation. In order to make these
solutions more obvious, we draw some 3D and 2D plots of them.
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1. Introduction

Many phenomena in physics, biology, and chemistry etc. can be studied with the aid of nonlinear
differential equations. When the researchers investigate a system, they firstly seek the underlying
feature, and then convert the problem into mathematical equations by mathematical modeling. Most
of time these equations are nonlinear differential equation. Therefore, we need to use some suitable
methods to get the exact solutions of these equations. In the past few years, many systematic methods
have formed, for example [1–25].

We know that the mathematical equations describing waves in the ocean are nonlinear and their
solutions are solitonic. In 1990, the following nonlinear partial differential equation is given [26], later
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called Bogoyavlenskii equation, to describe the fluctuation of sea waves. 4ut + uxxy − 4u2uy − 4uxv = 0;
uuy = vx.

(1.1)

This classical equation has been studied for a long time. For the spectral parameter of (1.1), the
authors of [26] studied nonisospectral condition. Kudryashov and Pickering [27] obtained the
Schwarzian breaking soliton hierarchy of (1.1). It also has relation with non-isospectral scattering
problems [28] and possesses Painlevé property [29]. As a modified breaking soliton equation, it
describes the interaction of waves along the x-axis and y-axis. These results describe the phenomenon
of waves on the sea surface.

In many years, seeking the exact solution of this nonlinear PDE by different methods is one of
the main research aspects for researchers. Here we list some of the major approaches and results,
but not all of them. By the singular manifold method, Peng and Shen [30] studied the analytical
solutions of (1.1). In aid of modified extended tanh-function method the authors [31] got some exact
traveling wave solutions. Using(G′/G)-expansion method Malik et al [32] investigated Eq (1.1), and
Yu, Sun [33] also treated this equation by modified technique of simplest equation. In 2020, Yokus
et al. [34] constructed some exact solutions of (1.1) by (1/G′)-expansion and (G′/G, 1/G)-expansion
method.

For the past few years, many researchers [35–37] have introduced the modified (G′/G2) method,
which is powerful and effective, to seek novel soliton solutions for different kinds of nonlinear PDE.
Moreover, Manafian et al. [38, 39] proposed a powerful technique called the improved tan(φ(ξ)/2)
approach to get exact soliton solutions of various PDE. Later, in [40] this method has been simplified.
This approach also can be used to treat the Kundu-Eckhaus equation [40], Konopelchenko-Dubrovsky
equation and Boussinesq equation [41]. In this work we will apply these two methods to
Bogoyavlenskii equation for finding new solutions. Some of these solutions we obtained have not
been reported in former literature. Comparing these two methods to the previous results, we find that
our approaches are more effective.

In the nonlinear waves theory, the investigation of traveling wave solutions with a fixed velocity is
one of the most important aspect. We aim to look for the new traveling wave solution of (1.1) such as

u(x, y, t) = u(ξ), v(x, y, t) = v(ξ), ξ = x + y − kt. (1.2)

We substitute (1.2) into (1.1) and integrate once the second equation of (1.1). For simplicity we choose
the integral constant as zero, thus we obtain

− 4ku′ + u′′′ − 4u2u′ − 4u′v = 0;

u2

2
= v.

(1.3)

Combining the two equations of (1.3) together, and then integrating it once, we obtain the following
ordinary differential equation

u′′ − 2u3 − 4ku = 0. (1.4)

Then we just need to find the solutions u(ξ) of (1.4), then v(ξ) is easy to obtain by the second equation
of (1.3).
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2. Via G′/G2 method

At first, we introduce the steps of the modified (G′/G2)-expansion approach, and then employ this
method to find new traveling wave solutions of (1.1).

Step 1. We think about the following PDE

P(u, ux, uy, ut, uxx, uyy, utt, uxy, uxt, uyx, uyt, · · · ) = 0, (2.1)

as to u(x, y, t). In order to get the traveling wave solution of (1.1), we use the wave variables ξ = x+y−kt
to convert (2.1) into

P(u, uξ, uξξ, uξξξ, · · · ) = 0. (2.2)

Step 2. We express the exact solution of (1.4) to be a polynomial in (G′/G2), that is,

u(ξ) = A0 +

n∑
i=1

Ai

(
G′

G2

)i

+ A−i

(
G′

G2

)−i , (2.3)

here G = G(ξ) is a solution of (
G′

G2

)′
= a + b

(
G′

G2

)
+ c

(
G′

G2

)2

, (2.4)

the coefficients a, b and c are any of the constants. Since the highest order derivatives terms and the
non-linear terms should be homogenous balance in (2.2), we can obtain the value of integer number n.

Step 3. By taking (2.3) into (2.2) and utilizing (2.4), Eq (2.2) yields to a polynomial as to G′/G2.
Then we collect all the terms with the same power of G′/G2 and let all the coefficients of this
collected polynomial to be zero. Hence, we deduce a system algebraic equations for a, b, c,
A0, Ai, (i = ±1,±2, · · · ).

Step 4. By Solving this system of algebraic equations, we can get some families of the values of
A0, Ai, (i = ±1,±2, · · · ) and a, b, c. Since ordinary differential Eq (2.4) have five kinds solutions as
follows:

Solution 1: If ac > 0, b = 0, then(
G′

G2

)
(ξ) =

√
a
c

(
C1 cos

√
acξ + C2 sin

√
acξ

C2 cos
√

acξ −C1 sin
√

acξ

)
;

Solution 2: If ac < 0, b = 0, then(
G′

G2

)
(ξ) = −

√∣∣∣∣∣ac
∣∣∣∣∣ (C1 sinh 2

√
|ac|ξ + C1 cosh 2

√
|ac|ξ + C2

C1 cosh 2
√
|ac|ξ + C1 sinh 2

√
|ac|ξ −C2

)
;

Solution 3: If a = 0, c , 0, b = 0, then(
G′

G2

)
(ξ) = −

C1

c(C1ξ + C2)
;
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Solution 4: If b , 0,∆ ≥ 0, then(
G′

G2

)
(ξ) = −

b
2c
−

√
∆(C1 cosh(

√
∆

2 )ξ + C2 sinh(
√

∆
2 )ξ)

2c(C2 cosh(
√

∆
2 )ξ + C1 sinh(

√
∆

2 )ξ)
;

Solution 5: If b , 0,∆ < 0, then(
G′

G2

)
(ξ) = −

b
2c
−

√
−∆(C1 cos(

√
−∆
2 )ξ −C2 sin(

√
−∆
2 )ξ)

2c(C2 cos(
√
−∆
2 )ξ + C1 sin(

√
−∆
2 )ξ)

;

where C1,C2 are free constants and ∆ = b2 − 4ac, then the exact solutions of (2.2) can be obtained.
Step 5. Applying the inverse transformation to u(ξ) (ξ = x + y− kt), then all exact solutions u(x, y, t)

of (2.1) can be gotten.
Since u′′ and u3 in (1.4) should be homogeneous balance, we get n = 1. Then u(ξ) in (2.3) has the

form

u(ξ) = A1

(
G′

G2

)
+ A0 + A−1

(
G′

G2

)−1

, (2.5)

where G′/G2 satisfies Eq (2.4). For simplicity, set g := G′/G2, then (2.4) can be rewritten as

g′ = a + bg + cg2. (2.6)

Taking derivatives of (2.5), we obtain

u′(ξ) = A1cg2 + A1bg + (A1a − A−1c) − A−1bg−1 − A−1ag−2 (2.7)

and

u′′(ξ) = 2A1c2g3 + 3A1bcg2 + (2A1ac + A1b2)g + (A1ab + A−1bc)
+(A−1b2 + 2A−1ac)g−1 + (3A−1ab)g−2 + 2A−1a2g−3. (2.8)

By (2.5) and calculation we have

2u3 + 4ku = 2A3
1g3 + 6A0A2

1g2 + (6A−1A2
1 + 6A2

0A1 + 4kA1)g + (12A−1A0A1 + 2A3
0 + 4kA0)

(6A2
−1A1 + 6A−1A2

0 + 4kA−1)g−1 + 6A2
−1A0g−2 + 2A3

−1g−3. (2.9)

Now, we put (2.8) and (2.9) into (1.4), and collect all the same power terms together. Then we
extract its undetermined coefficients of the power of g, and set them to be zero. Therefore, we have the
following equations

g3 : 2A1c2 = 2A3
1,

g2 : 3A1bc = 6A0A2
1,

g : 2A1ac + A1b2 = 6A−1A2
1 + 6A2

0A1 + 4kA1,

const : A1ab + A−1bc = 12A−1A0A1 + 2A3
0 + 4kA0,
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g−1 : A−1b2 + 2A−1ac = 6A2
−1A1 + 6A−1A2

0 + 4kA−1,

g−2 : 3A−1ab = 6A2
−1A0,

g−3 : 2A−1a2 = 2A3
−1.

By solving the above equations, we have some cases as follows.

Case 1: 
A1 = 0;
A−1 = 0;

A0 = 0,
√
−2k, or,−

√
−2k,

(2.10)

then u(ξ) is a constant.

Case 2: 
A1 = 0;
A−1 = ±a;

A0 = ±
b
2
,

(2.11)

where k = −b2

8 + ac
2 , that is ∆ = b2 − 4ac = −8k.

Subcase 2.1: If ac > 0, b = 0, then

u(ξ) = ±
√

ac
(
C2 cos

√
acξ −C1 sin

√
acξ

C1 cos
√

acξ + C2 sin
√

acξ

)
. (2.12)

Subcase 2.2: If ac < 0, b = 0, then

u(ξ) = ∓
√
|ac|

(
C1 cosh 2

√
|ac|ξ + C1 sinh 2

√
|ac|ξ −C2

C1 sinh 2
√
|ac|ξ + C1 cosh 2

√
|ac|ξ + C2

)
. (2.13)

Subcase 2.3: If a = 0, c , 0, b = 0, then

u(ξ) = 0; (2.14)

Subcase 2.4: If b , 0,∆ = −8k ≥ 0, then

u(ξ) = ±
b
2
∓

 b
2c

+

√
∆(C1 cosh(

√
∆

2 )ξ + C2 sinh(
√

∆
2 )ξ)

2c(C2 cosh(
√

∆
2 )ξ + C1 sinh(

√
∆

2 )ξ)


−1

. (2.15)

Subcase 2.5: If b , 0,∆ = −8k < 0, then

u(ξ) = ±
b
2
∓

 b
2c

+

√
−∆(C1 cos(

√
−∆
2 )ξ −C2 sin(

√
−∆
2 )ξ)

2c(C2 cos(
√
−∆
2 )ξ + C1 sin(

√
−∆
2 )ξ)


−1

. (2.16)
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Case 3: 
A1 = ±c;
A−1 = 0;

A0 = ±
b
2

;

(2.17)

where k = −b2

8 + ac
2 , that is ∆ = b2 − 4ac = −8k.

Subcase 3.1: If ac > 0, b = 0, then

u(ξ) =
√

ac
(
C1 cos

√
acξ + C2 sin

√
acξ

C2 cos
√

acξ −C1 sin
√

acξ

)
. (2.18)

Subcase 3.2: If ac < 0, b = 0, then

u(ξ) = ∓
√
|ac|

(
C1 sinh 2

√
|ac|ξ + C1 cosh 2

√
|ac|ξ + C2

C1 cosh 2
√
|ac|ξ + C1 sinh 2

√
|ac|ξ −C2

)
. (2.19)

Subcase 3.3: If a = 0, c , 0, then

u(ξ) = ∓
C1

C1ξ + C2
; (2.20)

Subcase 3.4: If b , 0,∆ = −8k ≥ 0, then

u(ξ) = ∓

√
∆

2
·

C1 cosh(
√

∆
2 )ξ + C2 sinh(

√
∆

2 )ξ

C2 cosh(
√

∆
2 )ξ + C1 sinh(

√
∆

2 )ξ
. (2.21)

Subcase 3.5: If b , 0,∆ = −8k < 0, then

u(ξ) = ∓

√
−∆

2
·

C1 cos(
√
−∆
2 )ξ −C2 sin(

√
−∆
2 )ξ

C2 cos(
√
−∆
2 )ξ + C1 sin(

√
−∆
2 )ξ

. (2.22)

3. Via tan(φ(ξ)
2 ) method

At first, we give the outline of tan(φ(ξ)
2 ) method.

Step 1. The same as G′/G2 method.
Step 2. Suppose that the solutions can be written as follows

u(ξ) =

m∑
j=0

A j

(
p + tan(

φ(ξ)
2

)
) j

+

m∑
j=1

A− j

(
p + tan(

φ(ξ)
2

)
)− j

, (3.1)

φ(ξ) satisfies

φ′(ξ) = a sin(φ(ξ)) + b cos(φ(ξ)) + c, (3.2)
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here a, b, c, A j and A− j are unknown constants. (3.2) has five kinds of solutions.

Solution 1: If b = c, a = 0, then

tan
(
φ

2

)
= bξ + C1 − p;

Solution 2: If b = c, a , 0, then

tan
(
φ

2

)
= C1 exp(aξ) −

b
a

;

Solution 3: If b , c,∆ = a2 + b2 − c2 > 0, then

tan
(
φ

2

)
=

2
b − c

·
C1r1 exp(r1ξ) + C2r2 exp(r2ξ)

C1 exp(r1ξ) + C2 exp(r2ξ)
− p;

Solution 4: If b , c,∆ = a2 + b2 − c2 = 0, then

tan
(
φ

2

)
=

a
b − c

+
2

b − c
·

C2

C1 + C2ξ
;

Solution 5: If b , c,∆ = a2 + b2 − c2 < 0, then

tan
(
φ

2

)
=

a
b − c

+

√
−∆

b − c
·
−C1 sin(

√
−∆
2 ξ) + C2 cos(

√
−∆
2 ξ)

C1 cos(
√
−∆
2 ξ) + C2 sin(

√
−∆
2 ξ)

;

where C1 and C2 are arbitrary constants, r1 =
a+p(b−c)+

√
∆

2 , r2 =
a+p(b−c)−

√
∆

2 .
Step 3. We need to balance the highest order derivative and the nonlinear terms because of

homogenous, then the value of positive integer m we will get. Substituting (3.1) into (2.2) yields a
equation with the power of tan(φ2 ). We firstly collect the terms with the same power of tan(φ2 ), and
then set the coefficients of it to be zero, then a system of equations for unknown A j, B j, a, b, c and p
we will obtain.

Step 4. Solving the above equations we just obtain, and then substituting A0, A1, B1, · · · , Am, Bm, p
into (3.1), we get the expression u(ξ).

Step 5. This step is similar to Step 5 of G′/G2.
In the following, we utilize tan(φ(ξ)

2 ) method to seek new solutions of (1.1). Substituting (3.1)
into (1.4) and by Step 3 we get m = 1. Then (3.1) can be written as

u(ξ) = A0 + A
(
p + tan

(
φ(ξ)

2

))
+ A−1

(
p + tan

(
φ(ξ)

2

))−1

. (3.3)

Substituting (3.3) into the left side and right side of Eq (1.4) and combining with (3.2), then we have

(p + t)3 · u′′(ξ)
= (−b + c)2A t62

+

(
3(−b + c)2Ap

2
+

3a(−b + c)A
2

)
t5
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+

(
(3A p2 − A−1)(−b + c)2

2
+

9Apa(−b + c)
2

+
A(4a2 − 2b2 + 2c2)

4
+

A−1(−b + c)2

2

)
t4

+

(
(A p3 − A−1 p)(−b + c)2

2
+

3(3A p2 − A−1)a(−b + c)
2

+
3Ap(4a2 − 2b2 + 2c2)

4
+

Aa(b + c)
2

+ 2A−1a(−b + c)
)

t3

+

(
3(A p3 − A−1 p)a(−b + c)

2
+

(3A p2 − A−1)(4a2 − 2b2 + 2c2)
4

+
3Apa(b + c)

2
+

A−1(2(b + c)(−b + c) + 4a2)
2

)
t2

+

(
(A p3 − A−1 p)(4a2 − 2b2 + 2c2)

4
+

(3A p2 − A−1)a(b + c)
2

+ 2A−1a(b + c)
)

t

+
(A p3 − A−1 p)a(b + c)

2
+

A−1(b + c)2

2
; (3.4)

(p + t)3 · (2u3(ξ) + 4ku(ξ))
= 2A3t6

+ (12A3 p + 6A2A0)t5

+ (30A3 p2 + 30A2A0 p + 6A2A−1 + 6AA2
0 + 4kA)t4

+ (40A3 p3 + 60A2A0 p2 + 24A2A−1 p + 24AA2
0 p + 12AA0A−1 + 16Apk + 2A3

0 + 4A0k)t3

+ (30A3 p4 + 60A2A0 p3 + 36A2A−1 p2 + 36AA2
0 p2 + 36AA0A−1 p + 24Ak p2 + 6A3

0 p

+ 6A A2
−1 + 6A2

0A−1 + 12A0kp + 4A−1k)t2

+ (12A3 p5 + 30A2A0 p4 + 24A2A−1 p3 + 24AA2
0 p3 + 36AA0A−1 p2 + 16Ak p3

+ 6A3
0 p2 + 12A A2

−1 p + 12A2
0A−1 p + 12A0k p2 + 6A0A2

−1 + 8A−1kp)t
+ 2A3 p6 + 6A2A0 p5 + 6A2A−1 p4 + 6AA2

0 p4 + 12AA0A−1 p3 + 4Ak p4 + 2A3
0 p3

+ 6A A2
−1 p2 + 6A2

0A−1 p2 + 4A0k p3 + 6A0A2
−1 p + 4A−1k p2 + 2A3

−1. (3.5)

Substituting (3.4) and (3.5) into (1.4), a system of algebraic equations for the unknowns A0, A, A−1

will be obtained. Solving the algebraic equation by the aid of Maple software, we can have some cases
as follows.

Case 1: If b = c, then we have two subcases.
Subcase 1.1 

A = 0;

A0 = 0, or ±
√
−2k;

A−1 = 0,

(3.6)

then u(ξ) is a constant.
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Subcase 1.2: 

A = 0;

A0 = ±
√
−2k =

a
2

;

A−1 = ±
3ac + 16kp − pa2

6
√
−2k

= c − ap,

(3.7)

with a2 = −8k, c, p are arbitrary constant. If a = 0, then

u(ξ) =
c

cξ + C1
. (3.8)

If a , 0,

u(ξ) =
a
2

+ (c − ap)
( pa − c

a
+ C1 exp(aξ)

)−1
. (3.9)

Case 2: If b , c, then 

A = ±
c − b

2
;

A0 = ±
a − p(c − b)

2
= 0;

A−1 = ±
a2 + b2 − c2 + 8k

6(b − c)
,

(3.10)

with p = −a/(b − c) and c2 = a2 + b2 − 4k, c2 = a2 + b2 + 2k, or c2 = a2 + b2 + 8k. then ∆ = 4k,−2k,
or −8k. A−1 = ± 2k

b−c ,±
k

b−c or 0.
Subcase 2.1: If ∆ > 0, then r1 =

√
∆

2 , r2 = −
√

∆
2 .

When ∆ = 4k, k > 0

u(ξ) = ∓
C1

√
∆

2 exp(
√

∆
2 ξ) −C2

√
∆

2 exp(−
√

∆
2 ξ)

C1 exp(
√

∆
2 ξ) + C2 exp(−

√
∆

2 ξ)
± k

C1 exp(
√

∆
2 ξ) + C2 exp(−

√
∆

2 ξ)

C1

√
∆

2 exp(
√

∆
2 ξ) −C2

√
∆

2 exp(−
√

∆
2 ξ)

. (3.11)

When ∆ = −2k, k < 0

u(ξ) = ∓
C1

√
∆

2 exp(
√

∆
2 ξ) −C2

√
∆

2 exp(−
√

∆
2 ξ)

C1 exp(
√

∆
2 ξ) + C2 exp(−

√
∆

2 ξ)
±

k
2

C1 exp(
√

∆
2 ξ) + C2 exp(−

√
∆

2 ξ)

C1

√
∆

2 exp(
√

∆
2 ξ) −C2

√
∆

2 exp(−
√

∆
2 ξ)

. (3.12)

When ∆ = −8k, k < 0

u(ξ) = ∓
C1

√
∆

2 exp(
√

∆
2 ξ) −C2

√
∆

2 exp(−
√

∆
2 ξ)

C1 exp(
√

∆
2 ξ) + C2 exp(−

√
∆

2 ξ)
. (3.13)

Subcase 2.2: If ∆ = 0, then k = 0, A−1 = 0.

u(ξ) = ∓
C2

C1 + C2ξ
. (3.14)
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Subcase 2.3: When ∆ = 4k, k < 0, we have

u(ξ) = ∓

√
−∆

2
·
−C1 sin(

√
−∆
2 ξ) + C2 cos(

√
−∆
2 ξ)

C1 cos(
√
−∆
2 ξ) + C2 sin(

√
−∆
2 ξ)

±
2k
√
−∆
·

C1 cos(
√
−∆
2 ξ) + C2 sin(

√
−∆
2 ξ)

−C1 sin(
√
−∆
2 ξ) + C2 cos(

√
−∆
2 ξ)

. (3.15)

When ∆ = −2k, k > 0, we have

u(ξ) = ∓

√
−∆

2
·
−C1 sin(

√
−∆
2 ξ) + C2 cos(

√
−∆
2 ξ)

C1 cos(
√
−∆
2 ξ) + C2 sin(

√
−∆
2 ξ)

±
k
√
−∆
·

C1 cos(
√
−∆
2 ξ) + C2 sin(

√
−∆
2 ξ)

−C1 sin(
√
−∆
2 ξ) + C2 cos(

√
−∆
2 ξ)

. (3.16)

When ∆ = −8k, k > 0, we have

u(ξ) = ∓

√
−∆

2
·
−C1 sin(

√
−∆
2 ξ) + C2 cos(

√
−∆
2 ξ)

C1 cos(
√
−∆
2 ξ) + C2 sin(

√
−∆
2 ξ)

. (3.17)

C1,C2 are arbitrary constants when they appear.

4. Conclusions and discussion

Traveling waves play an important role in solitary wave theory. To our knowledge, this work is the
first time to use these two methods to study the Bogoyavlenskii equation. We have obtained some new
traveling wave soliton solutions of the Bogoyavlenskii equation, these solutions are constructed by
trigonometric, exponential and rational functions with arbitrary coefficients and parameters. We draw
the figures of some solutions with special values of the coefficients and parameters. These coefficients
and parameters have practical physical meanings, the coefficients and parameters depend on the initial
value. It is easy for us to observe the soliton behaviors of these solutions, such as Figure 1 to Figure 6.
Our results have verified that the new solutions of this equation do indeed have soliton phenomena,
these will help us to study waves in the ocean. In the process of the use of the modified G′/G2 and
simplicity improved tan(φ(ξ)/2) methods, we find that both methods are very useful, and can help us
to get rational, trigonometric, exponential, hyperbolic solutions. By comparing these two methods, we
found that the second method are more complicated, but we can get some additional solutions which
we can not obtain by the modified G′/G2 method, such as (3.11), (3.12), (3.15) and (3.16).

(a) (2.12) a = 1, c = 1 (b) (2.12) a = 1, c = 1,

Figure 1. 3D and 2D plot of (2.12) with C1 = 1,C2 = 2, k = 1, t = 1.
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(a) a = 1, b = 2, c = 2 (b) a = 1, b = 2, c = 2

Figure 2. 3D and 2D plot of (2.16) with C1 = 1,C2 = 2, k = 1, t = 1.

(a) a = 1, b = 5, c = 1 (b) a = 1, b = 5, c = 1

Figure 3. 3D and 2D plot of (2.15) with C1 = 1,C2 = 2, k = 1, t = 1.

(a) a = 1, c = 2, p = 3 (b) a = 1, c = 2, p = 3

Figure 4. 3D and 2D plot of (3.9) with C1 = 1,C2 = 2, k = 1, t = 1.
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(a) ∆ = 4 (b) ∆ = 4

Figure 5. 3D and 2D plot of (3.11) with C1 = 1,C2 = 2, k = 1, t = 1.

(a) ∆ = 4 (b) ∆ = 4

Figure 6. 3D and 2D plot of (3.11) with C1 = 1,C2 = 2, k = 1, t = 1.
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