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1. Introduction

For two Banach spaces X and Y , B(X,Y) denotes the collection of all bounded linear operators from
X to Y and K(X,Y) denotes the collection of all compact operators in B(X,Y). The Calkin algebra
Z(X,Y) is the quotient Banach algebra B(X,Y)/K(X,Y).

For bounded linear operators A ∈ B(X, X), B ∈ B(Y,Y) and T ∈ B(X,Y), we say “T intertwines A
and B” if

T A = BT with T , 0.

When it is convenient to deemphasize the intertwining operator T ∈ B(X,Y), we write A ∝ B
(sometimes we also use A ∝ B(T )) as the intertwining relation above for simplicity. In [2] Bourdon
and Shapiro showed that the intertwining relation is neither symmetric nor transitive. Furthermore, we
say “T intertwines A and B inZ(X,Y)” (or “T intertwines A and B compactly”) if

T A = BT mod K(X,Y) with T , 0.

For simplicity, the notation A ∝K B(T ) represents the compact intertwining relations above. The
relation ∝K turns to be symmetric when T ∈ B(X,Y) is invertible.

As usual, S (D) denotes the collection of all analytic self-maps of the unit disk D of the complex
plane C. The composition operator Cϕ induced by ϕ ∈ S (D) is defined as Cϕ f = f ◦ ϕ for each
f ∈ H(D), where H(D) is the collection of all holomorphic functions on the unit disk.
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We next recall the spaces to work on, one of which is a classical Banach space of analytic functions,
the Bloch space, which is defined as

B = { f ∈ H(D) : ‖ f ‖1 = sup
z∈D

(1 − |z|2)| f ′(z)| < ∞}.

The Bloch space B is maximal among all Möbius-invariant Banach spaces of analytic functions on D,
which implies that ‖ f ◦ ϕ‖1 = ‖ f ‖1 holds for all f ∈ B and ϕ ∈ Aut(D) with the seminorm ‖ · ‖1. It is
well-known that B is a Banach space endowed with the norm ‖ f ‖B = | f (0)| + ‖ f ‖1.

For 0 < α < ∞, the α-Bloch space (or Bloch-type space) is defined as:

Bα = { f ∈ H(D) : ‖ f ‖α = sup
z∈D

(1 − |z|2)α| f ′(z)| < ∞}.

The little α-Bloch space defined as:

Bα0 = { f ∈ Bα : lim
|z|→1

(1 − |z|2)α| f ′(z)| = 0}.

Bα is a Banach space endowed with the norm ‖ f ‖Bα = | f (0)| + ‖ f ‖α.
For 0 < α, β < ∞, the weighted logarithmic Bloch space and the little weighted logarithmic Bloch

space were introduced in [13, 14]. It is defined as:

Bα
logβ

= { f ∈ H(D) : ‖ f ‖α
logβ

= sup
z∈D

(1 − |z|2)α(log
2

1 − |z|2
)β| f ′(z)| < ∞}.

Bα
logβ,0

= { f ∈ Bα
logβ

: lim
|z|→1

(1 − |z|2)α(log
2

1 − |z|2
)β| f ′(z)| = 0}.

Bα
logβ

is a Banach space endowed with the norm ‖ f ‖Bα
logβ

= | f (0)|+ ‖ f ‖α
logβ

, which reduces to Bα if β = 0.
For 0 < α < ∞, the classical weighted space is defined as:

H∞α = { f ∈ H(D) : ‖ f ‖∞α = sup
z∈D

(1 − |z|2)α| f (z)| < ∞}.

The little weighted space is defined as:

H∞α,0 = { f ∈ H∞α : lim
|z|→1

(1 − |z|2)α| f (z)| = 0}.

H∞α is a Banach space endowed with the norm ‖ f ‖H∞α = | f (0)| + ‖ f ‖α.
For g ∈ H(D), two integral-type operators are defined by

Jg f (z) =

∫ z

0
f (t)g′(t)dt

and

Ig f (z) =

∫ z

0
f ′(t)g(t)dt,
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where f ∈ H(D) and z ∈ D. Obviously, integration by parts gives

Mg f = f (0)g(0) + Jg f + Ig f ,

which shows the close relation among the integral-type operators Jg, Ig and the multiplication operator
Mg. Here, the miltiplication operator Mg is defined by

Mg f (z) = g(z) f (z), f ∈ H(D), z ∈ D.

Conveniently, the symbol Vg is used to represent Jg or Ig. Composition, integral type operators and
their products from or to the weighted logarithmic Bloch space and the little weighted logarithmic
Bloch space have been investigated a lot recently (see, for example, [9, 15, 16]). For more information
on the logarithmic Bloch spaces, interested readers can refer to [3, 8, 11, 12, 17–20].

Suppose that α, β > 0, ϕ ∈ S (D) and g, h ∈ H(D). For two composition operators Cϕ ∈ B(Bα,Bα),
Cϕ ∈ B(Bβ,Bβ), we concentrate on the compact intertwining relations of Cϕ whose intertwining
operator is the integral-type operators Vg ∈ B(Bα,Bβ). In other word, we will study the properties
of the difference operator

V[ϕ; g, h] := CϕVg − VhCϕ. (1.1)

By V[ϕ, ψ; g, h] we denote the following expression

(Cϕ : Bβ → Bβ)(Vg : Bα → Bβ) − (Vh : Bα → Bβ)(Cψ : Bα → Bα). (1.2)

We also say that Cϕ and Vg are essentially commutative if

Vg(Cϕ : Bα → Bα) = (Cϕ : Bβ → Bβ)Vg mod K(Bα,Bβ).

Moreover, the notation Ω
α,β
co (Vg) is denotes the collection of g ∈ H(D) such that

• Vg ∈ B(Bα,Bβ).
• Vg are essentially commutative with Cϕ for all ϕ such that Cϕ is bounded on both Bα and Bβ.

Here, the lower symbol “co” represents “composition operator”.
Some authors in their papers such as [21–23, 25] investigate the compact intertwining relations of

the integral-type operators and the composition operators on various spaces of analytic functions on
the unit disk.

In this paper, we investigate the compact intertwining relations of integral-type operators Vg from
Bα to Bβ and the relevant composition operators Cϕ. In Section 2, we present some lemmata to be used
later in this paper. In Section 3, we investigate the intertwining relations of integral-type operators and
composition operators, in which the equivalent conditions of V[ϕ, ψ; g, h] = 0 is given. In Section 4,
boundedness and compactness of V[ϕ; g, h] are investigated. In Sections 5 and 6, two questions of the
compact intertwining relations of Vg and Cϕ are investigated respectively.

For simplification, the hypotheses 0 < α, β < ∞, ϕ ∈ S (D), g, h ∈ H(D) are available throughout
this paper which will not be specified later.

Specially, for two real numbers A and B, we say A . B if there exists a constant C , 0 such that
A ≤ CB.

AIMS Mathematics Volume 7, Issue 10, 18729–18745.



18732

2. Auxiliary results

In this section, we introduce some basic properties of the Bloch-type spaces and the integral-type
operators to be used in this paper.

The following folklore lemma is proved in a standard way (see, e.g., [10]), which also implies that
the point evaluation functional is continuous on the Bloch-type space.

Proposition 2.1. For each f ∈ Bα and z ∈ D, we have

| f (z)| .


log

2
1 − |z|2

‖ f ‖Bα , α = 1;

(1 − |z|2)1−α‖ f ‖Bα , α > 1;
‖ f ‖Bα , 0 < α < 1.

The following result can be also found in [10].

Lemma 2.2. The composition operator Cϕ is bounded from Bα to Bβ if and only if

sup
z∈D

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|ϕ′(z)| < ∞. (2.1)

The following lemma was proved, e.g., in [6, 7] even in much more general settings.

Lemma 2.3. The integral-type operators Jg is bounded from Bα to Bβ if and only if
g ∈ Bβ when 0 ≤ α < 1;

g ∈ Bβ
log1 when α = 1;

g ∈ Bβ−α+1 when α > 1.

Lemma 2.4. [5] The integral-type operators Ig is bounded from Bα to Bβ if and only if

g ∈ H∞β−α. (2.2)

The proposition below is a crucial criterion for the compactness of V[ϕ; g, h], which can be proved
by a little modification of Proposition 3.11 in [4].

Proposition 2.5. V[ϕ; g, h] is compact from Bα to Bβ if and only if whenever { fn} is bounded in Bα and
fn → 0 uniformly on any compact subset of the unit disk, then

lim
n→∞
‖V[ϕ; g, h] fn‖Bβ = 0.

3. Intertwining relations of Cϕ and Vg

Theorem 3.1. Assume that J[ϕ, ψ; g, h] is defined as (1.2), then
J[ϕ, ψ; g, h] = 0 if and only if
(a) either ϕ(0) = 0 or g is a constant;
(b) ϕ = ψ;
(c) h = g ◦ ϕ + C, where C is an arbitrary constant.
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Proof. The sufficiency is easily checked by calculation. To prove the necessity, we only show some
different details from what Tong and Zhou did in [22] for the study of the intertwining relations for
Volterra operators and composition operators on the Bergman space.

J[ϕ, ψ; g, h] = 0 implies that

sup
f∈Bα,‖ f ‖,0

‖(CϕJg − JhCψ) f ‖Bβ
‖ f ‖Bα

= 0,

which further implies that, for each f ∈ Bα,

0 = ‖(CϕJg − JhCψ) f ‖Bβ = |

∫ ϕ(0)

0
f (t)g′(t)dt|

+ sup
z∈D

(1 − |z|2)β| f (ϕ(z))ϕ′(z)g′(ϕ(z)) − f (ψ(z))h′(z)|.

Hence, for each f ∈ Bα, |(CϕJg − JhCψ) f (0)| = 0 and

sup
z∈D
| f (ϕ(z))ϕ′(z)g′(ϕ(z)) − f (ψ(z))h′(z)| = 0

hold. And the latter one shows that for each z ∈ D,

| f (ϕ(z))ϕ′(z)g′(ϕ(z)) − f (ψ(z))h′(z)| = 0.

To this end, the remaining part of the theorem is parallel with Proposition 3.1 in [22]. This completes
the proof. �

Theorem 3.2. Assume that I[ϕ, ψ; g, h] is defined as (1.2), then
I[ϕ, ψ; g, h] = 0 if and only if
(a) either ϕ(0) = 0 or g ≡ 0;
(b) ϕ = ψ;
(c) h = g ◦ ϕ.

Proof. The sufficiency is easily verified by calculation. To prove the necessity, we only show some
essential details. I[ϕ, ψ; g, h] = 0 implies that for each f ∈ Bα,

0 = ‖(CϕIg − IhCψ) f ‖Bβ = |

∫ ϕ(0)

0
f ′(t)g(t)dt|

+ sup
z∈D

(1 − |z|2)β| f ′(ϕ(z))ϕ′(z)g(ϕ(z)) − f ′(ψ(z))ψ′(z)h(z)|.

Hence, for each f ∈ Bα, |(CϕIg − IhCψ) f (0)| = 0 and

sup
z∈D
| f ′(ϕ(z))ϕ′(z)g(ϕ(z)) − f ′(ψ(z))ψ′(z)h(z)| = 0

hold. If ϕ(0) = 0, then the first of the conditions is automatically satisfied. If ϕ(0) , 0, then we can
obtain that g ≡ 0 by the same method used in Proposition 3.1 in [22]. Moreover, the second equality

sup
z∈D

(1 − |z|2)β| f ′(ϕ(z))ϕ′(z)g(ϕ(z)) − f ′(ψ(z))ψ′(z)h(z)| = 0
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implies that for each z ∈ D,

| f ′(ϕ(z))ϕ′(z)g(ϕ(z)) − f ′(ψ(z))ψ′(z)h(z)| = 0.

By choosing f (z) = z ∈ Bα and f (z) = z2 ∈ Bα, we have that

ϕ′(z)g(ϕ(z)) − ψ′(z)h(z) = 0,

2ϕ(z)ϕ′(z)g(ϕ(z)) − 2ψ(z)ψ′(z)h(z) = 0.

Combining these two quantities, we have that

2ψ′(z)h(z)(ϕ(z) − ψ(z)) = 0.

Hence, ϕ = ψ and h = g ◦ ϕ. This completes the proof. �

Specially, we consider the operators mapping a Bloch-type space into and onto itself, that is Cϕ :
Bα → Bα, Jg, Jh, Ig, Ih : Bα → Bα. Combining Theorems 3.1 and 3.2 and the equivalent conditions of
the boundedness of Jg and Ig from Lemmas 2.3 and 2.4, we conclude the statements in the following.

Corollary 3.3. (a) If α > 1, g, h ∈ Bβ−α+1, then Jg ∝ Jh(Cϕ) if and only if g is a constant or ϕ(0) = 0,
h = g ◦ ϕ + C, where C is a constant.
(b) If α = 1, g, h ∈ Bβ

log1 , then Jg ∝ Jh(Cϕ) if and only if g is a constant or ϕ(0) = 0, h = g ◦ ϕ + C,
where C is a constant.
(c) If 0 ≤ α < 1, g, h ∈ Bβ, then Jg ∝ Jh(Cϕ) if and only if g is a constant or ϕ(0) = 0, h = g ◦ ϕ + C,
where C is a constant.

Corollary 3.4. If g, h ∈ H∞β−α, then Ig ∝ Ih(Cϕ) if and only if g ≡ 0 or ϕ(0) = 0, h = g ◦ ϕ.

4. Intertwining relations between the composition operators and the integral-type operators
between the Bloch-type spaces

In this section, we characterize the boundedness and the compactness of V[ϕ; g, h] defined as (1.1),
in which the compactness is essential for our study in this paper. The method of the proof is basic,
which is also parallel with Proposition 3.1 in [22] and Corollary 4.3 in [22].

Theorem 4.1. J[ϕ; g, h] is bounded from Bα to Bβ if and only if
(a)

sup
z∈D

(1 − |z|2)β

(1 − |ϕ(z)|2)α−1 |(g ◦ ϕ − h)′(z)| < ∞

when α > 1;
(b)

sup
z∈D

(1 − |z|2)β log
2

1 − |ϕ(z)|2
|(g ◦ ϕ − h)′(z)| < ∞

when α = 1;
(c) g ◦ ϕ − h ∈ Bβ when 0 < α < 1.
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Proof. The proof of the theorem is essentially given in [7], but since there are some technical
differences, we will give some details. We firstly prove the sufficiency. By Proposition 2.1, we estimate
the semi-norm ‖J[ϕ; g, h]‖β respectively.
(a) when α > 1,

‖J[ϕ; g, h]‖β = sup
z∈D

(1 − |z|2)β| f (ϕ(z))||(g ◦ ϕ − h)′(z)|

. ‖ f ‖Bα sup
z∈D

(1 − |z|2)β

(1 − |ϕ(z)|2)α−1 |(g ◦ ϕ − h)′(z)| < ∞;

(b) when α = 1,

‖J[ϕ; g, h]‖β . ‖ f ‖Bα sup
z∈D

(1 − |z|2)β log
2

1 − |ϕ(z)|2
|(g ◦ ϕ − h)′(z)| < ∞;

(c) when 0 < α < 1,

‖J[ϕ; g, h]‖β . ‖ f ‖Bα sup
z∈D

(1 − |z|2)β|(g ◦ ϕ − h)′(z)| < ∞.

Therefore, we conclude that the difference operator J[ϕ; g, h] is bounded by the estimations above
and the boundedness of the point evaluation functional at 0.

To prove the necessity, we aim to find a contradiction if we suppose that the hypotheses do not hold.
When α > 1, there exists a sequence {zn} ⊂ D satisfying

lim
n→∞

(1 − |zn|
2)β

(1 − |ϕ(zn)|2)α−1 |(g ◦ ϕ − h)′(zn)| = ∞.

For n ∈ N and z ∈ D, assume that the test function is

fn,1(z) = (
1 − |ϕ(zn)|2

(1 − ϕ(zn)z)2
)α−1. (4.1)

An easy estimation shows that ‖ fn,1‖α ≤ 4α(α− 1) and thus fn,1 ∈ B
α. By the boundedness of J[ϕ; g, h],

we have

‖J[ϕ; g, h] fn,1‖β = sup
z∈D

(1 − |z|2)β| fn,1(ϕ(z))||(g ◦ ϕ − h)′(z)|

≥
(1 − |zn|

2)β

(1 − |ϕ(zn)|2)α−1 |(g ◦ ϕ − h)′(zn)| → ∞

as n→ ∞, which contradicts to our hypothesis. Assume that the test function is fn,2(z) = log 2(1−|ϕ(zn)|2)
(1−ϕ(zn)z)2

when α = 1 and is fn,3(z) = 1 when 0 < α < 1 respectively. Further observe the fact that ‖ fn,2‖α ≤ 4
and ‖ fn,3‖α ≤ 2α+2. To this end, we conclude the results in a similar way shown above. This completes
the proof. �

Theorem 4.2. J[ϕ; g, h] is compact from Bα to Bβ if and only if J[ϕ; g, h] is bounded and
(a)

lim
|ϕ(z)|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)α−1 |(g ◦ ϕ − h)′(z)| = 0
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when α > 1;
(b)

lim
|ϕ(z)|→1

(1 − |z|2)β log
2

1 − |ϕ(z)|2
|(g ◦ ϕ − h)′(z)| = 0

when α = 1;
(c)

lim
|ϕ(z)|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)1−α |(g ◦ ϕ − h)′(z)| = 0

when 0 < α < 1.

Proof. The proof of the theorem is also essentially given in [7], but since there are some technical
differences, we will give some details. To the sufficiency of the theorem, we present the proof of the
hypothesis α > 1. Assume that { fn} is bounded in Bα and fn → 0 uniformly on any compact subset of
D, by Proposition 2.5 we are only supposed to check that

lim
n→∞
‖J[ϕ; g, h] fn‖Bβ = 0.

For convenience, suppose that there exists a positive number M1 such that supn∈Z ‖ fn‖Bα ≤ M1. For any
ε > 0, there exists a δ > 0 such that

sup
|ϕ(z)|>1−δ

(1 − |z|2)β

(1 − |ϕ(z)|2)α−1 |(g ◦ ϕ − h)′(z)| <
ε

2M1

and
sup

|ϕ(z)|≤1−δ
| fn(ϕ(z))| <

ε

2M1
.

Furthermore, there exists another positive number M2 such that

sup
|ϕ(z)|≤1−δ

(1 − |z|2)β

(1 − |ϕ(z)|2)α−1 |(g ◦ ϕ − h)′(z)| < M2.

Hence,

‖J[ϕ; g, h] fn‖β

≤ sup
|ϕ(z)|≤1−δ

(1 − |z|2)β

(1 − |ϕ(z)|2)α−1 |(g ◦ ϕ − h)′(z)| · (1 − |ϕ(z)|2)α−1| fn(ϕ(z))|

+ sup
|ϕ(z)|>1−δ

(1 − |z|2)β

(1 − |ϕ(z)|2)α−1 |(g ◦ ϕ − h)′(z)| · (1 − |ϕ(z)|2)α−1| fn(ϕ(z))|

. M2
ε

2M1
+

ε

2M1
M1 . ε.

Thus J[ϕ; g, h] is compact from Bα to Bβ when α > 1. Similarly, the compactness of J[ϕ; g, h] can be
obtained when α = 1 and 0 < α < 1 respectively if the hypotheses hold.

To the necessity of the theorem, we firstly consider the situation when α > 1. Like what we do in
Theorem 4.1, we aim to find a contradiction if we suppose that the hypotheses do not hold. Thus there
exists a sequence {zn} ⊂ D such that for any ε > 0,

(1 − |zn|
2)β

(1 − |ϕ(zn)|2)α−1 |(g ◦ ϕ − h)′(zn)| > ε
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whenever |ϕ(zn)| → 1. For n ∈ Z and z ∈ D, assume that the same test function fn,1 defined as (4.1) and
it is easy to check that { fn,1} → 0 as n → ∞ on any compact subset of D. Then for the given ε > 0
above, we have

‖J[ϕ; g, h] fn,1‖β ≥
(1 − |zn|

2)β

(1 − |ϕ(zn)|2)α−1 |(g ◦ ϕ − h)′(zn)| > ε

as |ϕ(zn)| → 1, which contradicts to our hypothesis.
When 0 < α < 1, we still aim to find a contradiction if we suppose that the hypotheses do not hold.

Thus there exists a sequence {un} ⊂ D such that for any ε > 0,

(1 − |un|
2)β|(g ◦ ϕ − h)′(un)| > ε

whenever |ϕ(un)| → 1. For n ∈ Z, let ϕ(un) = rneiθn . Assume that the test function

f̃n,3(z) = rn(1 − e−iθnrnz)1−α − r2
n(1 − e−iθnr2

nz)1−α.

Observe that ‖ f̃n,3‖Bα ≤ 4(1 − α) and

‖J[ϕ; g, h] f̃n,3‖β ≥ (1 − |un|
2)β| f̃n,3(un)||(g ◦ ϕ − h)′(un)|

≥ | f̃n,3(0)|(1 − |un|
2)β|(g ◦ ϕ − h)′(un)| > rnε,

as |ϕ(zn)| → 1, which contradicts to our hypothesis.
Moreover, The result of α = 1 can be obtained in a similar way by choosing the testing function

which is different from fn,2 in Theorem 4.1

f̃n,2(z) =
3(log 2

1−ϕ(wn)z
)2

log 2
1−|ϕ(wn)|2

−

2(log 2
1−ϕ(wn)z

)3

(log 2
1−|ϕ(wn)|2 )2

where {wn} ⊂ D is the sequence such that for any ε > 0,

(1 − |wn|
2)β log

2
1 − |ϕ(wn)|2

|(g ◦ ϕ − h)′(wn)| > ε

whenever |ϕ(wn)| → 1. This completes the proof. �

Theorem 4.3. Suppose that β − α ≥ 0, then I[ϕ; g, h] is bounded from Bα to Bβ if and only if

sup
z∈D

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|ϕ′(z)(g ◦ ϕ − h)(z)| < ∞.

Proof. This theorem essentially follows from the proofs of some known results such as [5,7], but since
there are some technical differences, we will give some details. The sufficiency is obvious. To prove
the necessity, we aim to find a contradiction if we suppose that the hypotheses do not hold. Thus there
exists a sequence {zn} ⊂ D satisfying

lim
n→∞

(1 − |zn|
2)β

(1 − |ϕ(zn)|2)α
|ϕ′(zn)(g ◦ ϕ − h)(zn)| = ∞.
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For n ∈ Z and z ∈ D, assume that the test function is

gn(z) =
1

(2α − 1)ϕ(zn)

(1 − |ϕ(zn)|2)α

(1 − ϕ(zn)z)2α−1
. (4.2)

An easy estimation shows that ‖gn‖α ≤ 22α and thus gn ∈ B
α. By the boundedness of I[ϕ; g, h], we have

‖I[ϕ; g, h]gn‖β ≥
(1 − |zn|

2)β

(1 − |ϕ(zn)|2)α
|ϕ′(zn)(g ◦ ϕ − h)(zn)| → ∞

as n→ ∞, which contradicts to our hypothesis. This completes the proof. �

Remark 4.4. We can observe that Theorem 4.3 holds for each α > 0 and β > 0. However, if β−α < 0,
then g ≡ 0 by the maximal modulus principal, which can be simplified in the following.

Corollary 4.5. Suppose that β − α < 0, then I[ϕ; g, h] is bounded from Bα to Bβ if and only if

sup
z∈D

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|ϕ′(z)h(z)| < ∞.

We just present the compactness of I[ϕ; g, h] and omit the proof, which can be similarly proved by
the method used in Theorem 4.2 with the same test function used in Theorem 4.3.

Theorem 4.6. Suppose that β − α ≥ 0, then I[ϕ; g, h] is compact from Bα to Bβ if and only if I[ϕ; g, h]
is bounded and

lim
|ϕ(z)|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|ϕ′(z)(g ◦ ϕ − h)(z)| = 0.

Corollary 4.7. Suppose that β− α < 0, then I[ϕ; g, h] is compact from Bα to Bβ if and only if I[ϕ; g, h]
is bounded and

lim
|ϕ(z)|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|ϕ′(z)h(z)| = 0.

5. Essential commutation of Cϕ and Jg between the Bloch-type spaces

In this section, we concentrate on two questions of the compactly intertwining relations of Jg and Cϕ.

Problem 5.1. What properties does a non-constant g ∈ H(D) have if Vg essentially commutes with Cϕ

for all Cϕ that are bounded on both Bα and Bβ?

Problem 5.2. What properties does ϕ ∈ S (D) have if the bounded Vg essentially commutes with Cϕ

for all Cϕ that are bounded on both Bα and Bβ?

We firstly answer the first problem. Recall that the notation Ω
α,β
co (Vg) is denotes the collection of

g ∈ H(D) such that

• Vg ∈ B(Bα,Bβ).
• Vg are essentially commutative with Cϕ for all ϕ such that Cϕ is bounded on both Bα and Bβ.

Theorem 5.3. Ω
α,β
co (Jg) = B0

β−α+1 if α > 1 and β − α + 1 ≥ 0.
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Proof. In the proof we use the ideas in Theorem 5.1 in [22]. We firstly prove that B0
β−α+1 ⊂ Ω

α,β
co (Jg).

For any g ∈ B0
β−α+1, obviously, Jg is bounded by Lemma 2.3. Furthermore, by the boundedness of Cϕ

on Bβ (see Lemma 2.2),

(1 − |z|2)β

(1 − |ϕ(z)|2)α−1 |(g ◦ ϕ − g)′(z)|

≤
(1 − |z|2)β

(1 − |ϕ(z)|2)β
|ϕ′(z)| · (1 − |ϕ(z)|2)β−α+1|g′(ϕ(z))|

+
(1 − |z|2)α−1

(1 − |ϕ(z)|2)α−1 · (1 − |z|
2)β−α+1|g′(z)|

≤
(1 − |z|2)β

(1 − |ϕ(z)|2)β
|ϕ′(z)| · (1 − |ϕ(z)|2)β−α+1|g′(ϕ(z))|

+ 2α−1(
1 + |ϕ(0)|
1 − |ϕ(0)|

)α−1 · (1 − |z|2)β−α+1|g′(z)|

≤ C1 · (1 − |ϕ(z)|2)β−α+1|g′(ϕ(z))|
+ C2 · (1 − |z|2)β−α+1|g′(z)| → 0

as |ϕ(z)| → 1. Here, we use the following inequality (see, for example, Corollary 2.40 in [4])

1 − |z|
1 − |ϕ(z)|

≤
1 + |ϕ(0)|
1 − |ϕ(0)|

, z ∈ D.

This implies that B0
β−α+1 ⊂ Ω

α,β
co (Jg) by Theorem 4.2.

Next we prove that Ω
α,β
co (Jg) ⊂ B0

β−α+1. For any g ∈ Ω
α,β
co (Jg), by Theorem 4.2, we have that

lim
|ϕ(z)|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)α−1 |(g ◦ ϕ − g)′(z)| = 0.

Choose specifically ϕ(z) = eiθz ∈ S (D), it follows that,

lim
|ϕ(z)|→1

(1 − |z|2)β−α+1|eiθg′(eiθz) − g′(z)| = 0. (5.1)

Note that

(1 − |z|2)β−α+1|eiθg′(eiθz) − g′(z)|
≤ (1 − |eiθz|2)β−α+1|g′(eiθz)| + (1 − |z|2)β−α+1|g′(z)| ≤ 2‖g‖Bβ−α+1 .

If we assume that g(z) =
∑∞

n=0 anzn, then by integrating the left side of (5.2) with respect to θ from 0 to
2π, we obtain that

0 =

∫ 2π

0
lim
|ϕ(z)|→1

(1 − |z|2)β−α+1|eiθg′(eiθz) − g′(z)|dθ

= lim
|ϕ(z)|→1

∫ 2π

0
(1 − |z|2)β−α+1|

∞∑
n=1

nanzn−1(einθ − 1)|dθ

AIMS Mathematics Volume 7, Issue 10, 18729–18745.



18740

≥ 2π lim
|z|→1

(1 − |z|2)β−α+1|g′(z)|,

where the Dominant Convergent Theorem is applied in the second line. This implies that g ∈ Bβ−α+1
0 .

This completes the proof. �

Corollary 5.4. Ω
α,β
co (Jg) = C if α > 1 and β − α + 1 < 0.

Proof. Obviously by the maximal modulus principle. �

Theorem 5.5. Ω
α,β
co (Jg) = B

β

log1,0
if α = 1.

Proof. For any g ∈ Bβ
log1,0

, obviously, Jg is bounded. Furthermore, by the boundedness of Cϕ on Bβ

and observing that g ∈ B0
β,

(1 − |z|2)β log
2

1 − |ϕ(z)|2
|(g ◦ ϕ − g)′(z)|

≤
(1 − |z|2)β

(1 − |ϕ(z)|2)β
|ϕ′(z)| · (1 − |ϕ(z)|2)β log

2
1 − |ϕ(z)|2

|g′(ϕ(z))|

+ log
2(1 + |ϕ(0)|)

1 − |ϕ(0)|
(1 − |z|2)β|g′(z)| + (1 − |z|2)β log

2
1 − |z|2

|g′(z)| → 0

as |ϕ(z)| → 1. This implies that Bβ
log1,0

⊂ Ω
α,β
co (Jg) by Theorem 4.2.

Next we prove that Ω
α,β
co (Jg) ⊂ Bβ

log1,0
. For any g ∈ Ω

α,β
co (Jg), by Theorem 4.2, we have that

lim
|ϕ(z)|→1

(1 − |z|2)β log
2

1 − |ϕ(z)|2
|(g ◦ ϕ − g)′(z)| = 0.

Choose specifically ϕ(z) = eiθz ∈ S (D), it follows that,

lim
|ϕ(z)|→1

(1 − |z|2)β log
2

1 − |z|2
|eiθg′(eiθz) − g′(z)| = 0. (5.2)

Note that

(1 − |z|2)β log
2

1 − |z|2
|eiθg′(eiθz) − g′(z)|

≤ (1 − |eiθz|2)β log
2

1 − |eiθz|2
|g′(eiθz)| + (1 − |z|2)β log

2
1 − |z|2

|g′(z)| ≤ 2‖g‖
B
β

log1
.

If we assume that g(z) =
∑∞

n=0 anzn, then by integrating the left side of (5.2) with respect to θ from 0 to
2π, we obtain that

0 =

∫ 2π

0
lim
|ϕ(z)|→1

(1 − |z|2)β log
2

1 − |z|2
|eiθg′(eiθz) − g′(z)|dθ

= lim
|ϕ(z)|→1

∫ 2π

0
(1 − |z|2)β log

2
1 − |z|2

|

∞∑
n=1

nanzn−1(einθ − 1)|dθ
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≥ 2π lim
|z|→1

(1 − |z|2)β log
2

1 − |z|2
|g′(z)|,

where the Dominant Convergent Theorem is applied in the second line. This implies that Bβ
log1,0

. This
completes the proof. �

Theorem 5.6. Ω
α,β
co (Jg) = B0

β+α−1 when 0 < α < 1.

Proof. We firstly prove that B0
β+α−1 ⊂ Ω

α,β
co (Jg). For any g ∈ B0

β+α−1, obviously, g ∈ B0
β and hence Jg is

bounded by Lemma 2.3. Furthermore, by the boundedness of Cϕ on Bβ (see Lemma 2.2), observe that

(1 − |z|2)β

(1 − |ϕ(z)|2)1−α |(g ◦ ϕ − g)′(z)|

≤
(1 − |z|2)β

(1 − |ϕ(z)|2)β
|ϕ′(z)| · (1 − |ϕ(z)|2)β+α−1|g′(ϕ(z))|

+
(1 − |z|2)1−α

(1 − |ϕ(z)|2)1−α · (1 − |z|
2)β+α−1|g′(z)| → 0

as |ϕ(z)| → 1. The left part remains to be proved in a similar way from Theorem 5.3. This completes
the proof. �

Proof. The proof is similar with Theorem 5.3. �

In the following, we partly answer the second problem. We only prove the first result and the other
two results can be proved similarly.

Proposition 5.7. If α > 1, g ∈ Bβ−α+1,

lim
|ϕ(z)|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)α−1

1
(1 −max{|ϕ(z)|2, |z|2})β−α+1 = 0

and ϕ has finite angular derivative at any point of the unit circle, then Cϕ ∝K Cϕ(Jg).

Proof. By Theorem 4.2, we only ought to check that

lim
|ϕ(z)|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)α−1 |(g ◦ ϕ − g)′(z)| = 0.

Since ϕ has finite angular derivative at any point of the unit circle, it follows that

(1 − |z|2)β

(1 − |ϕ(z)|2)α−1 |(g ◦ ϕ − g)′(z)|

≤
(1 − |z|2)β

(1 − |ϕ(z)|2)α−1 |ϕ
′(z)|

‖g‖β−α+1

(1 − |ϕ(z)|2)β−α+1

+
(1 − |z|2)β

(1 − |ϕ(z)|2)α−1

‖g‖β−α+1

(1 − |z|2)β−α+1

.
(1 − |z|2)β

(1 − |ϕ(z)|2)α−1

1
(1 −max{|ϕ(z)|2, |z|2})β−α+1 → 0

as |ϕ(z)| → 1. �
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Proposition 5.8. If α = 1, g ∈ Bβ
log1 ,

lim
|ϕ(z)|→1

(1 − |z|2)β log 1
1−|ϕ(z)|2

max{(1 − |ϕ(z)|2)β log 2
1−|ϕ(z)|2 , (1 − |z|

2)β 2
1−|z|2 }

= 0

and ϕ has finite angular derivative at any point of the unit circle, then Cϕ ∝K Cϕ(Jg).

Proposition 5.9. If 0 < α < 1, g ∈ B0
β,

lim
|ϕ(z)|→1

1 − |z|2

1 − |ϕ(z)|2
= 0

and ϕ has finite angular derivative at any point of the unit circle, then Cϕ ∝K Cϕ(Jg).

6. Essential commutation of Cϕ and Ig between the Bloch-type spaces

In this section, we answer the two questions of the compactly intertwining relations of Ig and Cϕ

respectively.

Theorem 6.1. Ω
α,β
co (Ig) = H∞β−α,0 if β − α ≥ 0.

Proof. We only prove that H∞β−α,0 ⊂ Ω
α,β
co (Ig). For any f ∈ H∞β−α,0, obviously, Ig is bounded. Furthermore,

by the boundedness of Cϕ,

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|(g ◦ ϕ − g)(z)||ϕ′(z)|

≤
(1 − |z|2)β

(1 − |ϕ(z)|2)β
|ϕ′(z)| · (1 − |ϕ(z)|2)β−α|g(ϕ(z))|

+
(1 − |z|2)α

(1 − |ϕ(z)|2)α
|ϕ′(z)| · (1 − |z|2)β−α|g(z)| → 0

as |ϕ(z)| → 1, which implies that H∞β−α,0 ⊂ Ω
α,β
co (Jg). The left part remains to be proved in a similar way

from Theorem 5.3. This completes the proof. �

Corollary 6.2. Ω
α,β
co (Ig) = {0} if β − α < 0.

Proposition 6.3. If β − α ≥ 0, g ∈ H∞β−α and

lim
|ϕ(z)|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|ϕ′(z)|

1
(1 −max{|ϕ(z)|2, |z|2})β−α

= 0,

then Cϕ ∝K Cϕ(Ig).

Proof. The proof can be completed in a similar way from Proposition 5.7. �

Remark 6.4. Obviously, under the hypothesis of Proposition 6.3, we can further conclude that Cϕ ∈

B(Bα,Bα) and Cϕ ∈ B(Bβ,Bβ) are both compact linear operators.
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Theorem 6.5. If β − α ≥ 0, g ∈ A(D), then Cϕ ∝K Cϕ(Ig) if and only if

lim
|ϕ(z)|→1

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|ϕ′(z)(ϕ(z) − z)| = 0,

where A(D) denotes the disk algebra.

Proof. The necessity is obvious by setting g = Id in Theorem 4.6, where Id denoted the identity
function. Next we prove the sufficiency. Suppose that hn(z) = zn, it follows that

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|ϕ′(z)(hn ◦ ϕ − hn)(z)| =

(1 − |z|2)β

(1 − |ϕ(z)|2)α
|ϕ′(z)||ϕ(z)n − zn|

≤ n
(1 − |z|2)β

(1 − |ϕ(z)|2)α
|ϕ′(z)(ϕ(z) − z)| → 0

as |ϕ(z)| → 1. For each g ∈ A(D), there exists a subsequence of {hn}, denoted by {h[g]
n } such that

limn→∞ h[g]
n = g. Thus,

‖CϕIg − IgCϕ‖e,Bα→Bβ ≤ ‖(CϕIg − IgCϕ) − (CϕIh[g]
n
− Ih[g]

n
Cϕ)‖Bα→Bβ

≤ (‖Cϕ‖Bα→Bα + ‖Cϕ‖Bβ→Bβ)‖Ig − Ih[g]
n
‖Bα→Bβ

≤ (‖Cϕ‖Bα→Bα + ‖Cϕ‖Bβ→Bβ) sup
‖ f ‖Bα≤1

||

∫ z

0
f ′(t)(g(t) − h[g]

n (t))dt||Bβ

≤ (‖Cϕ‖Bα→Bα + ‖Cϕ‖Bβ→Bβ)‖g − h[g]
n ‖∞ → 0

as n→ ∞. This completes the proof. �

7. Conclusions

Main conclusions are given in the following.
Theorem Ω

α,β
co (Jg) = B0

β−α+1 if α > 1 and β − α + 1 ≥ 0.
Theorem Ω

α,β
co (Jg) = B

β

log1,0
if α = 1.

Theorem Ω
α,β
co (Jg) = B0

β+α−1 if 0 < α < 1.
Theorem Ω

α,β
co (Ig) = H∞β−α,0 if β − α ≥ 0.
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