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1. Introduction

The main research of this article is about the generalized absolute value equation (GAVE):

Ax − B|x| = b, (1.1)

where A, B ∈ Rn×n, b ∈ Rn and |x| := (|x1|, |x2|, · · · , |xn|)T . Actually, when B is a identity matrix, the
GAVE (1.1) can be easily transformed into the absolute value equation (AVE):

Ax − |x| = b. (1.2)

The GAVE (1.1) was first proposed by Rohn as a class of nonlinear nondifferentiable optimization
problems [1]. After that, the AVE (1.2) and GAVE (1.1) has applications in many areas of optimization,
including linear complementarity problem, bimatrix games, constrained least squares problems, and so
on, see [1–6]. For instance, the famous linear complementarity problem (LCP) [5]: Determining z such
that

Mz + q ≥ 0, z ≥ 0 and zT (Mz + q) = 0, with M ∈ Rn×n, q ∈ Rn. (1.3)
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In [3], Mangasarian has proved that the GAVE (1.1) and LCP (1.3) can be transformed into each
other under some conditions, and he also proposed the unique solvability of the AVE. Moreover,
many scholars have further studied the solvability and unique solution theory of the AVE (1.2) [7–9].
In the early algorithm research, some efficient iteration methods have been proposed to address the
GAVE (1.1) and AVE (1.2), which can be found in Mangasarian [2, 10, 11], Rohn [12], and so on.
Then in [13], in order to overcome the difficulty of constructing the gradient of the absolute value
term, Mangasarian presented the generalized Newton (GN) algorithm through using the generalized
Jacobian matrix.This method may be summed up as follows:

x(k+1) = (A − D(x(k)))−1b, k = 0, 1, 2, ..., (1.4)

where D(x) := diag(sgn(x)), x ∈ Rn, sgn(x) denotes a vector with components equal to 1, 0, −1
depending on whether the corresponding components of x is positive, zero or negative. Moreover, the
GN algorithm is also able to apply on the GAVE (1.1) if we use BD(x(k)) instead of D(x(k)). Based on
the GN method, Li [14] proposed a modified generalized Newton method. It should be noticed that
the Jacobian matrix is changed with respect to the iteration index k, which will increase the amount of
computation greatly. In order to stay away from the changed Jacobian matrix, many literature on the
result of the AVE (1.2) and GAVE (1.1) are proposed. For instance, Rohn et al. presented the Picard
method when A is invertible in [15]:

x(k+1) = A−1(|x(k)| + b), k = 0, 1, 2, ... . (1.5)

In [16], Wang et al. added a new term Ωx (Ω is positive semi-definite and it can be guaranteed that
A + Ω is invertible ) into the general problem and noticed that Ax + Ωx is differential but Ωx + B|x| + b
non-differential, then studied a modified Newton-type(MN) iteration method:

x(k+1) = (A + Ω)−1(Ωx(k) + B|x(k)| + b), k = 0, 1, 2, ..., (1.6)

To further speed up the AOR method, Li et al. [17] presented the generalization version algorithm.
Actually, the above algorithms all belong to Newton-based matrix splitting methods and their relaxed
versions, which is proposed in [18]. Sometimes the coefficient matrix A has some special properties,
for example, A is M-matrix, under which condition Ali et al. [19] proposed two new generalized Gauss-
Seidel iteration methods. In [20], a new iteration method was presented by redesigning equivalently
the AVE in (1.2) as a 2 × 2 block nonlinear equation. Also using matrix blocking, the block-diagonal
and anti-block-diagonal splitting (BAS) method [21] and modified BAS method [22] are proposed.

Recently, in order to continue to improve the efficiency of solving the AVE (1.2), some inexact
iteration algorithms have been studied. Every step in iteration of the Picard method can be viewed as
solving a linear system with the coefficient matrix A. Therefore, Salkuyeh [23] presented the Picard-
HSS method for AVE (1.2), which used the HSS method [24] to estimate the result x(k+1) at each Picard
iteration. On this basis, Miao et al. [25] used single-step HSS (SHSS) method [26] to address the linear
system in Picard iteration and proposed the Picard-SHSS method, a new Picard-type method. Inspired
by these, we adopt the modified Newton-type iteration method with faster convergence speed as the
outer iterative method, HSS and SHSS as the inner iterative method respectively, then we obtain two
new inexact iterative algorithms, abbreviated as MN-HSS method and MN-SHSS method.

The remainder of this article is laid out as follows. In Section 2, the MN-HSS method is described,
and we investigate its convergence property. Section 3 is devoted to introducing the MN-SHSS
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method and analyzing its convergence. Section 4 contains several numerical experiments, showing the
feasibility and efficiency of the two new inexact iteration methods. Section 5 draws some conclusions.

2. The MN-HSS method for solving GAVE

At the beginning of this section, some notations are given blow. ones(n, 1) represents a vector like
(1, 1, · · · , 1)T ∈ R. ρ(A) indicates the spectral radius of A. The symbol (·)T represents the transepose
of a vector or matrix. And we have lim

k→+∞
Ak = 0 if and only if ρ(A) < 1 (see [27, 28]).

Given A ∈ Rn×n be a non-Hermitian positive definite matrix. Then H = 1
2 (A + AT ) , S = 1

2 (A − AT ),
which are the Hermitian part and skew-Hermitian part of A, A = H +S . Then the HSS iteration method
was presented by Bai et al. [24] for addressing positive definite system Ax = b. The iterative process
of the HSS method can be expressed as follows:{

x(l+ 1
2 ) = (αI + H)−1((αI − S )x(l) + b),

x(l+1) = (αI + S )−1((αI − H)x(l+ 1
2 ) + b),

(2.1)

where α is a positive constant.
Section 1 has introduced the MN method, which is equivalent to the following form

(A + Ω)x(k+1) = Ωx(k) + B|x(k)| + b, k = 0, 1, 2, ... . (2.2)

Similar to the Picard-HSS method, we can choose a suitable Ω to make sure the positive definiteness
of A + Ω. The HSS method (2.1) can be applied as the inner iteration method of the MN method for
solving the GAVE (1.1), called MN-HSS method.
Algorithm (The MN-HSS iteration method):
For k = 0, 1, ..., until converge, do:

Set x(k,0) := x(k)

For l = 0, 1, ..., until converge, do:{
x(k,l+ 1

2 ) = (αI + H)−1((αI − S )x(k,l) + Ωx(k) + B|x(k)| + b),
x(k,l+1) = (αI + S )−1((αI − H)x(k,l+ 1

2 ) + Ωx(k) + B|x(k)| + b),
(2.3)

where H = 1
2 ((A + Ω) + (A + Ω)T ), S = 1

2 ((A + Ω) − (A + Ω)T ), α is a positive constant.
Endfor
Set x(k+1) := x(k,lk).

Endfor
The following theorem proves that the MN-HSS algorithm converges under necessary conditions.

Theorem 2.1. Let the matrix A, B ∈ Rn×n and choose suitable Ω ∈ Rn×n such that A + Ω is a positive
definite matrix, then H = 1

2 ((A + Ω) + (A + Ω)T ), S = 1
2 ((A + Ω) − (A + Ω)T ) are the Hermitian and

skew-Hermitian parts of A + Ω respectively. Let also ‖ A−1B ‖2 < 1 and ‖ (A + Ω)−1 ‖2<
1

‖B‖2+‖Ω‖2
.

Then the GAVE (1.1) has a unique solution x∗, and for any starting vector x(0) ∈ Rn and any sequence
of positive integers lk, k = 0, 1, ..., the iteration sequence {x(k)}∞k=0 produced by the MN-HSS iteration
method converges to x∗ provided that l = lim inf

k→∞
lk ≥ N, where N is a natural number satisfying

‖ T s
α ‖2<

1− ‖ (A + Ω)−1 ‖2 (‖ B ‖2 + ‖ Ω ‖2)
‖ (A + Ω)−1 ‖2 (‖ B ‖2 + ‖ A ‖2)

, ∀s > N,
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where Tα = M−1
α Nα, Mα = 1

2α (αI + H)(αI + S ), Nα = 1
2α (αI − H)(αI − S ).

Proof. Let Gα = M−1
α , then according to the iteration formula (2.3), we can write the (k+1)th iterate

x(k+1) of the MN-HSS iteration method as

x(k+1) = T lk
α x(k) +

lk−1∑
j=0

T j
αGα(Ωx(k) + B|x(k)| + b), k = 0, 1, 2, .... (2.4)

Since ‖ A−1B ‖2< 1, the GAVE (1.1) has a unique result x∗ [3], which satisfying

x∗ = T lk
α x∗ +

lk−1∑
j=0

T j
αGα(Ωx∗ + B|x∗| + b), k = 0, 1, 2, .... (2.5)

By subtracting (2.5) from (2.4), we have

x(k+1) − x∗ = T lk
α (x(k) − x∗) +

lk−1∑
j=0

T j
αGα(Ω(x(k) − x∗) + B|x(k)| − B|x∗|). (2.6)

It follows from [24] that ρ(Tα) < 1, then

lk−1∑
j=0

T j
αGα = (I − T lk

α )(I − Tα)−1Gα

= (I − T lk
α )(I − M−1

α Nα)−1M−1
α

= (I − T lk
α )(Mα − Nα)−1

= (I − T lk
α )(A + Ω)−1.

Then the Eq (2.6) turns into

x(k+1) − x∗ = T lk
α (x(k) − x∗) + (I − T lk

α )(A + Ω)−1(Ω(x(k) − x∗) + B|x(k)| − B|x∗|)
= T lk

α ((A + Ω)−1A(x(k) − x∗) − (A + Ω)−1B(|x(k)| − |x∗|)) + (A + Ω)−1(Ω(x(k) − x∗) + B|x(k)| − B|x∗|).

It is obvious that for any x, y ∈ Rn, ‖ |x| − |y| ‖2≤‖ x − y ‖2. Therefore,

‖ x(k+1) − x∗ ‖2≤
[
‖ T lk

α ‖2 (‖ (A + Ω)−1 ‖2‖ A ‖2 + ‖ (A + Ω)−1 ‖2‖ B ‖2)+ ‖ (A + Ω)−1 ‖2‖ Ω ‖2

+ ‖ (A + Ω)−1 ‖2‖ B ‖2
]
‖ x(k) − x∗ ‖2 .

On the other hand, since ρ(Tα) < 1, lim
s→∞

T s
α = 0. Therefore, there is a natural number N such that

‖ T s
α ‖2<

1− ‖ (A + Ω)−1 ‖2 (‖ B ‖2 + ‖ Ω ‖2)
‖ (A + Ω)−1 ‖2 (‖ B ‖2 + ‖ A ‖2)

, ∀s ≥ N.

Thus, assume that l = lim inf
k→∞

lk ≥ N, then we can obtain the result. This completes the proof. �

�
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The MN-HSS method can also be expressed as the residual-updating form:
Algorithm (The residual-updating variant of MN-HSS iteration method):
For k = 0, 1, ..., until converge, do:

Set d(k,0) = 0 and b(k) = B|x(k)| + b − Ax(k)

For l = 0, 1, ..., until converge, do:{
d(k,l+ 1

2 ) = (αI + H)−1((αI − S )d(k,l) + b(k)),
d(k,l+1) = (αI + S )−1((αI − H)d(k,l+ 1

2 ) + b(k)),

where H = 1
2 ((A + Ω) + (A + Ω)T ), S = 1

2 ((A + Ω) − (A + Ω)T ), α is a positive constant.
Endfor
Set x(k+1) = x(k) + d(k,lk).

Endfor

3. The MN-SHSS method for solving GAVE

From the iteration scheme (2.3) we can notice that the each step of HSS iteration method is
equivalent to solving two linear subsystems, whose coefficient matrices are Hermitian and
skew-Hermitian respectively. The first equation with Hermitian coefficient matrix can be solved
quickly by conjugate gradient method or Cholesky factorization. However, the other subsystem needs
much more computation. So as to accelerate the algorithm, we replace the inner iteration method with
single-step HSS (SHSS) method, then we present a new inexact method in this section, named as
MN-SHSS iteration method.

Compared with the HSS method, the SHSS method ignores the second subsystem with
skew-Hermitian matrix, which can be expressed as

(αI + H)x(l+1) = (αI − S )x(l) + b, (3.1)

by limiting the iteration parameter α, Li et al. [26] has proved that the SHSS converges to the unique
solution for any initial guess x(0).
Algorithm (The MN-SHSS iteration method):
For k = 0, 1, ..., until converge, do:

Set x(k,0) := x(k)

For l = 0, 1, ..., until converge, do:

x(k,l+1) = (αI + H)−1((αI − S )x(k,l) + Ωx(k) + B|x(k)| + b), (3.2)

where H = 1
2 ((A + Ω) + (A + Ω)T ), S = 1

2 ((A + Ω) − (A + Ω)T ), α is a positive constant.
Endfor
Set x(k+1) := x(k,lk).

Endfor
The next theorem shows that the MN-SHSS method is convergent under a restriction on the

parameter α.
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Theorem 3.1. Let the matrix A, B ∈ Rn×n and choose suitable Ω ∈ Rn×n such that A + Ω is a positive
definite matrix, then H = 1

2 ((A + Ω) + (A + Ω)T ), S = 1
2 ((A + Ω) − (A + Ω)T ) are the Hermitian and

skew-Hermitian parts of A + Ω respectively. Let also ‖ A−1B ‖2 < 1, ‖ (A + Ω)−1 ‖2<
1

‖B‖2+‖Ω‖2
, and

α be a constant number such that α > max{0, δ
2
max−λ

2
min

2λmin
}, where δmax is the largest singular value of S

and λmin is the smallest eigenvalue of H. Then the GAVE (1.1) has a unique solution x∗, and for any
starting vector x(0) ∈ Rn and any sequence of positive integers lk, k = 0, 1, ..., the iteration sequence
{x(k)}∞k=0 produced by the MN-SHSS iteration method converges to x∗ provided that l = lim inf

k→∞
lk ≥ N,

where N is a natural number satisfying

‖ K s
α ‖2<

1− ‖ (A + Ω)−1 ‖2 (‖ B ‖2 + ‖ Ω ‖2)
‖ (A + Ω)−1 ‖2 (‖ B ‖2 + ‖ A ‖2)

, ∀s > N,

where Kα = M−1
α Nα, Mα = αI + H, Nα = αI − S .

Proof. According to the iteration formula (3.2), we can get the kth iteration x(k+1) of the MN-SHSS
method:

x(k+1) = Klk
α x(k) +

lk−1∑
j=0

K j
αM−1

α (Ωx(k) + B|x(k)| + b). (3.3)

On the other hand, the unique result x∗ of GAVE (1.1) satisfies

x∗ = Klk
α x∗ +

lk−1∑
j=0

K j
αM−1

α (Ωx∗ + B|x∗| + b). (3.4)

Subtracting (3.4) from (3.3), then we have

x(k+1) − x∗ = Klk
α (x(k) − x∗) +

lk−1∑
j=0

K j
αM−1

α (Ω(x(k) − x∗) + B|x(k)| − B|x∗|), (3.5)

In [26], Li et al. has proved that ρ(Kα) < 1 when α > max{0, δ
2
max−λ

2
min

2λmin
}, hence

lk−1∑
j=0

K j
αM−1

α = (I−Klk
α )(A+

Ω)−1. Then (3.5) becomes

x(k+1) − x∗ = Klk
α (x(k) − x∗) + (I − Klk

α )(A + Ω)−1(Ω(x(k) − x∗) + B|x(k)| − B|x∗|). (3.6)

Therefore, we can calculate that

‖ x(k+1) − x∗ ‖2≤
[
‖ Klk

α ‖2 (‖ (A + Ω)−1 ‖2‖ A ‖2 + ‖ (A + Ω)−1 ‖2‖ B ‖2)+ ‖ (A + Ω)−1 ‖2‖ Ω ‖2

+ ‖ (A + Ω)−1 ‖2‖ B ‖2
]
‖ x(k) − x∗ ‖2 .

(3.7)

Due to the condition of ρ(Kα) < 1, we can get that K s
α → 0 as s → ∞. So there is a natural number N

such that

‖ K s
α ‖2<

1− ‖ (A + Ω)−1 ‖2 (‖ B ‖2 + ‖ Ω ‖2)
‖ (A + Ω)−1 ‖2 (‖ B ‖2 + ‖ A ‖2)

, ∀s ≥ N.

Then if l = lim inf
k→∞

lk ≥ N, it is distinct that ‖ x(k+1) − x∗ ‖2<‖ x(k) − x∗ ‖2. That is to say, the

iteration sequence {x(k)}∞k=0converges to x∗, which is produced by the MN-SHSS iteration method. This
completes the proof. �

�
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In the same way, the MN-SHSS method also has residual form:
Algorithm (residual-updating variant of the MN-SHSS iteration method):
For k = 0, 1, ..., until converge, do:

Set d(k,0) = 0 and b(k) = B|x(k)| + b − Ax(k)

For l = 0, 1, ..., until converge, do:

d(k,1+1) = (αI + H)−1((αI − S )d(k,l) + b(k)),

where H = 1
2 ((A + Ω) + (A + Ω)T ), S = 1

2 ((A + Ω) − (A + Ω)T ), α is a positive constant.
Endfor
Set x(k+1) = x(k) + d(k,lk).

Endfor

4. Numerical experiments

In this section, the effectiveness of MN-HSS method and MN-SHSS method is showed by
comparing them with other existing inexact iteration method for solving GAVE (1.2): the Picard-HSS
method and the Picard-SHSS method. In addition, we also compare our methods with a descent
method [29]. For this purpose, we compare from the following aspects: the number of outer iteration
steps (denoted by ‘IT’), the elapsed CPU time (denoted by ‘CPU’) and the residual error(denoted by
‘RES’), where the ‘RES’ is set to be

RES :=
‖ Ax(k) − B|x(k)| − b ‖2

‖ b ‖2
.

In our computations, we all use the residual-updating version and optimal parameters α resulting
in the least iteration numbers of the algorithms mentioned above and the zero vector as our starting
iteration vector. We use the Cholesky factorization to solve the equations whose coefficient matrix is
αI + H and the LU factorization for the other subsystem. All runs are aborted once the residual error
satisfies RES <= 10−7 or the maximum iteration number kmax = 500 is exceeded. As for the inner
iterations, we set the stopping criterion of different methods as:

‖ b(k) − Ad(k,l) ‖2

‖ bk ‖2
≤ 0.01,

and a limit on the number of iterations 10(lk = 10, k = 1, 2, ...) for inner iterations are used. The
parameters used in the desent method are chosen as σ = 0.2, δ = 0.8,γ = 0.001, p = 3 and ε0 = 0.01.

The two numerical experiments below are performed in MATLAB R2020b.
Example 1. [30] The first example comes from the LCP (1.3). In [3,30], it has been known that the

LCP (1.3) can be transformed into the following form:

(M + I)x − (M − I)|x| = q with x =
1
2

((M − I)z + q), (4.1)

which belongs to the GAVE (1.1) obviously. Then we let A = M + I and B = M− I, where M = M̂ +µI
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and the right-hand vector q is determined by q = −Mz∗, in which

M̂ = Tridiag(−I, S ,−I) =


S −I 0 · · · 0 0
−I S −I · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −I S

 ∈ Rn×n

is a block tridiagonal matrix,

S = Tridiag(−1, 4,−1) =


4 −1 0 · · · 0 0
−1 4 −1 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · −1 4

 ∈ Rm×m

is a tridiagonal matrix, n = m2. we can know that z∗ = 1.2 ∗ ones(n, 1) is the unique result of the
LCP(1.3) and the exact solution of the GAVE(4.1) is x∗ = 0.6 ∗ ones(n, 1).

In this experiment, we pick three scenarios for the parameter µ = 4,−1,−4. The matrices A and M
are both symmetric positive definite when µ = 4, and symmetric indefinite when µ = −4. The matrix A
is symmetric positive definite if µ = −1, but M symmetric indefinite. We choose four different sizes of
n (n = 3600, 4900, 6400, 8100) for each parameter µ. Considering the simplicity and efficiency of our
experiments, we use the same matrix Ω = 5I in the MN-HSS and MN-SHSS methods. In the methods
we test, the value α is chosen to result in the fewest iteration steps, see Table 1. In Tables 2–4, we
list the numerical outcomes of the studied four inexact iteration methods for µ = 4,−1,−4 . In these
tables, “-” indicates that the relevant algorithm is not convergent to the answer under the limitation of
the maximum number kmax of iterative steps or even diverge.

Table 1. The values of α for the testing methods in Example 1.

Method n=3600 n=4900 n=6400 n=8100

µ=4

Picard-HSS 7.6 7.5 7.6 7.5
Picard-SHSS 0.8 0.1 0.1 0.1
MN-HSS 11.4 11.6 11.2 11.4
MN-SHSS 0.1 0.1 0.1 0.1

µ=−1

Picard-HSS - - - -
Picard-SHSS - - - -
MN-HSS 10.4 10.4 10.4 10.4
MN-SHSS 0.4 0.1 0.3 0.1

µ=−4

Picard-HSS - - - -
Picard-SHSS - - - -
MN-HSS 8.7 7.9 7.8 7
MN-SHSS 0.1 0.1 0.1 0.5
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Table 2. Numerical results of the testing methods for Example 1 with µ = 4.

Methods n=3600 n=4900 n=6400 n=8100

Picard-HSS
IT 63 62 63 62
CPU 7.2267 13.2534 23.4046 37.3651
RES 7.8433e-8 8.7166e-8 7.8872e-8 8.7574e-8

Picard-SHSS
IT 72 73 73 72
CPU 4.8826 7.5158 13.4642 20.8528
RES 9.6906e-8 8.8579e-8 8.4765e-8 9.938e-8

The descent method
IT 3 3 3 3
CPU 3.1777 7.5666 16.1594 31.5073
RES 1.1654e-9 1.1643e-9 1.1635e-9 1.1628e-9

MN-HSS
IT 12 12 12 12
CPU 1.8227 3.5410 6.6261 11.3629
RES 3.7154e-8 3.9922e-8 4.8592e-8 3.8995e-8

MN-SHSS
IT 12 12 12 12
CPU 0.7606 1.4825 2.6502 4.4347
RES 4.9155e-8 4.9827e-8 5.0337e-8 5.0737e-8

Table 3. Numerical results of the testing methods for Example 1 with µ = −1.

Methods n=3600 n=4900 n=6400 n=8100

Picard-HSS
IT - - - -
CPU - - - -
RES - - - -

Picard-SHSS
IT - - - -
CPU - - - -
RES - - - -

The descent method
IT 6 6 6 6
CPU 6.1136 14.769 31.1904 64.9632
RES 2.4038e-9 2.0506e-9 1.7879e-9 1.5849e-9

MN-HSS
IT 69 68 68 68
CPU 7.9967 14.7294 25.6464 43.1252
RES 8.7811e-8 9.9034e-8 9.3516e-8 8.8168e-8

MN-SHSS
IT 68 68 68 68
CPU 4.5587 7.8019 14.1982 22.0090
RES 9.9988e-8 9.5126e-8 8.7701e-8 8.5202e-8

From Table 2, we can see that when µ = 4, for all matrix scales the five evaluated methods can
successfully create an estimated solution to the GAVE (4.1). And for each tested method, the CPU
time also increases with the increase of the scale n of the coefficient matrix. Through the study of the
numerical results, we can know that the two inexact iteration methods proposed by us are better than
the Picard-HSS and Picard-SHSS methods in the number of iteration steps and CPU time. Although
the descent method need less iteration steps, our methods spend less CPU time. When µ = −1,−4, in
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which instance the convergence of Picard-HSS and Piard-SHSS iteration methods cannot be
guaranteed, hence Tables 3 and 4 show that the two Picard-type methods converge slowly or do not
converge, while the MN-HSS and MN-SHSS method can still converge fast. The selectivity of matrix
Ω provides higher stability for the algorithm we propose. When µ = −1, our methods still have better
performance in elapsed CPU time than the descent method generally, and the descent method can not
converge under constraints of maximum iteration number.

Table 4. Numerical results of the testing methods for Example 1 with µ = −4.

Methods n=3600 n=4900 n=6400 n=8100

Picard-HSS
IT - - - -
CPU - - - -
RES - - - -

Picard-SHSS
IT - - - -
CPU - - - -
RES - - - -

The descent method
IT - - - -
CPU - - - -
RES - - - -

MN-HSS
IT 46 46 46 46
CPU 6.9628 13.1563 21.5587 36.8080
RES 9.8167e-8 9.3627e-8 8.8073e-8 8.5249e-8

MN-SHSS
IT 46 46 46 46
CPU 3.1611 5.7271 9.9884 16.9793
RES 9.7483e-8 9.0358e-8 8.4596e-8 8.2290

Example 2. The coefficient matrix A of the GAVE (1.1) is from the finite difference approximation
the two-dimensional convection-diffusion equation{

−(uxx + uyy) + q(ux + uy) + pu = f (x, y), (x, y) ∈ S ,
u(x, y) = 0, (x, y) ∈ ∂S ,

where S = (0, 1) × (0, 1), ∂S is its boundary, q is a constant and p is a real number. For discretization,
the five-point finite difference scheme are used on the diffusive terms and the central difference scheme
on the convective terms respectively, then we can obtain the coefficient matrix A.

A = Tx ⊗ Im + Im ⊗ Tx + pIn,

where Im and In are the identity matrices of order m and n with n = m2, ⊗ means the Kronecker
product, Tx = tridiag(a2, a1, a3)m×m and Ty = tridiag(a2, 0, a3)m×m with a1 = 4, a2 = −1 − Re, a3 =

−1 + Re. Here Re =
qh
2 and h = 1

m+1 are the mesh Reynolds number and the equidistant step size,
respectively. q is a positive constant. Let the coefficient matrix B = I and the exact solution x∗ =

(−1, 2,−3, · · · , (−1)ii, · · · , (−1)nn)T , then the right-hand side vector can also be determined. In this
instance the GAVE becomes a AVE (1.2) actually.

In our experiments, we test different values of p (p = 0,−1), q (q = 0, 1) and
n (n = 100, 400, 1600, 6400). The parameters α of the four tested methods resulting in the fewest
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iteration steps are chosen, while the matrix Ω in our methods are chosen as Ω = ωI, see Tables 5
and 6. We refer to [25] for the parameters of Picard-HSS and Picard-SHSS methods.

Table 5. The values of α and ω for the testing methods in Example 2 (p = 0).

Methods n=100 n=400 n=1600 n=6400

q=0

Picard-HSS 11.69 12.6 13.4 13
Picard-SHSS 5.745 6.5 6.4 6.6

MN-HSS
2.2 2.5 2.2 2.2
Ω = 0.5I Ω = 0.7I Ω = 0.7I Ω = 0.7I

MN-SHSS
0.1 0.1 0.1 0.1
Ω = 0.5I Ω = 0.7I Ω = 0.7I Ω = 0.7I

q=1

Picard-HSS 12.01 13.6 14 13
Picard-SHSS 5.926 6.6 6.75 6.6

MN-HSS
2.2 2.4 2.2 2
Ω = 0.5I Ω = 0.7I Ω = 0.7I Ω = 0.7I

MN-SHSS
0.3 0.1 0.1 0.1
Ω = 0.5I Ω = 0.7I Ω = 0.7I Ω = 0.7I

Table 6. The values of α and ω for the testing methods in Example 2 (p = −1).

Methods n=100 n=400 n=1600 n=6400

q=0

Picard-HSS 13.8 11.2 10.36 10.1
Picard-SHSS 6.96 5.7 5.21 5.1

MN-HSS
1.1 0.6 0.5 0.3
Ω = I Ω = I Ω = I Ω = I

MN-SHSS
0.1 0.1 0.01 0.01
Ω = I Ω = I Ω = I Ω = I

q=1

Picard-HSS 14 11.29 10.4 11
Picard-SHSS 7.05 5.72 5.2 5.1

MN-HSS
1 0.6 0.3 0.1
Ω = I Ω = I Ω = I Ω = I

MN-SHSS
0.1 0.1 0.1 0.1
Ω = I Ω = I Ω = I Ω = I

From Tables 7 and 8, the iteration steps reveal that the Picard-type methods and the descent method
converges faster than the MN-HSS method, but in terms of the elapsed CPU times, the MN-SHSS
method we new proposed has better computing efficiency generally. In Tables 9 and 10, that is when
p = −1, the iteration counts and CPU time of the Picard-type methods increase dramatically with
the increase of matrix scale, which situation is more obvious on the descent method. In contrast, our
methods still maintain a low iteration counts and high computational efficiency. Therefore, our new
proposed method is very effective.
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Table 7. Numerical results of the testing methods for Example 2 with p = 0 and q = 0.

Methods n=100 n=400 n=1600 n=6400

Picard-HSS
IT 36 32 30 28
CPU 0.0149 0.2109 2.8908 41.9898
RES 9.8815e-8 9.3643e-8 9.9900e-8 9.9043e-8

Picard-SHSS
IT 37 32 30 29
CPU 0.0086 0.0747 1.5120 23.6302
RES 9.4432e-8 9.6857e-8 9.7569e-8 9.9256e-8

The descent method
IT 5 5 5 5
CPU 0.0160 0.0334 0.7701 26.7046
RES 1.5532e-12 8.5090e-11 3.6631e-16 2.0878e-16

MN-HSS
IT 52 44 41 38
CPU 0.0120 0.1491 2.4287 32.2431
RES 9.3740e-8 8.0719e-8 7.6775e-8 9.9322e-8

MN-SHSS
IT 51 44 41 39
CPU 0.0036 0.0294 0.5693 9.2022
RES 8.1308e-8 8.0474e-8 7.9437e-8 7.6008e-8

Table 8. Numerical results of the testing methods for Example 2 with p = 0 and q = 1.

Methods n=100 n=400 n=1600 n=6400

Picard-HSS
IT 35 32 31 28
CPU 0.0131 0.2037 3.0079 42.4078
RES 9.1372e-8 9.8614e-8 9.3177e-8 9.7012e-8

Picard-SHSS
IT 36 32 31 29
CPU 0.0072 0.0782 1.5742 23.1650
RES 9.8685e-8 9.4248e-8 9.4655e-8 9.6233e-8

The descent method
IT 6 5 5 5
CPU 0.0048 0.0278 0.7420 26.1576
RES 1.5836e-11 3.7231e-14 1.8960e-14 2.1382e-16

MN-HSS
IT 41 44 40 38
CPU 0.0087 0.1642 2.1150 33.1043
RES 8.5432e-8 9.9138e-8 9.6349e-8 9.4551e-8

MN-SHSS
IT 41 44 40 38
CPU 0.0028 0.0299 0.5588 9.0679
RES 8.4236e-8 9.8677e-8 9.9416e-8 9.8603e-8
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Table 9. Numerical results of the testing methods for Example 2 with p = −1 and q = 0.

Methods n=100 n=400 n=1600 n=6400

Picard-HSS
IT 24 62 206 -
CPU 0.0096 0.3811 19.5610 -
RES 9.6164e-8 9.5608e-8 9.8436e-8 -

Picard-SHSS
IT 21 52 166 -
CPU 0.0047 0.1255 8.2082 -
RES 9.6537e-8 9.7425e-8 9.9905e-8 -

The descent method
IT 19 - - -
CPU 0.0116 - - -
RES 3.1376e-12 - - -

MN-HSS
IT 5 10 32 73
CPU 0.0031 0.0700 3.0579 103.9036
RES 9.5409e-8 7.5888e-8 6.886e-8 9.7832e-8

MN-SHSS
IT 4 5 4 6
CPU 0.0007 0.0160 0.1692 5.6192
RES 2.6017e-8 3.1319e-8 3.9399e-9 3.1310e-8

Table 10. Numerical results of the testing methods for Example 2 with p = −1 and q = 1.

Methods n=100 n=400 n=1600 n=6400

Picard-HSS
IT 24 61 203 -
CPU 0.0095 0.3904 22.6934 -
RES 9.7842e-8 9.9013e-8 9.3292e-8 -

Picard-SHSS
IT 21 51 166 -
CPU 0.0043 0.1228 8.1885 -
RES 9.5087e-8 9.5556e-8 9.5308e-8 -

The descent method
IT - - - -
CPU - - - -
RES - - - -

MN-HSS
IT 6 10 20 42
CPU 0.0026 0.0735 1.9553 69.7912
RES 1.0635e-8 6.2950e-8 5.5025e-8 9.4565e-8

MN-SHSS
IT 3 5 13 48
CPU 0.0008 0.0138 0.6755 37.6225
RES 8.1615e-8 6.7032e-8 7.7787e-8 9.9529e-8

5. Conclusions

In this article, to accelerate the MN iteration method, we propose the MN-HSS and MN-SHSS
iteration algorithms for addressing the generalized absolute value equation. Moreover, we give the
sufficient conditions to show that our methods are convergent for addressing the GAVE. In the end, we
provide some experiments to comfirm the feasibility and effectiveness of our novel presented methods.
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