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1. Introduction and preliminaries

Topological games (TGs, for short) with perfect information were introduced and studied by
Berge [3]. Many authors have them to solve some topological problems (e.g., [35, 36]). For further
details, see [3, 4, 23, 27]. TGs have been extended to topological spaces [9, 10, 12, 13] and their
applications. The continuity on multifunctions is studied in [14]. Pears [32] has defined and studied
TGs for continuous multifunctions. Recently, topological spaces have been used in applications to
study graphs in [15–18, 22, 24] which are used in physics [8, 11, 19, 20] and smart cities [2].

Topologically, X and Y are topological spaces (TSs, for short). A multifunction of X into Y is
defined as a function z : X → 2Y, where 2Y is the power set ofY. Additionally, A ∈ SO(X) [25] if ∃ an
open setU ofX s.t. U ⊆ A ⊆ Cl(U), where Cl(U) is the closure ofU w.r. toX. Ewert and Lipski [21]
introduced the concept of irresolute multifunctions. Papa and Noiri [33] further studied irresolute
multifunctions. For A ⊆ X, the interior of A will be denoted by Int(A). Multifunctionally, the upper
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and lower inverses of z : X → Y are z+(B) = {x ∈ X : z(x) ⊆ B} and z−(B) = {x ∈ X : z(x) ∩B , φ},
respectively.

Throughout the present paper, some new properties of upper (lower) α-irresolute multifunctions
due to Neubrunn [30] and Noiri and Nasef [31] are modified and studied. Also, we apply the results to
introduce and study new types of TGs for irresolute multifunctions, such as locally finite games, upper
and lower TGs and optimal strategies for TGs.

Here, the class of semi-open sets of X is named SO(X), and SO(X, x) is all semi-open sets of X
containing x ∈ X. Its complement is called semi-closed [5] and named SC(X). A ⊆ X is α-open [29]
if A ⊆ Int(Cl(Int(A))). The class of all α-open sets is denoted by αO(X). Its complement is α-closed
and is denoted by αC(X).

Definition 1.1. [21] A multifunction z : X → Y is

(a) upper irresolute (resp. lower irresolute) at x ∈ X if ∀V ∈ SO(Y) s.t. z(x) ⊆ V (resp. z(x)∩V , φ),
∃ U ∈ SO(X, x) s.t. z(u) ⊆ V (resp. z(u) ∩V , φ), ∀ u ∈ U.

(b) upper irresolute (resp. lower irresolute) if it is upper irresolute (resp. lower irresolute) at all x ∈ X.

Definition 1.2. [6] A subset A of (X, τ) is semi-comp (s-comp, for short) if every cover of A by
SO(X, τ) has a finite subcover.

Lemma 1.1. [1] For a subset A of X, αCl(A) = A ∪ τ −Cl(τ − Int(τ −Cl(A))).

2. α-irresolute multifunctions and their properties

Numerous characterizations of upper (resp. lower) α-irresolute functions have been published in
the literature [4, 30, 31], and we add a few more.

Definition 2.1. A multifunction F : (X, τ) → (Y, σ) is called α-irresolute at x ∈ X if ∀ pairs Wi ∈

αO(Y, σ), i = 1, 2, s.t. F(x) ⊆ W1 and F(x)∩W2 , φ, ∃ H ∈ α(X, x) with F(H) ⊆ W1 s.t. F(h)∩W2 , φ

∀ h ∈ H.

Thus, F : (X, τ)→ (Y, σ) is α-irresolute if it exhibits the aforementioned quality at each x ∈ X.

Theorem 2.1. The following are equivalent:

(i) F is α-irresolute at x ∈ X;

(ii) for any W1,W2 ∈ αO(Y, σ) s.t. F(x) ⊆ W1 and F(x) ∩ W2 , φ, we get x ∈ τ − Int(τ − Cl(τ −
Int[F+(W1) ∩ F−(W2)]));

(iii) ∀ W1,W2 ∈ αO(Y, σ) with F(x) ⊆ W1, F(x) ∩W2 , φ and for any open set U ⊆ X having x,∃ a
nonempty open set G of X with G ⊆ U, F(G) ⊂ W1 and F(g) ∩W2 , φ ∀ g ∈ G.

Proof. (i) ⇒ (ii): Let Wi ∈ αO(Y, σ), i = 1, 2, s.t F(x) ⊆ W1 and F(x) ∩W2 , φ. By assumption, ∃
H ∈ αO(Y, x) s.t. F(H) ⊆ W1 and F(h)∩W2 , φ ∀ h ∈ H. So, x ∈ H ⊆ F+(W1) and, x ∈ H ⊆ F−(W2) ,
φ. Hence, x ∈ H ⊆ F+(W1) ∩ F−(W2). Since H is α-open in X, x ∈ H ⊆ τ − Int(τ − Cl(τ − Int(H))) ⊆
τ − Int(τ −Cl(τ − Int[F+(W1) ∩ F−(W2)])).

(ii)⇒ (iii): Let Wi ∈ αO(Y, σ), F(x) ⊆ W1, and F(x) ∩W2 , φ. However, (ii) gives x ∈ τ − Int(τ −
Cl(τ− Int[F+(W1)∩F−(W2)])). Also, letU , φ containing x. Then,U∩ [τ− Int[F+(W1)∩F−(W2)]]
⊆ U ∩ [τ − IntF+(W1) ∩ τ − IntF−(W2)] = G, which is open, and G ⊆ τ − IntF+(W1). Also, G ⊆
τ − IntF−(W2) ⊆ F−(W2), so F(G) ⊆W1 and F(g) ∩W2 , φ ∀ g ∈ G.
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(iii)⇒ (i): This follows immediately from the observation τ(x) ⊆ α(X, x).

Theorem 2.2. The following are equivalent:

(i) F is α-irresolute;

(ii) for anyW1,W2 ∈ αO(Y, σ), F+(W1) ∩ F−(W2) ∈ αO(X, τ);

(iii) ∀ α-closed sets K1,K2 ⊆ Y, F−(K1) ∪ F+(K2) is α-closed;

(iv) ∀ B1,B2 ⊆ Y, τ −Cl(τ − Int(τ −Cl[F−(B1) ∪B+(B2)])) ⊆ F−(αCl(B1)) ∪ F+(αCl(B2));

(v) αCl[F−(B1) ∪ F+(B2)] ⊆ F−(αCl(B1) ∪ F+(αCl(B2) for any B1,B2 ⊆ Y;

(vi) F−(αInt(B1)) ∩ F+(αInt(B2)) ⊆ αInt[F−(B1) ∩ F+(B2)] for any B1,B2 ⊆ Y;

(vii) for x ∈ X and ∀ α-nbd N of F(x), then for everyW ∈ αO(Y, σ) s.t. W ∩ F(x) , φ, F+(N) ∩ F−(W)
is an α-nbd of x;

(viii) Let for any x ∈ X and ∀ α-nbd N of F(x). Then, for every W ∈ αO(Y, σ) s.t. W ∩ F(x) , φ, ∃
α-nbdU of x s.t. F(U) ⊆ N and F(u) ∩W , φ ∀ u ∈ U.

Proof. (i) ⇒ (ii): Let x ∈ F+(W1) ∩ F−(W2) for any W1,W2 ∈ αO(Y, σ). Then, F(x) ∈ W1 and
F(x)∩W2 , φ. Since F is α-irresolute, by Theorem 2.1, x ∈ τ− Int(τ−Cl(τ− Int[F+(W1) ∩ F−(W2)])).

(ii)⇒ (iii): Immediately from that, if V ⊆ Y, then F−(Y − V) = X − F+(V), and F+(Y − V) =

X − F−(V).

(iii)⇒ (iv): Let B1,B2 ⊆ Y. Then, αCl(Bi) ∈ αC(Y), ∀ i = 1, 2, where αC(Y) will denote to the
class of α closed sets of Y . By (iii), F−(αCl(B1)) ∪ F+(αCl(B2)) ∈ αC(X, τ), i.e., τ − Cl(τ − Int(τ −
Cl[F−(αCl(B1)) ∪ F+(αCl(B2))])) ⊆ F−(αCl(B1)) ∪ F+(αCl(B2)), since F+(B2) ⊆ F+(αCl(B2)) and
F−(B1) ⊆ F−(αCl(B1)). Consequently, τ −Cl(τ − Int(τ −Cl[F−(B1) ∪ F+(B2)])) ⊆ τ −Cl(τ − Int(τ −
Cl[F−(αCl(B1)) ∪ F+(αCl(B2))])) ⊆ F−(αCl(B1)) ∪ F+(αCl(B2)).

(iv)⇒ (v): Directly by Lemma 1.1.

(v)⇒ (vi): X − αInt[F−(B1) ∩ F+(B2)] ⊆ αCl[X − (F−((B1) ∩ F+(B2)] = αCl[(X − F−(B1)) ∪ (X −
F+(B2))] = αCl[F+(Y−B1)∪F−(Y−B2) ⊆ F+(αCl(Y−B1))∪F−(αCl(Y−B2)) = F+(Y−αInt(B1))
∪F−(Y − αInt(B2)) = (X − F−(αInt(B1)) ∪(X − F+(αInt(B2)) = X − [F−(αInt(B1)) ∩F+(αInt(B2))].
Therefore, αInt[F−(B1) ∩ F+(B2)] ⊇ [F−(αInt(B1) ∩F+(αInt(B2)].

(vi)⇒ (vii): Let x ∈ X, N be an α-nbd of F(x), and W ∈ αO(Y) with F(x) ∩ W , φ. Then, ∃
U1,U2 ∈ αO(Y) s.t. U1 ⊆ N, U2 ⊆ W, F(x) ⊆ U1 and F(x) ∩ U2 , φ. Thus, x ∈ F+(U1) ∩ F−(U2).
By assumption, x ∈ F+(U1) ∩ F−(U2) = F+(αInt(U1)) ∩ F−(αInt(U2)) ⊆ αInt[F+(U1) ∩ F−(U2)] ⊆
αInt[F+(N) ∩ F−(W)] ⊆ F+(N) ∩ F−(W). It follows that F+(N) ∩ F−(W) is an α-nbd of x.

(vii)⇒ (viii): Let x ∈ X, N be an α-nbd of F(x) and W ∈ αO(Y, σ) with F(x) ∩ W , φ. Then,
U = F+(N) ∩ F−(W) is an α-nbd of x, F(U) ⊆ N, and F(u) ∩W , φ ∀ u ∈ U.

(viii)⇒ (i): Clear by given hypothesis.

Noiri and Nasef [31] provided the following definitions of upper and lower α-irresoluteness.

Theorem 2.3. The following are equivalent:

(1) F is upper (resp. lower) α-irresolute;

(2) F+(W) (resp. F−(W)) ∈ αO(X, τ), ∀W ∈ αO(Y, σ);
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(3) F−(K) (resp. F+(K)) ∈ αC(X, τ) ∀ K ∈ αC(Y, σ);

(4) sInt(Cl(F−(B))) ⊆ F−(αCl(B)) (resp. sInt(Cl(F+(B))) ⊆ F+(αCl(B)) ∀ B ⊆ Y;

(5) αCl(F−(B)) ⊆ F−(αCl(B)) (resp. αCl(F+(B)) ⊆ F+(αCl(B)) ∀ B ⊆ Y.

Theorem 2.4. The following are equivalent:

(1) F is lower α-irresolute;

(2) F(τ −Cl(τ − Int(τ −Cl(H)))) ⊆ F(H) ∀ H ∈ αO(X, τ);

(3) F(αCl(H)) ⊆ F(H) ∀ H ∈ αO(X, τ).

Proof. (1)⇔ (2): By comparison with Theorem 2.3 andW = F(H), the proof is followed.

(2)⇒ (3): Follows using Lemma 1.1.

(3)⇒ (1): Let x ∈ X andW ∈ αO(Y) with F(x)∩W , φ. Then, x ∈ F−(W). By (iii), F(αCl(F+(Y−W)))
⊆ F(F+(Y −W)) ⊆ Y −W. So, αCl(F+(Y −W)) ⊆ F+(Y −W). Hence, F+(Y −W) ∈ αC(X, τ), and
then F−(W) ∈ αO(X). Set H = F−(W), H ∈ α(X, x), and F(h) ∩W , φ ∀ h ∈ H. Therefore, F is lower
α-irresolute.

Lemma 2.1. [33] For allV ∈ O(Y), (αClF)−(V) = F−(V).

Proof. Let V ∈ O(Y) and x ∈ (αClF)−(V). Then, (αClF)(x) ∩ V = αCl(F(x)) ∩ V , φ, and so
F(x) ∩ V = , φ. By openness of V, x ∈ F−(V), and so (αClF)−(V) ⊆ F−(V). On the other side, let
x ∈ F−(V). Then, φ , F(x) ∩ V ⊆ (αClF)(x) ∩ V, and so x ∈ (αClF)−(V). Thus, we get F−(V) ⊆
(αClF)−(V). Therefore, (αClF)−(V) = F−(V).

Theorem 2.5. F : X → Y is lower α-irresolute iff αClF : X → Y is so.

Proof. “⇒”, let F be lower α-irresolute, V ∈ O(Y) s.t. (αClF)(x) ∩ V , φ, for x ∈ X. By Lemma
2.1, x ∈ (αClF)−(V) = F−(V), and so F(x) ∩ V , φ. By assumption of F, ∃ U ∈ α(X, x) s.t.
U ⊆ F−(V) = (αClF)−(V). Hence, αClF is lower α-irresolute. “⇐”, let αClF be lower α-irresolute,
x ∈ X, andV ∈ O(Y) with F(x) ∩V , φ. By Lemma 2.1, x ∈ F−(V) = (αClF)−(V). By assumption,
∃ U ∈ α(X, x) s.t. U ⊆ (αClF)−(V) = F−(V).

3. Some miscellaneous results

The following lemma was shown by Mashhour [26] and Rielly and Vamanamurthly [34]. A subset
A is γ-open [7] if A ⊆ Int(Cl(A)) ∪ Cl(Int(A)). The class of all γ-open sets is denoted by γO(X). It is
noted that SO(X) ∪ PO(X) ⊆ γO(X).

Lemma 3.1. Let A and B be subsets of a TS (X, τ). Then

(i) If A ∈ γO(X) and B ∈ αO(X), then A ∩B ∈ αO(A).

(ii) If A ⊆ B ⊆ X, A ∈ αO(B), and B ∈ αO(X), then A ∈ αO(X).

Theorem 3.1. Let F : (X, τ) → (Y, σ) be upper (resp. lower) α-irresolute, and X0 ∈ γO(X, τ). Then,
the restriction F | X0 : (X0, τ | X0)→ (Y, σ) is upper (resp. lower) α-irresolute.
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Proof. Let x ∈ X0 and V ∈ αO(Y) s.t. (F | X0)(x) ⊆ V. By upper α-irresoluteness of F, (F | X0)(x) =

F(x), and ∃ U ∈ αO(X) having x s.t. F(U) ⊆ V. TakeU0 =U ∩X0, and then by Lemma 3.1, we get
x ∈ U0 ∈ αO(X0) and (F | X0)(U0) ⊆ V. Hence, F | X0 is upper α-irresolute. Lower α-irresoluteness
is analogous.

Theorem 3.2. F : (X, τ) → (Y, σ) is upper (resp. lower ) α-irresolute if ∀ x ∈ X, ∃ X0 ∈ αO(X)
having x s.t. the restriction F | X0 : (X0, τ | X0)→ (Y, σ) is upper (resp. lower) α-irresolute.

Proof. Let x ∈ X and V ∈ αO(Y) s.t. F(x) ⊆ V. ∃ X0 ∈ α(X, x) s.t. F | X0 is upper α-irresolute.
Therefore, ∃ U0 ∈ αO(X0) having x s.t. (F | X0)(U0) ⊆ V. By Lemma 1.1, U0 ∈ αO(X) and F(u) =

(F | X0)(u) ∀ u ∈ U0. Hence, F is upper α-irresolute. Lower α-irresoluteness is analogous.

Corollary 3.1. Let X =
⋃
λ∈∇
Uλ,Uλ ∈ αO(X). F : (X, τ) → (Y, σ) is upper (resp. lower) α-irresolute

iff the restriction F | Uλ : (Uλ, τ | Uλ)→ (Y, σ) is upper (resp. lower) α-irresolute for λ ∈ ∇.

Proof. Immediate consequence from Theorems 3.1 and 3.2.

A ⊆ X is α-compact (α-comp, for short) if A ⊆
∞⋃

i=1
Ui, Ui ∈ αO(X), then A =

n⋃
i=1
Ui, where n is

finite. In other words, X is α-comp [28] iff X is α-comp of itself. Moreover, A is α-comp iff A is comp
w.r. to τα.

Theorem 3.3. Let F be upper α-irresolute, and F(x) is α-comp w.r. to τα
Y
∀ x ∈ X. If A is an α-comp

w.r. to X, then F(A) is an α-comp w.r. to Y.

Proof. Let F(A) =
⋃
λ∈∇
{Vλ : Vλ ∈ αO(Y)}. ∀ x ∈ A, ∃ a finite ∇(x) ⊂ ∇ s.t. F(x) ⊆

⋃
λ∈∇(x)

{Vλ : Vλ ∈

αO(Y)}. Set V(x) =
⋃

λ∈∇(x)
{Vλ : Vλ ∈ αO(Y)}. Then, F(x) ⊆ V(x) ∈ αO(Y), and ∃ U(x) ∈ α(X, x)

s.t. F(U(x)) ⊆ V(x). Since {U(x) : x ∈ A} is an α-open cover of A, ∃ a finite number of A, say,

x1, x2, · · · , xn s.t. A ⊆
⋃
{U(xi) : i = 1, 2, · · · , n}. Therefore, we get F(A) ⊆ F(

n⋃
i=1
U(xi)) ⊆

n⋃
i=1
V(xi) ⊆

n⋃
i=1

⋃
λ∈∇(x)

Vλ. Hence, F(A) is α-comp w.r. to Y.

Corollary 3.2. Let F be α-irresolute, and F(x) is α-comp w.r. to Y, ∀ x ∈ X. If X is an α-comp, then
Y is so.

Recall that X is α-normal if for A,B ∈ C(X) s.t. A ∩B = φ, ∃ U,V ∈ αO(X) s.t. U ∩V = φ, and
A ⊆ U and B ⊆ V.

Theorem 3.4. Let Y be α-normal, and Fi : Xi → Y is upper α-irresolute s.t. Fi is closed, ∀ i = 1, 2.
Then, {(x1, x2) ∈ X1 × X2 : F1(x1) ∩ F2(x2) , φ} ∈ αC(X1 × X2).

Proof. Let A = {(x1, x2) ∈ X1 × X2 : F1(x1) ∩ F2(x2) , φ}, and (x1, x2) < A. Then, F1(x1) ∩ F2(x2) =

φ. Since Y is α-normal, and Fi is closed for i = 1, 2, ∃ disjoint V1,V2 ∈ αO(X) s.t. Fi(xi) ⊆ Vi

for i = 1, 2. By assumption, F+
i (Vi) ∈ αO(Xi, xi) for i = 1, 2. Set U = F+

1 (V1) × F+
2 (V2). Then,

U ∈ αO(X1 × X2), and (x1, x2) ∈ U ⊆ (X1 × X2) − A. Hence, (X1 × X2) − A ∈ αO(X1 × X2).

For a multifunction F : X → Y, G(F) is G(F) = {(x, y) ∈ X × Y : x ∈ X and y ∈ F(x)}.
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Theorem 3.5. Let Y be a Hausdorff space, and F : X → Y is upper α-irresolute s.t. F(x) is comp, ∀
x ∈ X. Then, G(F) ∈ αC(X ×Y).

Proof. Let (x, y) ∈ (X × Y) − G(F). Then, y ∈ Y − F(x). ∀ z ∈ F(x), ∃ disjoint V(z),W(z) ∈ O(Y)
s.t. z ∈ V(z) and y ∈ W(z). F(x) =

⋃
z∈F(x)

V(z), and ∃ a finite number in F(x), say, z1, z2, · · · , zn s.t.

F(x) ⊆
⋃
{V(zi) : 1 ≤ i ≤ n} and W =

⋂
{W(zi) : 1 ≤ i ≤ n}. By the upper α-irresoluteness of F, and

F(x) ⊆ V, ∃ U ∈ α(X, x) s.t. F(U) ⊆ V. Therefore, F(U) ∩W = φ, and so (U ×W) ∩ G(F) = φ.
SinceU ×W ∈ αO(X ×Y), and (x, y) ∈ U ×W ⊆ (X ×Y) − G(F), (X ×Y) − G(F) ∈ αO(X ×Y).

Theorem 3.6. If F : X → Y andG : Y → Z are lower (resp. upper) α-irresolute, thenG◦F : X → Z
is so.

Proof. Let V ∈ αO(Z). Since (G ◦ F)−(V) = F−(G−)(V) and by lower α-irresoluteness of F and G,
we get (G ◦ F)−(V) ∈ αO(X). Thus, G ◦ F is lower α-irresolute. Similarly, the upper is satisfied.

4. Applications: Games and winning strategy

Due to these applications, consider each Xi to be a topological structure, ∀ i = 1, 2, · · · , n, and
topologically X =

⊕
i∈I
Xi.

4.1. Upper and lower topological games

Definition 4.1. A game G on X for the players I1,I2, · · · ,In consists of the following

(i) {N+,N−} from N is a partition of players.

(ii) {X1,X2, · · · ,Xn} from X is a partition of sets.

(iii) An irresolute multifunction z of X onto itself s.t. z(Xi) ∩ Xi = φ for i = 1, · · · , n.

(iv) n-bounded real valued functions L1,L2,L3, · · · ,Ln on X.
The procedures of G are as follows:

The locations are represented by the components ofX, and play begins at any point inX. x ∈ Xi denotes
the location of player Ii at x. If x0 is the starting location, the following sequence occurs: Player Ii

selects x1 ∈ z(x0) for x ∈ Xi. If x1 ∈ X j, player I j selects x2 ∈ z(x1), and so on. If z(x) = φ, the play
ends at x. In other terms, a play is a sequence consisting of the elements < x0, z(x0), x1, z(x1), · · · > s.t.
x0 ∈ z(x0), x1 ∈ z(x1) and so on.

Definition 4.2. For a sequence of a play < x0, z(x0), x1, z(x1), · · · , xk, z(xk) > with k + 1 points, the
length of it is k. Here, the kth element satisfies z(xk) = φ.

Definition 4.3. G is locally finite (LF, for short) if each play length is finite. If S is the set of locations
in a play, the payoff to Ii is either sup{Li(x) : x ∈ S} or inf{Li(x) : x ∈ S}, depending on whether
Ii ∈ N

+ or Ii ∈ N
−. Each player’s objective is to maximize their payoff.

Definition 4.4. If player Ii can make sure that Payoff(Ii)≥ ξ, no matter what other players do, ∀ plays
beginning with x, no matter what other players do. If Payoff(Ii)> ξ, he is rigorously guaranteeing ξ
from x.

Lemma 4.1. [1] If G ∈ O(X) and A ⊆ X, then G ∩Cl(A) ⊆ Cl(G ∩ A).
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Proposition 4.1. If X =
⊕
i∈I
Xi and A ∈ SO(X), then A∩Xi ∈ SO(Xi) ∀ i ∈ I. The converse holds only

if A ∈ O(X).

Proof. Let A ∈ SO(X). Then, A ∩ Xi ⊆ Cl(Int(A)) ∩ Xi. Since Xi ∈ O(X), ∀ i, by Lemma 4.1,
A ∩ Xi ⊂ Cl(Int(A)) ∩ Xi = Cl(Int(A)) ∩ Xi. Then, A ∩ Xi ⊂ (Cl(Int(A)) ∩ Xi) ∩ Xi = (ClXi(Int(A)) ∩
Xi) ∩ Xi. Since Xi is a subspace of X, ∀ i ∈ I, then (Int(A) ∩ Xi) ∩ Xi ∈ O(Xi). Therefore, A ∩ Xi ⊆

ClXi(IntXi(Int(A ∩ Xi))) ∩ Xi = ClXi(IntXi(Int(A ∩ Xi))) ⊆ ClXi(IntXi(A ∩ Xi)). So, A ∩ Xi ∈ SO(Xi),
∀ i ∈ I. On the other hand, let A ∈ O(X), and A ∈ SO(Xi). Then, A ∩ Xi ⊆ ClXi IntXi(A ∩ Xi) ⊆
ClXi(A ∩Xi) = Xi ∩Cl(A ∩Xi) ⊆ Cl(A) ∩Xi implies A ⊆ Cl(A). By openness of A, A ⊆ Cl(IntA), and
A ∈ SO(X).

Definition 4.5. For a TS X, L : X → R is upper and lower s-continuous if ∀ r ∈ R, {L(x) < r, ∀ x ∈ X}
and {L(x) > r, ∀ x ∈ X}, ∃U ∈ S O(X) s.t. {L(x

′

) < r, ∀ x
′

∈ U} and {L(x
′

) > r, ∀ x
′

∈ U}, respectively.

Definition 4.6. G is called

(i) upper topological (UT, for short) for Ii if Li is upper s-continuous.

(ii) lower topological (LT, for short) for Ii if Li is lower s-continuous.

Theorem 4.1. If G is lower for I1 ∈ N
+, then all locations that satisfy I1 is strictly guarantee a gain

ξ is in SO(X).

Proof. (By transfinite induction). Consider the set of starting locations Aξ s.t I1 is a rigorous guarantee

of ξ. Then, (X1 ∩ z
−(Aξ)) ∪ (

n⋃
j=1

(X j ∩ z
+(Aξ))) ⊆ Aξ. Note that z+(Aξ) = {x ∈ X : z(x) ⊆ Aξ}, and

z−(Aξ) = {x ∈ X : z(x) ∩ Aξ , φ}. Construct A(∆) ∈ SO(X) s.t. A(∆) ⊆ Aξ, ∀ ordinal ∆ as follows: Let
A(0) = {x ∈ X : L1(x) > ξ}. By assumption, we get that L1 is lower s-continuous. Thus, A(0) ∈ SO(X),
and A(0) ⊆ Aξ. Define A(β) ∈ SO(X) ⊆ Aξ, ∀ ∇ < ∆. Let ∆ be a limit and A(∆) =

⋃
∇<∆

A(∇). Then,

A(∆) ∈ SO(X), and A(∆) ⊆ Aξ. If ∆ is not a limit ordinal, then ∆ = ∆
′

+ 1. Let A(∆) = A(∆
′

)

∪ (X1 ∩ z
−(A(∆

′

))) ∪
n⋃

n=2
(X j ∩ z

+(A(∆′))) by hypothesis, A(∆
′

) ∈ SO(X) and by Proposition 4.1,

X1 ∩ z
−(A(∆

′

)) and X j ∩ z
+(A(∆

′

)) ∈ SO(X), ∀ j = 2, 3, · · · , n. Since X =
⊕
i∈I
Xi and z is irresolute,

then A(∆) ∈ SO(X) and A(∆) ⊆ Aξ, for A(∆
′

) ⊆ Aξ and (X1 ∩ z
−(A(∆

′

))) ∪
n⋃

j=2
(X j∩ z

+(A(∆
′

))) ⊆

(X1 ∩ z
−(Aξ)) ∪

n⋃
j=2

(X j ∩ z
+(Aξ)) ⊆ Aξ. Hence, ∀ ordinal ∆, A(∆) ∈ SO(X), and A(∆) ⊆ Aξ. Since

the sequence {A(∆)} is increasing and cannot be constant, A(∆0) = A(∆0 + 1) = · · · , for some ∆0.
Let A

′

= X − A(∆0). If x ∈ A
′

∩ X1, then z(x) ⊆ A
′

, while if x ∈ A
′

∩ X j, where j , 1, then z(x)
∩A

′

, φ. Therefore, if a play begins from a point in A
′

, for instance, I1 does, players I2, I3, · · · , In

can ascertain that a location in A(∆0) is never achieved. A(∆0) ⊇ A(0) = {x : L1(x) > ξ}. Thus, if x ∈ A
′

,
then x < A(∆0), and so x < Aξ, and so Aξ ⊆ A(∆0). A(∆0) ⊆ Aξ by construction, and so Aξ = A(∆0).
Hence, Aξ ∈ SO(X).

Remark 4.1. Although the complement of SO(X) is SC(X), and z is irresolute, z+(X) ∈ SO(X). Then,
X0 = X − z+(X) ∈ SC(X) and the complement of criteria in Theorem 4.1 does not hold that the set
of places from which I1 may ensure a benefit for ξ is semi-closed. Theorem 4.2 specifies additional
requirements for the semi-closed nature of this set.
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Theorem 4.2. Let G be UT for I1 ∈ N
+, LF, and X0 = {x : z(x) = φ} ∈ SO(X). Then, the set of places

s.t. I1 may guarantee a gain to the holder is in SO(X).

Proof. (By transfinite induction). Define X(∆) ∈ SO(X) ∀ ordinal ∆. Let X(0) = X0 = {x : z(x) =

φ}. Then, X(0) ∈ SO(X). Construct X(∇) ∈ SO(X) ∀ ordinals ∇ < ∆. If ∆ is limit, and X(∆) =

(
⋃
∇<∆

X(∇)) ∈ SO(X). If ∆ has a precursor ∆
′

i.e. ∆ = ∆
′

+ 1, take X(∆) = X(∆
′

) ∪ z+(X(∆
′

)). By z

irresoluteness, X(∆) ∈ SO(X). Thus, ∀ ordinal ∆, by transfinite induction, X(∆) ∈ SO(X). If ∇ < ∆,
X(∇) < X(∆). Hξ is defined as the collection of places from which I1 may guarantee ξ. Then, (X1 ∩

z−(Hξ)) ∪
n⋃

j=2
(X j ∩ z

+(Hξ)) ⊆ Hξ. Define a set H(∆), ∀ ∆ s.t.

(i) H(∆) ⊆ Hξ;

(ii) if ∇ < ∆, H(∇) ⊆ H(∆);

(iii) if ∇ < ∆, H(∆) ∩ X(∇) = H(∇) ∩ X(∇); and

(iv) H(∆) ∩ X(∆) ∈ SC(X) in X(∆).
The conditions (i)-(iv) can be satisfied in three claims.

Claim I. Let H(0) = {x : L1(x) ≥ ξ}. Since L1 is upper s-continuous, H(0) ∈ SC(X) in X. Also,
H(0) ⊆ Hξ, and so (H(0) ∩ X(0)) ∈ SC(X) in X(0). Consider H(∇) that satisfies conditions (i)-(iv) is
constructed, ∀ ∇ < ∆.

Claim II. If ∆ is a limit ordinal, take H(∆) =
⋃
∇<∆

H(∇). Then, H(∆) ⊆ Hξ, ∀ ∇ < ∆. Also, if ∇ < ∆, then

H(∇) ⊆ H(∆), and if ∇
′

< ∆, H(∆) ∩ X(∇
′

) = (
⋃
∇<∆

H(∇)) ∩ X(∇
′

) =
⋃
∇<∆(H(∇)) ∩ X(∇

′

). If ∇ < ∆
′

,

then H(∇) ∩ X(∇
′

) ⊆ H(∇
′

) ∩ X(β
′

); and if ∇
′

≤ ∇ < ∆, H(∇) ∩ X(∇
′

) = H(∇
′

) ∩ X(∇
′

). Hence, H(∇)
∩ X(∇

′

) = H(∇
′

) ∩ X(∇
′

), and (iii) is satisfied. If x ∈ X(∆), and x < H(∆), then x ∈ X(∇) for some
∇ < ∆, and x < H(∇). Now, H(∇) ∩ X(∇) ∈ SC(X) in X(∇), and so ∃ a semi-open nbd A of x in X(∇)
s.t. A ∩ H(∇) = φ. Now, since X(∇), and A ∈ SO(X) and A ⊆ X(∇) ⊆ X(∆), A ∈ SO(X) in X(∆). By
(iii), X(∇) ∩ H(∆) = X(∇) ∩ H(∇), and so A is a semi-open nbd of x in X(∆) s.t. A ∩ H(∆) = φ. Thus,
(iv) is satisfied.

Claim III. If ∆ has a predecessor ∆
′

. This means that ∆ = ∆
′

+ 1. Take H(∆) = H(∆
′

) ∪ (X1∩z
−(H(∆

′

)))

∪
n⋃

j=2
(X j ∩ z

+(H(∆
′

))). Since H(∆
′

) ⊆ Hξ, and X1 ∩ z
−(H(∆

′

)) ∪
n⋃

j=2
(X j ∩ z

+(H(∆
′

))) ⊆ (X1 ∩ z
−(Hξ))

∪
n⋃

j=2
(X j ∩ z

+(Hξ)) ⊆ Hξ, (i) is satisfied, and (ii) is clear. Suppose ∇
′

< ∆. If x ∈ X(∇
′

), and z(x) , φ,

then z(x) ⊆ X(∇) for some ∇ < ∇
′

. Thus, if x ∈ X(∇
′

) ∩ (X1 ∩ z
−(H(∆

′

))), z(x) ∩ {X(∇) ∩ H(∆
′

)} , φ
for ∇ < ∇

′

≤ ∆
′

. Thus, x ∈ X(∇
′

) ∩ (X1 ∩ z
−(H(∇))) ⊂ X(∇

′

) ∩ H(∇+ 1) ⊂ X(∇
′

) ∩ H(∇
′

). In the same
manner, if j , 1, X(∇

′

) ∩ (X j ∩ z
+(H(∆

′

))) ⊆ X(∇
′

) ∩ H(∇
′

). Also, X(∇
′

) ∩ H(∆
′

) = X(∇
′

) ∩ H(∇
′

).

Thus, X(∇
′

) ∩ X(∆) = X(∇
′

) ∩ [H(∆
′

) ∪ (X1 ∪ z
−(H(∆

′

))) ∪
n⋃

j=2
X j ∩ z

+(H(∆
′

))] = X(∇
′

) ∩ H(∇
′

), and

so (iii) is satisfied. Finally, for (iv), suppose that x ∈ X(∆), and x < H(∆). If x ∈ X(∆
′

), then x < H(∆
′

),
and since (H(∆

′

) ∩ X(∆
′

)) ∈ SC(X) in X(∆
′

), ∃ a semi-open nbd A of x in X(∆
′

) s.t. A ∩ H(∆
′

) = φ.
Since X(∆

′

) ∈ SO(X), and A ⊆ X(∆
′

) ⊆ X(∆), A is a semi-open nbd of x in X(∆); and since X(∆
′

) ∩
H(∆) = X(∆

′

)H(∆
′

), by (iii), A ∩ H(∆) = φ. If x ∈ (X(∆) − X(∆
′

)) ∩ X1, then z(x) ⊆ (X(∆
′

) − H(∆
′

)).
(X(∆

′

)−H(∆
′

)) ∈ SO(X) in X(∆
′

) and so is semi-open in X. X1∩z
+(X(∆

′

)−H(∆
′

)) is a semi-open nbd
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of x s.t. [X1∩z
+(X(∆

′

)−H(∆
′

))] ∩ H(∆) = φ. If x ∈ (X(∆)−X(∆
′

))∩X j, then z(x)∩(X(∆)−H(∆
′

)) , φ,
and X j ∩ z

−(X(∆
′

)−H(∆
′

)) is a semi-open nbd of x s.t. [X j ∩ z
−(X(∆

′

)−H(∆
′

))] ∩ H(∆) = φ. In either
case, if x ∈ X(∆) and x < H(∆), ∃ a semi-open nbd of x in X(∆) which does not intersect with H(∆).
Therefore, (H(∆) ∩ X(∆)) ∈ SO(X) in X(∆), and (iv) is satisfied. Thus, construct H(∆), ∀ ordinal ∆

s.t. (i)-(iv) are satisfied. By Berge [3], since G is locally finite, X = X(∆0) for some ordinal ∆0. Thus,
H(∆0) ∈ SO(X); and if ∆ > ∆0, H(∆) = H(∆) ∩ H(∆0) = H(∆0). Let H

′

=X−H(∆0). If x ∈ H
′

∩X1, then
z(x) ⊆ H

′

, and if x ∈ H
′

∩ X j, where j , 1, then z(X) ∩ H
′

, φ. Thus, if a play starts with a location in
H
′

, whatever I1 does, players I2, I3, · · · , I1 can prevent a location in H(∆0) from ever being reached.
However, H(∆0) ⊇ H(0) = {x : L1(x) ≥ ξ}, and so Hξ ⊆ H(∆0). However, H(∆0) ⊆ Hξ by construction,
and so H(∆0) = Hξ. Thus, Hξ ∈ SC(X).

The assumption of Theorem 4.2 cannot be weakened. As seen in Example 4.1, if X0 < SO(X), the
conclusion of Theorem 4.2 is false.

Example 4.1. Players P1 and P2 played on the topological sum of X1 and X2 on a segment (−1,m] of
R. Let (x; i) be the point x ∈ Xi and consider

z(x; i) =

{
(x − 1, j) i , j : x > 0,

φ : x ≤ 0.

Suppose that I1 ∈ N
+ and

L1(x) =

{
1 : x ∈ X2 and x ≤ 0,
0 : otherwise.

Due to the fact that L1 is upper s-continuous, G is UT for I1 ∈ N
+. The starting locations s.t. I1 may

ensure unit gain are {(x; 1) : 0 < x ≤ 1, 2 < x ≤ 3, · · · } ∪ {(x; 2) : 1 < x ≤ 2, 3 < x ≤ 4, · · · } < SC(X).

Example 4.2 shows that the conclusion of Theorem 4.2 may be true, in general.

Example 4.2. Consider X = X1
⊕
X2, where X1 = R and X2 = Y

⊕
Z, where Y,Z ⊆ R. Consider

(x; 1), (x; 2) and (x; 0) are denoted by X1, Y andZ, respectively. Let

z(x; 1) = {(x; 0)} ∪ {(y; 2) :| x − y |≤ 3 | x |},
z(x; 2) = {(y; 1) :| x − y |≤ 1/2 | x |},
z(x; 0) = φ. Then, X0 = Z

Consider I1 ∈ N
+ and L1(x; 0) = 1 at | x |, and f 1 = 0, otherwise. AlthoughG is upper TG for I1 ∈ N

+

and X0 ∈ SO(X), it is not LF. The locations defined in X1 from which I1 may ensure unit gain are as

follows:
∞⋃

n=0
{(x; 1) :| x |≥ 1/2n} = {(x; 1) :| x |> 0} < SC(X). However, X = X1

⊕
X2, and hence the set

of beginning locations from which I1 may ensure unit gain is not included in SC(X).

Corollary 4.1. If G is UT for I1 ∈ N−, then the set of locations where I1 can guarantee ξ which is
semi-closed is UT.
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Proof. Let Aξ be the set of start locations s.t. I1 cannot guarantee ξ. Similar to Theorem 4.1, construct
A ∈ SO(X) s.t. {x : L1(x) < ξ} ⊆ A ⊂ Aξ. Then, Ac ∈ SC(X), where Ac = X − A. If x ∈ Ac ∩ X1, then
z(x) ∩ Ac , φ, and if x ∈ Ac ∩ X j s.t. j , 1, then z(x) ⊆ Ac. So, if a play starts with a location in Ac,
I1 can ascertain that a location in H is never gained. Thus, if Hξ is the set of start locations s.t I1 may
guarantee ξ, Hξ ⊇ Ac. However, Aξ ⊇ A and Hξ ∩ Aξ = φ and so Hξ = Ac. Therefore, Hξ ∈ SC(X).

Corollary 4.2. Let G be LF and has a LT dimension for I1 ∈ N
−, and X0 = {x : z(x) = φ} ∈ SO(X).

Then, the set of locations s.t. I1 may be used to strictly guarantee a gain ξ is semi-closed.

Proof. Let Kξ be the start locations s.t. I1 may not strictly guarantee ξ. By a modification in the proof
of Theorem 4.2, Kξ ∈ SC(X). However, if Aξ is the start locations s.t. I1 can strictly guarantee ξ, Aξ =

X − Kξ, and so Aξ ∈ SO(X).

4.2. Optimal strategies for topological games

Definition 4.7. Let X0 = {x : z(x) = φ}, and a strategy for player Ii is a function ℘ : (Xi − X0) → X
s.t. ℘(x) ∈ z(x), ∀ x ∈ Xi − X0. The play of G is completely determined by its strategy.

Definition 4.8. A strategy ℘ for player I1 is guarantee him with ξ from a start location x if play begins
with x and I1 employs a strategy ℘. He receives a payoff ≥ ξ regardless of the strategies used by other
players.

Definition 4.9. Let Ψ(x) = sup{ξ : x ∈ Hξ}, where x ∈ X, and Hξ is the locations, for each ξ s.t. I1 may
guarantee ξ. A strategy for player I1 is optimal if it guarantees Ψ(x) from the start location x, ∀ x ∈ X.

Now, assume that Υ represents the techniques used by player I1. Given that each strategy for I1

is a function between X1 − X0 and X. If X(X1−X0) is denoted by functions from X1 − X0 to X, then
Υ ⊆ X(X1−X0). In this case, Υ has a relative product topology.

Theorem 4.3. Suppose that only one of the following holds:

(i) G is LF and UT for I1 ∈ N
+ s.t. X0 ∈ SO(X);

(ii) z an upper TG for I1 ∈ N
−. If z(x) is s-comp, ∀ x ∈ X1 − X0, then the optimal strategies for I1 is

nonempty and SC(X) in Υ

Proof. Let z(x) be s-comp. Using Definition 1.2 ∀ x ∈ X1−X0, Υ =
∏

x∈X1−X0

z(x) is s-comp. LetSξ be the

strategies s.t. I1 may guarantee ξ from any start point in Hξ. Clearly, Sξ , φ if Hξ , φ. It is sufficient
to prove that Sξ ∈ SC(X) in Υ. Suppose ℘ ∈ Υ, ℘ < Sξ. Then, for some x ∈ X1 ∩ Hξ, ℘(x) < Hξ.
By assumption (i) and Theorem 4.2 or assumption (b) and Corollary 4.1, we get Hξ ∈ SC(X), so ∃ a
semi-open nbd N of ℘(x) in X s.t. N∩Hξ = φ. IfM(℘) = {δ : δ ∈ Υ} and δ(x) ∈ N,M(℘) is a semi-open
nbd of ℘, andM(℘) ∩ Sξ = φ. Thus, Sξ ∈ SC(X) in Υ. Let x0 ∈ X, and consider {Sξ:ξ<Ψ(x0)}. Consider
ξ1 < ξ2 < · · · < ξn < Ψ(x0). Then, x0 ∈ Hξi , ∀ i, and Hξ1 ⊇ Hξ2 ⊇ · · · ⊇ Hξn . Suppose that Hξk ∩

(X1 − X0) , φ and that k ≤ n the greatest integer. Then, for k < j ≤ n, z(Hξ j) ∩ (X1 − X0) = φ, and
Sξ j = Υ. Let ℘i ∈ Sξi for 1 ≤ i ≤ k, and ℘ ∈ Υ, where for x ∈ X1 − X0,

℘(x) =


℘k(x) : x ∈ Hξk

℘i(x) : x ∈ Hξi − Hξi+1 , i = 1, 2, · · · , k − 1
℘1(x) : x ∈ Hξ2
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Then, ℘ ∈ Sξ−1 ∩ Sξ2 ∩ · · · ∩ Sξn . Thus, ∀ x0 ∈ X, {Sξ : ξ < Ψ(x0)} ⊆ SC(X) with the finite
intersection property. Let S(x) =

⋂
ξ<ψ(x0)

Sξ. So, S(x) ∈ SC(X). Now, consider {S(x) : x ∈ X}. Suppose

that x1, x2, · · · , xn ∈ X. If Ψ(xm) = max
1≤i≤n

Ψ(xi), S(xm) ⊂ S(xi). Thus, {S(x) : x ∈ X} ⊆ SC(X) with the

finite intersection property. Let S =
⋂
x∈X

S(x). Thus, S is nonempty and semi-closed in Υ. However,

S is an optimal strategy for I1. If ℘ ∈ S(x) ∀ ξ < Ψ(x) and so the guarantee for I1 that is Ψ(x) when
the play beginning with x. Thus, if ℘ ∈

⋂
x∈X

S(x), then ℘ is optimal. Conversely, if ℘ is optimal for I1,

℘ guarantees I1 if the play starts with x, and so ℘ ∈
⋂

ξ<Ψ(x)
Sξ. This holds for x ∈ X, and so ℘ ∈ S =⋂

x∈X

⋂
ξ<Ψ(x)

Sξ.

5. Conclusions

The representation of multifunctions using α-irresoluteness and topological game theory are
investigated and discussed. Moreover, new properties of upper (lower) α-irresoluteness due to
Neubrunn [30] and Noiri and Nasef [31] are modified and analyzed. The strategy for the play in
topological games is completely determined.
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