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Abstract: There is a close analogy and similarity between topology and rough set theory. As,
the leading idea of this theory is depended on two approximations, namely lower and upper
approximations, which correspond to the interior and closure operators in topology, respectively. So,
the joined study of this theory and topology becomes fundamental. This theory mainly propose
to enlarge the lower approximations by adding new elements to it, which is an equivalent goal for
canceling elements from the upper approximations. For this intention, one of the primary motivation
of this paper is the desire of improving the accuracy measure and reducing the boundary region. This
aim can be achieved easily by utilizing ideal in the construction of the approximations as it plays an
important role in removing the vagueness of concept. The emergence of ideal in this theory leads to
increase the lower approximations and decrease the upper approximations. Consequently, it minimizes
the boundary and makes the accuracy higher than the previous. Therefore, this work expresses the set
of approximations by using new topological notions relies on ideals namely I-δβJ-open sets and I-∧

βJ-sets. Moreover, these notions are also utilized to extend the definitions of the rough membership
relations and functions. The essential properties of the suggested approximations, relations and
functions are studied. Comparisons between the current and previous studies are presented and turned
out to be more precise and general. The brilliant idea of these results is increased in importance by
applying it in the chemical field as it is shown in the end of this paper. Additionally, a practical example
induced from an information system is introduced to elucidate that the current rough membership
functions is better than the former ones in the other studies.
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1. Introduction

Rough set [26, 27] is one of a nonstatistical technique to deal with the problems of uncertainty in
data and incompleteness of knowledge. The rationale of this set is depended on that the human
knowledge is categorized into three fundamental regions, inside, outside and boundary. Therefore, the
essential idea of this set focuses on the lower and upper approximations which are used to define the
boundary region and accuracy measure. In the classical rough set model approximations are based on
the equivalence relations, but this condition does not always hold in many practical problems and also
this restriction limits the wide applications of this set. In the recent times, lots of researchers are
interested to generalize this set in many fields of applications [9,15,16,23]. It was also generalized by
the topological point of view [20, 21, 29, 31] by replacing the equivalence relations in the lower and
upper approximations by the open and closed sets, respectively. In the past few years mathematicians
turned their attention towards to near (or nearly) open concept as generalization of open sets to
topological spaces [1, 19, 24, 25, 30]. In this direction, numerous generalizations of the rough set were
offered using the nearly open concepts instead of open sets [4–6, 32]. In 2017, Amer et al. [8] utilized
the J-nearly open concepts and introduced the notions of J-nearly approximations. After that,
Hosny [11] improved Amer et al.’s approximations [8] by proposing the notions of the δβJ-open sets
and
∧

βJ-sets which were used to define the δβJ-approximations and
∧

βJ-approximations.
An ideal is a nonempty collection of sets which is closed under hereditary property and the finite

additivity [18, 33]. In view of the recent applications of ideals in the rough set theory, it seems very
natural to extend the interesting concept of rough set further by using ideals. As, the notions of ideals
are pivotal tool helping in removing imprecision and ambiguous of a concept by minimizing the
vagueness of uncertainty regions at their borders by increasing the lower approximations and
decreasing the upper approximations which automatically implies to increase the accuracy measure of
the uncertainty regions [7, 13, 14]. Recently, Hosny [12] presented the concepts of J-nearly open sets
and J-nearly approximations with respect to ideals. She proved that these new sort of J-nearly open
sets were generalized the preceding ones [8, 11]. Moreover, Hosny’s approximations [12] were
improvement of Abd El-Monsef et al.’s approximations [2] and Amer et al.’s approximations [8].
Furthermore, the J-nearly rough membership relations and functions with respect to ideals were
introduced in [12] as generalization of the other types [3, 22, 28].

This work indicates that the rough set has a purely topological nature and emphasizes the importance
of using ideal in the study of this set because it demystifies the concept. So, a more general notion
of a topological rough set via ideal is suggested. In this paper, Section 2 covers some fundamental
principles of concepts which are needed in the current work. Meantime, Sections 3 and 5 introduce
and study new J-near open sets with respect to ideals namely, I-δβJ-open sets and I-

∧
βJ-sets. The

basic properties, characterizations and the relationships among of these definitions are derived. These
definitions are more general than the previous ones [8,11,12]. It should be noted that the generalization
of I-βJ-open sets [12] by using the I-

∧
β-sets is very different from the generalization of the I-βJ-

open sets by using the I-δβJ-open sets. The main difference is that the family of all I-δβJ-open
sets does not form a topology, as the intersection of two I-δβJ-open sets does not need to be an
I-δβJ-open set as shown in Example 3.1. While, the family of all I-

∧
β-sets forms a topology as

it is shown in Lemma 5.2. Moreover, it is shown that the concepts of I-δβJ-open sets and I-
∧

β-
sets are independent (see Remark 5.5). Furthermore, if I = {φ}, then the current definitions are

AIMS Mathematics Volume 7, Issue 1, 869–902.



871

coincided with Hosny’s definitions [11]. So, Hosny’s definitions [11] are special case of the current
definitions. The main object of Sections 4 and 6 is to propose two different and independent of new
approximations. These approximations are based on I-δβJ-open sets and I-

∧
β-sets. The properties of

the present approximations and the connections among them are established and constructed in these
sections. They are compared to the prior ones [2, 8, 11, 12] and shown that the accuracy measure
which deduced by the current approximations is the best. The goal of Section 7 is to define new kind
of the rough membership functions via ideal namely, I-δβJ-rough membership functions and I-

∧
βJ-

rough membership functions. It is proved that these functions are better than the previous ones such
as Abd El-Monsef et al. [3], Hosny [12], Lin [22], Pawlak and Skowron [28] (see Lemmas 7.2, 7.3
and Remark 7.8). Section 8 demonstrates the importance of this paper by some real life applications.
Finally, Section 9 aims to outline the essential findings and a plan for the future work.

2. Preliminaries

Definition 2.1. [17] Let X be a non-empty set. I , φ, I ∈ P(X) is an ideal on X, if

(i) A ∈ I and B ∈ I ⇒ A ∪ B ∈ I.

(ii) A ∈ I and B ⊆ A⇒ B ∈ I.

Definition 2.2. [2] Let X be a non-empty finite set and R be an arbitrary binary relation on X. The
J-neighborhood of x ∈ X (J-nd ) (nJ(x)), J ∈ {R, L, < R >, < L >, I,U, < I >, < U >} defined as:

(i) R-nd: nR(x) = {y ∈ X : xRy}.

(ii) L-nd: nL(x) = {y ∈ X : yRx}.

(iii) < R >-nd: n<R>(x) = ∩x∈nR(y)nR(y).

(iv) < L >-nd: n<L>(x) = ∩x∈nL(y)nL(y).

(v) I-nd: nI(x) = nR(x) ∩ nL(x).

(vi) U-nd: nU(x) = nR(x) ∪ nL(x).

(vii) < I >-nd: n<I>(x) = n<R>(x) ∩ n<I>(x).

(viii) < U >-nd: n<U>(x) = n<R>(x) ∪ n<I>(x).

From the following concepts and throughout this paper J ∈ {R, L, < R >, < L >, I,U, < I >, < U >}.

Definition 2.3. [2] Let X be a non-empty finite set, R be an arbitrary binary relation on X and ΞJ :
X → P(X) assigns each x in X its J-nd in P(X). (X,R,ΞJ) is a J-neighborhood space (J-ndS).

Theorem 2.1. [2] Let (X,R,ΞJ) be a J-ndS and A ⊆ X. Then, τJ = {A ⊆ X : ∀a ∈ A, nJ(a) ⊆ A} is a
topology on X. The elements of τJ are called J-open set and the complement of J-open set is J-closed
set. The family ΓJ of all J-closed sets defined by ΓJ = {F ⊆ X : F

′

∈ τJ}, F
′

is the complement of F.

Definition 2.4. [2] Let (X,R,ΞJ) be a J-ndS and A ⊆ X. The J-lower, J-upper approximations,
J-boundary regions and J-accuracy of A are defined respectively by:
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RJ(A) is the union of all J-open sets which are subset of A = intJ(A), where intJ(A) represents
J-interior of A.
RJ(A) is the intersection of all J-closed sets which are superset of A = clJ(A), where clJ(A)

represents J-closure of A.
BNDJ(A) = RJ(A) − RJ(A).
ACCJ(A) =

|RJ(A)|

|RJ(A)|
, where |RJ(A)| , 0.

Definition 2.5. [2] Let (X,R,ΞJ) be a J-ndS. A ⊆ X is J-exact if RJ(A) = RJ(A). Otherwise, A is
J-rough.

Definition 2.6. [8] Let (X,R,ΞJ) be a J-ndS. A ⊆ X is

(i) J-preopen (PJ-open), if intJ(clJ(A)) ⊇ A.

(ii) J-semiopen (S J-open), if clJ(intJ(A)) ⊇ A.

(iii) αJ-open, if A ⊆ intJ[clJ(intJ(A))].

(iv) βJ-open (semi preopen), if A ⊆ clJ[intJ(clJ(A))].

These sets are called J-nearly open sets, the families of J-nearly open sets of X denoted by ηJO(X),
the complements of the J-nearly open setsare called J-nearly closed sets and the families of J-nearly
closed sets of X denoted by ηJC(X), ∀η ∈ {P, S , α, β}.

Remark 2.1. [8] The implications between τJ,ΓJ, ηJO(X) and ηJC(X) are in Figure 1.

Figure 1. The relationships between τJ,ΓJ, ηJO(X) and ηJC(X).

From the following concepts and throughout this paper η ∈ {P, S , α, β}.

Definition 2.7. [8] Let (X,R,ΞJ) be a J-ndS and A ⊆ X. The J-nearly lower, J-nearly upper
approximations, J-nearly boundary regions and J-nearly accuracy of A are defined respectively by:
R
η
J(A) is the union of all J-nearly open sets which are subset of A = J-nearly interior of A.
R
η

J(A) is the intersection of all J-nearly closed sets which are superset of A = J-nearly closure of A.
BND

η
J(A) = R

η

J(A) − RηJ(A).

ACCη
J(A) =

|R
η
J(A)|

|R
η

J(A)|
, where |R

η

J(A)| , 0, |R
η

J(A)| denotes to the cardinality of R
η

J(A).

Definition 2.8. [11] Let (X,R,ΞJ) be a J-ndS and A ⊆ X. The δ-J-closure of A is defined by clδJ(A) =

{x ∈ X : A ∩ intJ(clJ(G)) , φ,G ∈ τJ and x ∈ G}. A set A is called δJ-closed if A = clδJ(A). The
complement of a δJ-closed set is δJ-open. Notice that intδJ(A) = X − clδJ(X − A).

Definition 2.9. [11] Let (X,R,ΞJ) be a J-ndS and A ⊆ X. A subset A is called δβJ-open, if A ⊆
clJ[intJ(clδJ(A))]. The complement of a δβJ-open set is a δβJ-closed set. The family of all δβJ-open and
δβJ-closed are denoted by δβJO(X) and δβJC(X) respectively.
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Proposition 2.1. [11] Every βJ-open is δβJ-open.

Definition 2.10. [11] Let (X,R,ΞJ) be a J-ndS and A ⊆ X Then, the δβJ-lower, δβJ-upper
approximations, δβJ-boundary and δβJ-accuracy of A are defined respectively by:
R
δβ
J (A) = ∪{G ∈ δβJO(X) : G ⊆ A} = δβJ-interior of A.

R
δβ

J (A) = ∩{H ∈ δβJC(X) : A ⊆ H} = δβJ-closure of A.
BND

δβ
J (A) = R

δβ

J (A) − RδβJ (A).

ACCδβ
J (A) =

|R
δβ
J (A)|

|R
δβ

J (A)|
, where |R

δβ

J (A)| , 0.

Theorem 2.2. [11] Let (X,R,ΞJ) be a J-ndS and A ⊆ X. Then

(i) RαJ (A) ⊆ Rp
J(A) ⊆ RγJ(A) ⊆ RβJ(A) ⊆ RδβJ (A).

(ii) RαJ (A) ⊆ Rs
J(A) ⊆ RγJ(A) ⊆ RβJ(A) ⊆ RδβJ (A).

(iii) RJ(A) ⊆ RδβJ (A).

(iv) R
δβ

J (A) ⊆ R
β

J(A) ⊆ R
γ

J(A) ⊆ R
p
J(A) ⊆ R

α

J (A).

(v) R
δβ

J (A) ⊆ R
β

J(A) ⊆ R
γ

J(A) ⊆ R
s
J(A) ⊆ R

α

J (A).

(vi) R
δβ

J (A) ⊆ RJ(A).

Corollary 2.1. [11] Let (X,R,ΞJ) be a J-ndS and A ⊆ X. Then

(i) BNDδβ
J (A) ⊆ BNDβ

J(A) ⊆ BNDγ
J(A) ⊆ BNDp

J(A) ⊆ BNDα
J (A).

(ii) BNDδβ
J (A) ⊆ BNDβ

J(A) ⊆ BNDγ
J(A) ⊆ BNDs

J(A) ⊆ BNDα
J (A).

(iii) BNDδβ
J (A) ⊆ BNDJ(A).

(iv) ACCα
J (A) 6 ACCp

J(A) 6 ACCγ
J(A) 6 ACCβ

J(A) 6 ACCδβ
J (A).

(v) ACCα
J (A) 6 ACC s

J(A) 6 ACCγ
J(A) 6 ACCβ

J(A) 6 ACCδβ
J (A).

(vi) ACCJ(A) 6 ACCδβ
J (A).

Definition 2.11. [11] Let (X,R,ΞJ) be a J-ndS and A ⊆ X. A subset A is called

(i) δβJ-definable (δβJ-exact) if R
δβ

J (A) = R
δβ
J (A) or BNDδβ

J (A) = φ.

(ii) δβJ-rough if R
δβ

J (A) , RδβJ (A) or BNDδβ
J (A) , φ.

Definition 2.12. [11] Let (X,R,ΞJ) be a J-ndS and A ⊆ X. A subset
∧

βJ is defined as follows:∧
βJ(A) = ∩{G : A ⊆ G,G ∈ βJO(X)}. The complement of

∧
βJ(A)-set is called

∨
βJ(A)-set.

Definition 2.13. [11] Let (X,R,ΞJ) be a J-ndS and A ⊆ X. A subset A is called
∧

βJ-set if A =
∧

βJ(A).

The family of all
∧

βJ-set and
∨

βJ-set are denoted by τ
∧
β

J and Γ
∨
β

J respectively.

Proposition 2.2. [11] Every βJ-open set is
∧

βJ-set.
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Definition 2.14. [11] Let (X,R,ΞJ) be a J-ndS, A ⊆ X. The
∧

βJ-lower,
∧

βJ-upper approximations,∧
βJ-boundary and

∧
βJ-accuracy of A are defined respectively by:

R

∧
β

J (A) = ∪{G ∈ τ
∧
β

J : G ⊆ A} =
∧

βJ-interior of A.

R

∧
β

J (A) = ∩{H ∈ Γ
∨
β

J : A ⊆ H} =
∧

βJ-closure of A.

BND

∧
β

J (A) = R

∧
β

J (A) − R
∧
β

J (A).

ACC
∧
β

J (A) =
|R

∧
β

J (A)|

|R

∧
β

J (A)|
, where |R

∧
β

J (A)| , 0.

Theorem 2.3. [11] Let (X,R,ΞJ) be a J-ndS and A ⊆ X. Then

(i) RαJ (A) ⊆ Rp
J(A) ⊆ RγJ(A) ⊆ RβJ(A) ⊆ R

∧
β

J (A).

(ii) RαJ (A) ⊆ Rs
J(A) ⊆ RγJ(A) ⊆ RβJ(A) ⊆ R

∧
β

J (A).

(iii) RJ(A) ⊆ R
∧
β

J (A).

(iv) R
∧
β

J (A) ⊆ R
β

J(A) ⊆ R
γ

J(A) ⊆ R
p
J(A) ⊆ R

α

J (A).

(v) R
∧
β

J (A) ⊆ R
β

J(A) ⊆ R
γ

J(A) ⊆ R
s
J(A) ⊆ R

α

J (A).

(vi) R
∧
β

J (A) ⊆ RJ(A).

Corollary 2.2. [11] Let (X,R,ΞJ) be a J-ndS and A ⊆ X. Then

(i) BND
∧
β

J (A) ⊆ BNDβ
J(A) ⊆ BNDγ

J(A) ⊆ BNDp
J(A) ⊆ BNDα

J (A).

(ii) BND
∧
β

J (A) ⊆ BNDβ
J(A) ⊆ BNDγ

J(A) ⊆ BNDs
J(A) ⊆ BNDα

J (A).

(iii) BND
∧
β

J (A) ⊆ BNDJ(A).

(iv) ACCα
J (A) 6 ACCp

J(A) 6 ACCγ
J(A) 6 ACCβ

J(A) 6 ACC
∧
β

J (A).

(v) ACCα
J (A) 6 ACC s

J(A) 6 ACCγ
J(A) 6 ACCβ

J(A) 6 ACC
∧
β

J (A).

(vi) ACCJ(A) 6 ACC
∧
β

J (A).

Definition 2.15. [11] Let (X,R,ΞJ) be a J-ndS and A ⊆ X. A subset A is called

(i)
∧

βJ-definable (
∧

βJ-exact) if R
∧
β

J (A) = R
∧
β

J (A) or BND
∧
β

J (A) = φ.

(ii)
∧

βJ-rough if R
∧
β

J (A) , R
∧
β

J (A) or BND
∧
β

J (A) , φ.

Definition 2.16. [12] Let (X,R,ΞJ) be a J-ndS and I be an ideal on X. A ⊆ X is called

(i) I-αJ-open, if ∃ G ∈ τJ such that (A − intJ(clJ((G)) ∈ I and (G − A) ∈ I.

(ii) I-J-Preopen (briefly I-PJ-open), if ∃ G ∈ τJ such that (A −G) ∈ I and (G − clJ(A)) ∈ I.

(iii) I-J-Semi open (briefly I-S J-open), if ∃ G ∈ τJ such that (A − clJ(G)) ∈ I and (G − A) ∈ I.

(iv) I-βJ-open, if ∃ G ∈ τJ such that (A − clJ(G)) ∈ I and (G − clJ(A)) ∈ I.
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These sets are called I-J-nearly open sets, the complement of the I-J-nearly open sets is called
I-J-nearly closed sets, the families of I-J-nearly open sets of X denoted by I-ηJO(X) and the families
of I-J-nearly closed sets of X denoted by I-ηJC(X), ∀η ∈ {P, S , α, β}.

Proposition 2.3. [12] Let (X,R,ΞJ) be a J-ndS and I be an ideal on X. Then, the following
implications hold:

I-αJ-open I-PJ-open
⇓ ⇓

I-S J-open⇒ I-βJ-open.

Proposition 2.4. [12] Let (X,R,ΞJ) be a J-ndS and I be an ideal on X. Then, the following
implications hold:

τJ(ΓJ)⇒ I-αJO(I-αJC) I-PJO(I-PJC)
⇓ ⇓

I-S JO(I-S JC)⇒ I-βJO(I-βJC).

Definition 2.17. [12] Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. The I-J-nearly
lower, I-J-nearly upper approximations, I-J-nearly boundary regions and I-J-nearly accuracy of A
are defined respectively by:
R
I−η
J (A) = ∪{G ∈ I-ηJO(X) : G ⊆ A} = I-J-nearly interior of A.

R
I−η

J (A) = ∩{H ∈ I-ηJC(X) : A ⊆ H} = I-J-nearly closure of A.

BND
I−η
J (A) = R

I−η

J (A) − RI−ηJ (A).

ACCI−ηJ (A) =
|R
I−η
J (A)|

|R
I−η

J (A)|
, where |R

I−η

J (A)| , 0.

Definition 2.18. [12] Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. A is an I-ηJ-nearly
definable (I-ηJ-nearly exact) set if R

I−η

J (A) = R
I−η
J (A). Otherwise, A is an I-ηJ-nearly rough set.

Theorem 2.4. [12] Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) RηJ(A) ⊆ RI−ηJ (A).

(ii) RJ(A) ⊆ RI−ηJ (A).

(iii) R
I−η

J (A) ⊆ R
η

J(A).

(iv) R
I−η

J (A) ⊆ RJ(A).

Corollary 2.3. [12] Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) BNDI−ηJ (A) ⊆ BNDη
J(A).

(ii) BNDη
J(A) ⊆ BNDJ(A).

(iii) ACCη
J(A) 6 ACCI−ηJ (A).

(iv) ACCJ(A) 6 ACCI−ηJ (A).

Proposition 2.5. [12] Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then
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(i) RI−P
J (A) ⊆ RI−βJ (A).

(ii) RI−αJ (A) ⊆ RI−S
J (A) ⊆ RI−βJ (A).

(iii) R
I−β

J (A) ⊆ R
I−P
J (A).

(iv) R
I−β

J (A) ⊆ R
I−S
J (A) ⊆ R

I−α

J (A).

Corollary 2.4. [12] Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) BNDI−βJ (A) ⊆ BNDI−P
J (A).

(ii) BNDI−βJ (A) ⊆ BNDI−S
J (A) ⊆ BNDI−αJ (A).

(iii) ACCI−P
J (A) 6 ACCI−βJ (A).

(iv) ACCI−αJ (A) 6 ACCI−S
J (A) 6 ACCI−βJ (A).

Definition 2.19. [28] Let R be an equivalence relation on X and A ⊆ X. Then the rough membership
functions of A ⊆ X are defined as µA : X → [0, 1], where

µA(x) =
|[x]R ∩A|
|[x]R |

, x ∈ X.

[x]R denotes to an equivalence classes.

Definition 2.20. [3] Let (X,R,ΞJ) be a J-ndS, A ⊆ X and x ∈ X. Then the J-rough membership
functions of A are defined by µJ

A → [0, 1], where

µJ
A(x) =

|{∩nJ(x)}∩A|
|∩nJ(x)| .

Definition 2.21. [3] Let (X,R,ΞJ) be a J-ndS, A ⊆ X and x ∈ X. Then the J-rough nearly membership
functions of A are defined by µηJ

A → [0, 1], where

µ
ηJ
A (x) = {

1 i f 1∈ ψηJ
A (x).

min(ψηJ
A (x)) otherwise.

}.

and ψηJ
A (x) =

|ηJ(x)∩A|
|ηJ(x)| , x ∈ ηJ(x), ηJ(x) ∈ ηJO(X).

Definition 2.22. [12] Let (X,R,ΞJ) be a J-ndS, I be an ideal on X, A ⊆ X and x ∈ X. The I− J-nearly
rough membership functions of A are defined by µI−ηJ

A → [0, 1], where

µ
I−ηJ
A (x) = {

1 i f 1∈ψI−ηJ
A (x).

min(ψI−ηJ
A (x)) otherwise.

}.

and ψI−ηJ
A (x) =

|I−ηJ(x)∩A|
|I−ηJ(x)| , x ∈ I − ηJ(x), I − ηJ(x) ∈ I-ηJO(X).

Lemma 2.1. [12] Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) µJ
A(x) = 1⇒ µ

ηJ
A (x) = 1⇒ µ

I−ηJ
A (x) = 1,∀ x ∈ X.

(ii) µJ
A(x) = 0⇒ µ

ηJ
A (x) = 0⇒ µ

I−ηJ
A (x) = 0,∀ x ∈ X.

Definition 2.23. [3] Let (X,R,ΞJ) be a J-ndS, x ∈ X and A ⊆ X:

(i) If x ∈ RJ(A), then x is J-surely belongs to A, denoted by x ∈JA.
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(ii) If x ∈ RJ(A), then x is J-possibly belongs to A, denoted by x ∈JA.

(iii) If x ∈ RηJ(A), then x is J-nearly surely (ηJ-surely) belongs to A, denoted by x ∈ηJA.

(iv) If x ∈ R
η

J(A), then x is J-nearly possibly (ηJ-possibly) belongs to A, denoted by x ∈ηJA.

It is called J-(nearly) strong and J-(nearly) weak membership relations respectively.

Definition 2.24. [12] Let (X,R,ΞJ) be a J-ndS, I be an ideal on X, x ∈ X and A ⊆ X :

(i) If x ∈ RI−ηJ (A), then x is J-nearly surely with respect to I ( I− ηJ-surely) belongs to A, denoted by
x ∈I−ηJ A.

(ii) If x ∈ R
I−η

J (A), then x is J-nearly possibly with respect to I (briefly I− ηJ-possibly) belongs to A,
denoted by x ∈I−ηJ A.

It is called J-nearly strong and J-nearly weak membership relations with respect to I respectively.

Proposition 2.6. [12] Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) If x ∈JA⇒ x ∈ηJA⇒ x ∈I−ηJ A.

(ii) If x ∈I−ηJ A⇒ x ∈ηJA⇒ x ∈JA.

3. I-δβJ-open sets

In this section, the concept of I-δβJ-open sets is presented as generalization of the J-nearly open
sets in Definitions 2.6 [8], 2.9 [11] and also generalization of the I-J-nearly open sets in
Definition 2.16 [12]. This concept is based on the notions of ideals. Moreover, the principle properties
of this concept is studied and compared to the previous concepts.

Definition 3.1. Let (X,R,ΞJ) be a J-ndS and I be an ideal on X. A ⊆ X is called I-δβJ-open, if
∃ G ∈ τJ such that (A − clJ(G)) ∈ I and (G − clδJ(A)) ∈ I. The complement of the I-δβJ-open sets
is called I-δβJ-closed sets. The family of all I-δβJ-open and I-δβJ-closed are denoted by I-δβJO(X)
and I-δβJC(X) respectively.

Example 3.1. Let

X = {a, b, c, d},I = {φ, {c}},

and

R = {(a, a), (a, b), (b, a), (b, b), (c, c), (d, a), (d, b), (d, c), (d, d)}

be a binary relation defined on X, thus aR = bR = {a, b}, cR = {c} and dR = X. Then, the topology
associated with this relation is τR = {X, φ, {c}, {a, b}, {a, b, c}} and I-δβRO(X) = P(X).

The following proposition shows that the concept of I-δβJ-open sets is an extension of the concept
of δβJ-open sets in Definition 2.9 [11].
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Proposition 3.1. Every δβJ-open is I-δβJ-open.

Proof. By using Definitions 2.9 [11] and 3.1. �

Remark 3.1. (i) The converse of Proposition 3.1 is not necessarily true as shown in Example 3.1, I-
δβRO(X) = P(X) and δβRO(X) = P(X)− {{d}}. It is clear that {d} is an I-δβR-open set, but it is not
a δβR-open set.

(ii) According to Remark 2.1 [8] and Propositions 2.1 [11], 3.1, the current Definition 3.1 is also a
generalization of Definition 2.6 [8].

The following theorem shows that Hosny’s Definition 2.9 [11] is a special case of the current
definition.

Theorem 3.1. Let (X,R,ΞJ) be a J-ndS and I be an ideal on X. If I = {φ} in the current Definition 3.1,
then I get Hosny’s Definition 2.9 [11].

Proof. Straightforward. �

The following proposition shows that the I-δβJ-open sets are generalization of the I-βJ-open
sets [12]. Consequently, they are also generalization of any I-J-near open sets in Definition 2.16 [12]
such as, I-PJ-open, I-S J-open and I-αJ-open sets.

Proposition 3.2. Let (X,R,ΞJ) be a J-ndS and I be an ideal on X. Then, the following
implications hold:

I-αJ-open I-PJ-open
⇓ ⇓

I-S J-open ⇒ I-βJ-open ⇒ I-δβJ-open.

Proof. Straightforward by Proposition 2.3 [12], Definitions 2.16 [12] and 5.2. �

It should be noted that, Proposition 3.2 shows that, every I-βJ-open is I-δβJ-open, but the converse
is not necessarily true as shown in the following example.

Example 3.2. Let X = {a, b, c},I = {φ, {b}} and R = {(a, a), (a, c), (b, a), (b, c), (c, c)} is a binary
relation defined on X thus aR = bR = {a, b} and cR = {c}. Then, the topology associated with this
relation is τR = {X, φ, {c}, {a, b}}. It is clear that {b} is an I-δβR-open set, but it is not an I-βR-open set.

Proposition 3.3. Let (X,R,ΞJ) be a J-ndS and I be an ideal on X. Then, the following
implications hold:

τJ(ΓJ)⇒ I-αJO(I-αJC) I-PJO(I-PJC)
⇓ ⇓

I-S JO(I-S JC)⇒ I-βJO(I-βJC)⇒ I-δβJO(I-δβJC).

Proof. By Propositions 2.4 and 3.2 [12], the proof is obvious. �

Theorem 3.2. Let (X,R,ΞJ) be a J-ndS and I be an ideal on X. Then, the union of two I-δβJ-open
sets is also I-δβJ-open set.
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Proof. Let A and B be I-δβJ-open sets. Then, ∃ G,H such that (A − clJ(G)) ∈ I, (G − clδJ(A)) ∈
I, (B − clJ(H)) ∈ I and (H − clδJ(B)) ∈ I. Hence, (G − clδJ(A ∪ B)) ⊆ (G − clδJ(A)) ∈ I, (H − clδJ(A ∪
B)) ⊆ (H − clδJ(B)) ∈ I and so, (G − clδJ(A ∪ B)) ∪ (H − clδJ(A ∪ B)) ∈ I. Let W = G ∪ H, then
(W − clδJ(A ∪ B)) ∈ I. Also, (A − clJ(W)) ⊆ (A − clJ(G)) ∈ I and (B − clJ(W)) ⊆ (B − clJ(H)) ∈ I.
Then, (A − clJ(W)) ∪ (B − clJ(W)) ⊆ (A − clJ(G)) ∪ (B − clJ(H)) ∈ I and so ((A ∪ B) − clJ(W)) ⊆
(A − clJ(G)) ∪ (B− clJ(H)) ∈ I. Thus, A ∪ B is an I-δβJ-open set. The rest of the proof is similar. �

Remark 3.2. The family of all I-δβJ-open sets in a space X does not form a topology as it is shown in
the following example.

Example 3.3. Let

X = {a, b, c, d, e},I = {φ, {c}}

and

R = {(a, a), (a, b), (b, b), (c, c), (c, d), (d, c), (d, d), (e, b), (e, c), (e, d)}.

It is clear that the intersection of two I-δβR-open sets is not an I-δβR-open set. Take A = {a, e} and
B = {b, e} ∈ I-δβRO(X), then A ∩ B = {e} < I-δβRO(X) = P(X) − {{e}}.

Remark 3.3. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then the following statements
are not true in general:

(i) I-δβUO(X) ⊆ I-δβRO(X) ⊆ I-δβIO(X).

(ii) I-δβUO(X) ⊆ I-δβLO(X) ⊆ I-δβIO(X).

(iii) I-δβ<U>O(X) ⊆ I-δβ<R>O(X) ⊆ I-δβ<I>O(X).

(iv) I-δβ<U>O(X) ⊆ I-δβ<L>O(X) ⊆ I-δβ<I>O(X).

(v) I-δβRO(X) is the dual of I-δβLO(X).

(vi) I-δβ<R>O(X) is the dual of I-δβ<L>O(X).

So, the relationships among I-δβJ- open sets are not comparable as in Example 3.3:

(i) I-δβRO(X) = P(X) − {{e}}.

(ii) I-δβLO(X) = I-δβ<L>O(X) = P(X) − {{b}}.

(iii) I-δβIO(X) = I-δβUO(X) = I-δβ<R>O(X) = I-δβ<I>O(X) = I-δβ<U>O(X) = P(X).

It is clear that

• I-δβUO(X) * I-δβRO(X).
• I-δβIO(X) * I-δβRO(X).
• I-δβUO(X) * I-δβLO(X).
• I-δβIO(X) * I-δβLO(X).
• I-δβ<U>O(X) * I-δβ<L>O(X).
• I-δβ<I>O(X) * I-δβ<L>O(X).
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• I-δβRO(X) is not the dual of I-δβLO(X) and I-δβ<R>O(X) is not the dual of I-δβ<L>O(X).
• In a similar way, I can add examples to show that I-δβLO(X) * I-δβIO(X),I-δβRO(X) * I-
δβUO(X),I-δβRO(X) * I-δβIO(X),I-δβLO(X) * I-δβUO(X),I-δβIO(X) * I-δβLO(X),I-
δβ<L>O(X) * I-δβ<I>O(X),I-δβ<L>O(X) * I-δβ<U>O(X),I-δβ<R>O(X) * I-δβ<I>O(X) and
I-δβ<U>O(X) * I-δβ<R>O(X).

4. Approximations spaces by using I-δβJ-open sets

The purpose of this section is to generalize the previous approximations in Definitions 2.4 [2],
2.7 [8], 2.10 [11] and 2.17 [12]. The current approximations are depended on the I-δβJ-open sets.
The fundamental properties of these approximations are obtained. Furthermore, the current findings
are compared to the previous approaches.

Definition 4.1. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. The I-δβJ-lower, I-δβJ-upper
approximations, I-δβJ-boundary regions and I-δβJ-accuracy of A are defined respectively by:
R
I−δβ
J (A) = ∪{G ∈ I-δβJO(X) : G ⊆ A} = I-δβJ-interior of A.

R
I−δβ

J (A) = ∩{H ∈ I-δβJC(X) : A ⊆ H} = I-δβJ-closure of A.

BND
I−δβ
J (A) = R

I−δβ

J (A) − RI−δβJ (A).

ACCI−δβJ (A) =
|R
I−δβ
J (A)|

|R
I−δβ

J (A)|
, where |R

I−δβ

J (A)| , 0.

The following proposition presents the main properties of the current I-δβJ-lower and I-δβJ-upper
approximations.

Proposition 4.1. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A, B ⊆ X. Then,

(i) RI−δβJ (A) ⊆ A ⊆ R
I−δβ

J (A) equality hold if A = φ or X.

(ii) A ⊆ B⇒ R
I−δβ

J (A) ⊆ R
I−δβ

J (B).

(iii) A ⊆ B⇒ RI−δβJ (A) ⊆ RI−δβJ (B).

(iv) R
I−δβ

J (A ∩ B) ⊆ R
I−δβ

J (A) ∩ R
I−δβ

J (B).

(v) RI−δβJ (A ∪ B) ⊇ RI−δβJ (A) ∪ RI−δβJ (B).

(vi) R
I−δβ

J (A ∪ B) ⊇ R
I−δβ

J (A) ∪ R
I−δβ

J (B).

(vii) RI−δβJ (A ∩ B) ⊆ RI−δβJ (A) ∩ RI−δβJ (B).

(viii) RI−δβJ (A) = (R
I−δβ

J (A
′

))
′

, R
I−δβ

J (A) = (RI−δβJ (A
′

))
′

.

(ix) R
I−δβ

J (R
I−δβ

J (A)) = R
I−δβ

J (A).

(x) RI−δβJ (RI−δβJ (A)) = R
I−δβ
J (A).

(xi) RI−δβJ (RI−δβJ (A)) ⊆ R
I−δβ

J (RI−δβJ (A)).

(xii) RI−δβJ (R
I−δβ

J (A)) ⊆ R
I−δβ

J (R
I−δβ

J (A)).
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(xiii) x ∈ R
I−δβ

J (A)⇔ G ∩ A , φ,∀G ∈ I-δβJO(X), x ∈ G.

(xiv) x ∈ RI−δβJ (A)⇔ ∃ G ∈ I-δβJO(X), x ∈ G,G ⊆ A.

The proof of this proposition is simple using the I-δβJ-interior and I-δβJ-closure, so I omit it.

Remark 4.1. Example 3.3 shows that

(a) the inclusion in Proposition 4.1 parts (i), (iv), (v), (vi), (vii), (xi) and (xii) can not be replaced by
equality relation:

(i) For part (i), if A = {a, b, c, d},R
I−δβ

R (A) = X, then R
I−δβ

R (A) * A, take A = {e},RI−δβR (A) = φ.
Then, A * RI−δβR (A).

(ii) For part (iv), if A = {a, b, c, d}, B = {b, c, d, e}, A ∩ B = {b, c, d},R
I−δβ

R (A) = X,R
I−δβ

R (B) =

B,R
δβ

R (A ∩ B) = A ∩ B, then R
I−δβ

R (A) ∩ R
I−δβ

R (B) = {b, c, d, e} * {b, c, d} = R
I−δβ

R (A ∩ B).

(iii) For part (v), if A = {a}, B = {e}, A ∪ B = {a, e},RI−δβR (A) = A,RI−δβR (B) = φ,R
I−δβ
R (A ∪ B) =

A ∪ B, then RI−δβR (A ∪ B) = {a, e} * {a} = R
I−δβ
R (A) ∪ RI−δβR (B).

(iv) For part (vi), if A = {a, c}, B = {b, d}, A ∪ B = {a, b, c, d},R
I−δβ

R (A) = A,R
I−δβ

R (B) = B,

R
I−δβ

R (A ∪ B) = X, then R
I−δβ

R (A ∪ B) = X * {a, b, c, d} = R
I−δβ

R (A) ∪ R
I−δβ

R (B).

(v) For part (vii), if A = {a, e}, B = {c, e}, A∩B = {e},RI−δβR (A) = A,RI−δβR (B) = B,RI−δβR (A∩B) =

φ, then RI−δβR (A) ∩ RI−δβR (B) = {e} * φ = R
I−δβ
R (A ∩ B).

(vi) For part (xi), if A = {a, b, c, d},RI−δβR (RI−δβR (A)) = A,R
I−δβ

R (RI−δβR (A)) = X, then

R
I−δβ

R (RI−δβR (A)) * RI−δβR (RI−δβR (A)).

(vii) For part (xii), if A = {e},R
I−δβ

R (R
I−δβ

R (A)) = A,RI−δβR (R
I−δβ

R (A)) = φ, then

R
I−δβ

R (R
I−δβ

R (A)) * RI−δβR (R
I−δβ

R (A)).

(b) the converse of parts (ii) and (iii) is not necessarily true:

(i) For part (ii), if A = {e}, B = {a, b, c, d}, then R
I−δβ

R (A) = A,R
I−δβ

R (B) = X. Therefore,

R
I−δβ

R (A) ⊆ R
I−δβ

R (B), but A * B.

(ii) For part (iii), if A = {e}, B = {c, d}, then RI−δβR (A) = φ,R
I−δβ
R (B) = B. Therefore, RI−δβR (A) ⊆

R
I−δβ
R (B), but A * B.

Definition 4.2. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. A is an I-δβJ-definable (an

I-δβJ-exact) set if R
I−δβ

J (A) = R
I−δβ
J (A). Otherwise, A is an I-δβJ-rough set.

In Example 3.3 A = {c} is I-δβR-exact, while B = {e} is I-δβR-rough.

Remark 4.2. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then the intersection of two I-
δβR-exact sets does not need to be an I-δβR-exact set as in Example 3.3 {a, e} and {c, e} are I-δβR-exact
sets, but {a, e} ∩ {c, e} = {e} is not an I-δβR-exact set.

The following theorem and corollary present the relationships between the current approximations
in Definition 4.1 and the previous ones in Definitions 2.4 [2], 2.7 [8] and 2.10 [11].
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Theorem 4.1. Let (X,R,ΞJ) be a J-ndS and A ⊆ X. Then

(i) RαJ (A) ⊆ Rp
J(A) ⊆ RγJ(A) ⊆ RβJ(A) ⊆ RδβJ (A) ⊆ RI−δβJ (A).

(ii) RαJ (A) ⊆ Rs
J(A) ⊆ RγJ(A) ⊆ RβJ(A) ⊆ RδβJ (A) ⊆ RI−δβJ (A).

(iii) RJ(A) ⊆ RI−δβJ (A).

(iv) R
I−δβ

J (A) ⊆ R
δβ

J (A) ⊆ R
β

J(A) ⊆ R
γ

J(A) ⊆ R
p
J(A) ⊆ R

α

J (A).

(v) R
I−δβ

J (A) ⊆ R
δβ

J (A) ⊆ R
β

J(A) ⊆ R
γ

J(A) ⊆ R
s
J(A) ⊆ R

α

J (A).

(vi) R
I−δβ

J (A) ⊆ RJ(A).

Proof. (i) By Theorem 2.2 [11], RαJ (A) ⊆ Rp
J(A) ⊆ RγJ(A) ⊆ RβJ(A) ⊆ RδβJ (A), and RδβJ (A) = ∪{G ∈

δβJO(X) : G ⊆ A} ⊆ ∪{G ∈ I-δβJO(X) : G ⊆ A} = R
I−δβ
J (A) (by Proposition 3.1).

(ii) It is similar to (i).

(iii) By Theorem 2.2 [11], RJ(A) ⊆ RδβJ (A), and by (1) RδβJ (A) ⊆ RI−δβJ (A). Hence, RJ(A) ⊆ RI−δβJ (A).

(iv)–(vi) They are similar to (i)–(iii).
�

Corollary 4.1. Let (X,R,ΞJ) be a J-ndS and A ⊆ X. Then

(i) BNDI−δβJ (A) ⊆ BNDδβ
J (A) ⊆ BNDβ

J(A) ⊆ BNDγ
J(A) ⊆ BNDp

J(A) ⊆ BNDα
J (A).

(ii) BNDI−δβJ (A) ⊆ BNDδβ
J (A) ⊆ BNDβ

J(A) ⊆ BNDγ
J(A) ⊆ BNDs

J(A) ⊆ BNDα
J (A).

(iii) BNDI−δβJ (A) ⊆ BNDJ(A).

(iv) ACCα
J (A) 6 ACCp

J(A) 6 ACCγ
J(A) 6 ACCβ

J(A) 6 ACCδβ
J (A) 6 ACCI−δβJ (A).

(v) ACCα
J (A) 6 ACC s

J(A) 6 ACCγ
J(A) 6 ACCβ

J(A) 6 ACCδβ
J (A) 6 ACCI−δβJ (A).

(vi) ACCJ(A) 6 ACCI−δβJ (A).

Remark 4.3. Example 3.1 shows that the converse of the implications in Theorem 4.1 and Corollary 4.1
is not true in general. Take A = {d}, then RR(A) = R

δβ
R (A) = φ,R

I−δβ
R (A) = {d} and if A = {a, b, c},

then RR(A) = R
δβ

R (A) = X,R
I−δβ

R (A) = {a, b, c}. Moreover, take A = {a, b, c}, then the boundary and
accuracy by the present method in Definition 4.1 are φ and 1 respectively. Whereas, the boundary and
accuracy by using Abd El-Monsef et al.’s method 2.4 [2], Amer et al.’s method 2.7 [8] and Hosny’s
method 2.10 [11] are {d} and 0 respectively.

Corollary 4.2. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) A is αJ-exact⇒ A is S J-exact⇒ A is βJ-exact⇒ δβJ-exact⇒ A is I-δβJ-exact.

(ii) A is PJ-exact⇒ A is βJ-exact⇒ A is δβJ-exact⇒ A is I-δβJ-exact.

(iii) A is J-exact⇒ A is I-δβJ-exact.
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(iv) A is I-δβJ-rough⇒ A is δβJ-rough⇒ A is βJ-rough⇒ A is S J-rough⇒ A is αJ-rough.

(v) A is I-δβJ-rough⇒ A is δβJ-rough⇒ A is βJ-rough⇒ A is PJ-rough.

(vi) A is I-δβJ-rough⇒ A is J-rough.

Remark 4.4. The converse of parts of Corollary 4.2 is not necessarily true as in Example 3.1:

(i) If A = {d}, then it is I-δβR-exact, but it is neither δβR-exact nor R-exact.

(ii) If A = {a, b, c}, then it is R-rough and δβR-rough, but it is not I-δβR-rough.

The following proposition and corollary are introduced the relationships between the current
approximations in Definition 4.1 and the previous one in Definition 2.17 [12].

Proposition 4.2. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) RI−P
J (A) ⊆ RI−βJ (A) ⊆ RI−δβJ (A).

(ii) RI−αJ (A) ⊆ RI−S
J (A) ⊆ RI−βJ (A) ⊆ RI−δβJ (A).

(iii) R
I−δβ

J (A) ⊆ R
I−β

J (A) ⊆ R
I−P
J (A).

(iv) R
I−δβ

J (A) ⊆ R
I−β

J (A) ⊆ R
I−S
J (A) ⊆ R

I−α

J (A).

Proof. By Proposition 3.2, the proof is obvious. �

Corollary 4.3. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) BNDI−δβJ (A) ⊆ BNDI−βJ (A) ⊆ BNDI−P
J (A).

(ii) BNDI−δβJ (A) ⊆ BNDI−βJ (A) ⊆ BNDI−S
J (A) ⊆ BNDI−αJ (A).

(iii) ACCI−P
J (A) 6 ACCI−βJ (A) 6 ACCI−δβJ (A).

(iv) ACCI−αJ (A) 6 ACCI−S
J (A) 6 ACCI−βJ (A) 6 ACCI−δβJ (A).

Corollary 4.4. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) A is I-αJ-exact⇒ A is I-S J-exact⇒ A is I-βJ-exact⇒ A is I-δβJ-exact.

(ii) A is I-PJ-exact⇒ A is I-βJ-exact⇒ A is I-δβJ-exact.

(iii) A is I-δβJ-rough⇒ A is I-βJ-rough⇒ A is I-S J-rough⇒ A is I-αJ-rough.

(iv) A is I-δβJ-rough⇒ A is I-βJ-rough⇒ A is I-PJ-rough.

In Table 1, the lower, upper approximations, boundary regions and accuracy are calculated by
using Hosny’s approximations 2.17 [12] and the current approximations in Definition 4.1 by using
Example 3.2.
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Table 1. Comparison between the boundary and accuracy by using the current
approximations in Definition 4.1 and the previous one in Definition 2.17 [12].

A The previous one in Definition 2.17 [12] The current method in Definition 4.1

R
I−β
R (A) R

I−β

R (A) BNDI−βR (A) ACCI−βR (A) RI−δβR (A) R
I−δβ

R (A) BNDI−δβR (A) ACCI−δβR (A)

{a} φ {a} {a} 0 {a} {a} φ 1

{b} φ {b} {b} 0 {b} {b} φ 1

{c} {c} X {a, b} 1
3 {c} {c} φ 1

{a, b} φ {a, b} {a, b} 0 {a, b} {a, b} φ 1

{a, c} {c} X {a, b} 1
3 {a, c} {a, c} φ 1

{b, c} {c} X {a, b} 1
3 {b, c} {b, c} φ 1

X X X φ 1 X X φ 1

For example, take A = {a, b}, then the boundary and accuracy by the present method in
Definition 4.1 are φ and 1 respectively. Whereas, the boundary and accuracy by using Hosny’s
method 2.17 [12] are {a, b} and 0 respectively.

Remark 4.5. Example 3.2 shows that the converse of the implications in Corollary 4.4 is not true in
general. For example, if take A = {a}, then it is I-δβR-exact, but it is not I-βR-exact and consequently,
not I-S R-exact, not I-αR-exact and not I-PR-exact, also A = {a}, is I-βR-rough, but not I-δβR-rough.

Remark 4.6. Theorem 4.1 and Proposition 4.2 show that the present method in Definition 4.1 reduces
the boundary region by increasing the I-δβJ-lower approximations and decreasing the I-δβJ-upper
approximations with the comparison of Abd El-Monsef et al.’s method 2.4 [2], Amer et al.’s
method 2.7 [8], Hosny’s method 2.10 [11] and Hosny’s method 2.17 [12]. Moreover, Corollaries 4.1
and 4.3 show that the current accuracy in Definition 4.1 is greater than the previous ones in
Definitions 2.4 [2], 2.7 [8], 2.10 [11] and 2.17 [12].

5. I-
∧

βJ-sets

The idea of generalization of J-nearly open sets and I-J-nearly open sets is developed and extended
in this section by proposing the concept of I-

∧
βJ-sets. The main characterizations of this concept and

the connections among them are investigated and analyzed. The concepts of I-
∧

βJ-sets and I-δβJ-
open sets are different and independent (see Remark 5.5).

Definition 5.1. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. A subset I-
∧

βJ is defined
as follows: I-

∧
βJ(A) = ∩{G : A ⊆ G,G ∈ I-βJO(X)}. The complement of I-

∧
βJ(A)-set is called

I-
∨

βJ(A)-set.

In the following lemma I summarize the fundamental properties of the subset I-
∧

βJ.

Lemma 5.1. For subsets A, B and Aα(α ∈ ∆) of a J-ndS (X,R,ΞJ), the following implications hold:

(i) A ⊆ I-
∧

βJ(A).
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(ii) If A ⊆ B, then I-
∧

βJ(A) ⊆ I-
∧

βJ(B).

(iii) I-
∧

βJ(I-
∧

βJ(A)) = I-
∧

βJ(A).

(iv) If A ∈ I-βJO(X), then A = I-
∧

βJ(A).

(v) I-
∧

βJ(∪{Aα : α ∈ ∆}) = ∪{I-
∧

βJ(Aα) : α ∈ ∆}.

(vi) I-
∧

βJ(∩{Aα : α ∈ ∆}) ⊆ ∩{I-
∧

βJ(Aα) : α ∈ ∆}.

Proof. I prove only (v) and (vi) since the other are consequences of Definition 5.1. �

(v) First for each α ∈ ∆,I-
∧

βJ(Aα) ⊆ I-
∧

βJ(∪α∈∆Aα). Hence, ∪α∈∆I-
∧

βJ(Aα) ⊆ I-
∧

βJ(∪α∈∆Aα).
Conversely, suppose that x < ∪α∈∆I-

∧
βJ(Aα). Then, x < I-

∧
βJ(Aα) for each α ∈ ∆ and hence

there exists Gα ∈ I-βJO(X) such that Aα ⊆ Gα and x < Gα for each α ∈ ∆. I have that ∪α∈∆Aα ⊆

∪α∈∆Gα and ∪α∈∆Gα is I-βJ-open set which does not contain x. Therefore, x < I-
∧

βJ(∪α∈∆Aα).
Thus, I-

∧
βJ(∪α∈∆Aα) ⊆ ∪α∈∆I-

∧
βJ(Aα).

(vi) Suppose that, x < ∩{I-
∧

βJ(Aα) : α ∈ ∆}. There exists α0 ∈ ∆ such that x < I-
∧

βJ(Aα0) and there
exists I-βJ-open set G such that x < G and Aα0 ⊆ G. I have that ∩α∈∆Aα ⊆ Aα0 ⊆ G and x < G.
Therefore, x < I-

∧
βJ(∩{Aα : α ∈ ∆}).

Remark 5.1. The inclusion in Lemma 5.1 parts (i) and (vi) can not be replaced by equality relation.
Moreover, the converse of part (ii) is not necessarily true as shown in Example 3.3 that:

(i) For part (i), if A = {a}, then I-
∧

βJ(A) = {a, b} and I-
∧

βJ(A) * A.

(ii) For part (vi), if A = {b} and B = {a}, then A ∩ B = φ and I-
∧

βJ(A) = {b},I-
∧

βJ(B) = {a, b},I-∧
βJ(A ∩ B) = φ and I-

∧
βJ(A) ∩ I-

∧
βJ(B) = {b} * I-

∧
βJ(A ∩ B) = φ.

(iii) For part (ii), if A = {a} and B = {b}, then I-
∧

βJ(A) = {a, b} and I-
∧

βJ(B) = {b}. Therefore,
I-
∧

β(A) ⊆ I-
∧

βJ(B), but A * B.

Definition 5.2. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. A subset A is called an
I-
∧

βJ-set if A = I −
∧

βJ(A). The family of all I-
∧

βJ-sets and I-
∨

βJ-sets are denoted by τI−
∧
β

J and

Γ
I−
∨
β

J respectively.

Example 5.1. In Example 3.1, τI−
∧
β

R = P(X), in Example 3.2, τI−
∧
β

R = P(X) − {{a}, {b}, {a, b}} and in
Example 3.3, τI−

∧
β

R = {X, φ, {b}, {c}, {d}, {e}, {a, b}, {b, c}, {b, d}, {b, e}, {c, d}, {c, e}, {d, e}, {a, b, c}, {a, b,
e}, {a, b, d}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {b, c, d, e}}.

The following proposition shows that the concept of I-
∧

βJ-sets is an extension of the concept of∧
βJ-sets.

Proposition 5.1. Every
∧

βJ-set is I-
∧

βJ-set.

Proof. By using Definitions 2.13 [11] and 5.2. �

Remark 5.2. (i) According to Remark 2.1 [8] and Propositions 2.2 [11], 5.1 the current Definition 5.2
is also generalization of any J-near open sets in Definition 2.6 [8] such as, PJ-open, S J-open and
αJ-open sets.

AIMS Mathematics Volume 7, Issue 1, 869–902.



886

(ii) The converse of Proposition 5.1 is not necessarily true as shown in the following example.

Example 5.2. Let

X = {a, b, c, d},I = {φ, {c}}

and

R = {(a, a), (a, c), (b, a), (b, c), (c, c), (d, d)}

be a binary relation defined on X thus aR = bR = {a, c}, cR = {c} and dR = {d}. Then, the topology
associated with this relation is τR = {X, φ, {c}, {d}, {a, c}, {c, d}, {a, c, d}}. It is clear that τI−

∧
β

R = P(X)
and τ

∧
β

R = {X, φ, {b}, {c}, {d}, {a, c}, {b, c}, {b, d}, {c, d}, {a, b, c}, {a, c, d}, {b, c, d}}.

The following theorem shows that Hosny’s Definition 2.13 [11] is a special case of the current
definition.

Theorem 5.1. Let (X,R,ΞJ) be a J-ndS and I be an ideal on X. If I = {φ} in the current Definition 5.2,
then I get Hosny ’s Definition 2.13 [11].

Proof. Straightforward. �

The following proposition shows that I-
∧

βJ-sets are generalization of I-βJ-open sets in Definition
2.16 [12]. Consequently, it is also generalization of any I-J-near open sets in Definition 2.16 [12] such
as, I-PJ-open, I-S J-open and I-αJ-open sets.

Proposition 5.2. Let (X,R,ΞJ) be a J-ndS and I be an ideal on X. Then, the following
implications hold:

I-αJ-open I-PJ-open
⇓ ⇓

I-S J-open ⇒ I-βJ-open ⇒ I-
∧

βJ-set.

Proof. Straightforward by Proposition 2.3 [12], Definitions 2.16 [12] and 5.2. �

Remark 5.3. The converse of Proposition 5.2 is not necessarily true as shown in Example 3.3, {e} is an
I-
∧

βR-set, but it is not an I-βR-open set.

Proposition 5.3. Let (X,R,ΞJ) be a J-ndS and I be an ideal on X. Then, the following
implications hold:

τJ(ΓJ)⇒ I-αJO(I-αJC) I-PJO(I-PJC)
⇓ ⇓

I-S JO(I-S JC)⇒ I-βJO(I-βJC)⇒ τ
I−
∧
β

J (ΓI−
∨
β

J ).

Proof. By Propositions 2.4 [12] and 5.2, the proof is obvious. �

In the following lemma I summarize the fundamental properties of I-
∧

βJ-sets.

Lemma 5.2. For subsets A, B and Aα(α ∈ ∆) of a J-ndS (X,R,ΞJ), the following implications hold:

(i) X, φ are I-
∧

βJ-sets.
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(ii) If Aα is an I-
∧

βJ-set ∀α ∈ ∆, then ∪α∈∆Aα is an I-
∧

βJ-set.

(iii) If Aα is an I-
∧

βJ-set ∀α ∈ ∆, then ∩α∈∆Aα is an I-
∧

βJ-set.

Proof. This follows from Lemma 5.1. �

Remark 5.4. It is clear from (i)–(iii) in Lemma 5.2 that the family of all I-
∧

βJ-sets forms a topology.

Remark 5.5. The I-δβJ-open sets of Definition 3.1 and the current Definition 5.2 of I-
∧

βJ-sets are
different and independent. Example 3.3 shows that {a} is an I-δβJ-open set, but it is not an I-

∧
βJ-set.

Moreover, it shows that {e} is an I-
∧

βJ-set, but it is not an I-δβJ-open set.

Remark 5.6. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then the following statements
are not true in general:

(i) τI−
∧
β

U ⊆ τ
I−
∧
β

R ⊆ τ
I−
∧
β

I .

(ii) τI−
∧
β

U ⊆ τ
I−
∧
β

L ⊆ τ
I−
∧
β

I .

(iii) τI−
∧
β

<U> ⊆ τ
I−
∧
β

<R> ⊆ τ
I−
∧
β

<I> .

(iv) τI−
∧
β

<U> ⊆ τ
I−
∧
β

<L> ⊆ τ
I−
∧
β

<I> .

(v) τI−
∧
β

R is the dual of τI−
∧
β

L .

(vi) τI−
∧
β

<R> is the dual of τI−
∧
β

<L> .

So, the relationships among I-
∧

βJ-sets are not comparable as in Example 3.3:

(i) τI−
∧
β

R = {X, φ, {b}, {c}, {d}, {e}, {a, b}, {b, c}, {b, d}, {b, e}, {c, d}, {c, e}, {d, e}, {a, b, c}, {a, b, d}, {a, b, e},
{b, c, d}, {b, c, e}, {b, d, e}, {c, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {b, c, d, e}}.

(ii) τI−
∧
β

L (X) = {X, φ, {a}, {b}, {c}, {e}, {a, b}, {a, c}, {a, e}, {b, c}, {b, e}, {c, e}, {d, e}, {a, b, c}, {a, b, e},
{a, c, e}, {a, d, e}, {b, c, e}, {b, d, e}, {c, d, e}, {a, c, d, e}, {a, b, c, e}, {a, b, d, e}, {b, c, d, e}}.

(iii) τI−
∧
β

I (X) = P(X).

(iv) τI−
∧
β

U (X) = P(X).

(v) τI−
∧
β

<R> (X) = {X, φ, {b}, {c}, {d}, {e}, {a, b}, {b, c}, {b, d, }, {b, e}, {c, d}, {c, e}, {d, e}, {a, b, c}, {a, b, d},
{a, b, e}, {b, c, d}, {b, c, e, }, {b, d, e}, {c, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {b, c, d, e}}.

(vi) τI−
∧
β

<L> (X) = P(X).

(vii) τI−
∧
β

<I> (X) = P(X).

(viii) τI−
∧
β

<U> (X) = {X, φ, {e}, {a, e}, {b, e}, {c, e}, {d, e}, {a, b, e}, {a, c, e}, {a, d, e}, {b, c, e}, {b, d, e}, {c, d, e},
{a, b, c, e}, {a, c, d, e}, {a, b, d, e}, {b, c, d, e}}.

It is clear that

• τ
I−
∧
β

U (X) * τI−
∧
β

R (X).
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• τ
I−
∧
β

I (X) * τI−
∧
β

R (X).
• τ

I−
∧
β

U (X) * τI−
∧
β

L X).
• τ

I−
∧
β

I (X) * τI−
∧
β

L X).
• τ

I−
∧
β

<U> (X) * τI−
∧
β

<R> (X).
• τ

I−
∧
β

<R> (X) * τI−
∧
β

<U> (X).
• τ

I−
∧
β

<L> (X) * τI−
∧
β

<U> (X).
• τ

I−
∧
β

<I> (X) * τI−
∧
β

<U> (X).
• τ

I−
∧
β

<L> (X) * τI−
∧
β

<I> (X).
• τ

I−
∧
β

<I> (X) * τI−
∧
β

<L> (X).
• τ

I−
∧
β

R (X) is not the dual of τI−
∧
β

L and τI−
∧
β

<R> (X) is not the dual of τI−
∧
β

<L> (X).
• In a similar way, I can add examples to show that, τ

I−
∧
β

L (X) * τ
I−
∧
β

I (X), τI−
∧
β

R (X) *
τ
I−
∧
β

I (X), τI−
∧
β

R (X) * τI−
∧
β

U (X), τI−
∧
β

<R> (X) * τI−
∧
β

<I> (X), τI−
∧
β

<U> (X) * τI−
∧
β

<I> (X), τI−
∧
β

<U> (X) * τI−
∧
β

<L> (X)
and τI−

∧
β

<L> (X) * τI−
∧
β

<I> (X).

6. Approximations spaces by using I-
∧

βJ-sets

The aim of this section is to present a new technique to define the approximations of rough sets
by using the notion of I-

∧
βJ-sets. Some important significant properties of these approximations are

investigated and compared to the previous approximations in Definitions 2.4 [2], 2.7 [8], 2.14 [11] and
2.17 [12]. The techniques in this section and Section 4 are different and independent.

Definition 6.1. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. The I-
∧

βJ-lower, I-
∧

βJ-
upper approximations, I-

∧
βJ-boundary regions and I-

∧
βJ-accuracy of A are defined respectively by:

R
I−
∧
β J (A) = ∪{G ∈ τI−

∧
β

J : G ⊆ A} = I-
∧

βJ-interior of A.

R
I−
∧
β J (A) = ∩{H ∈ Γ

I−
∧
β

J : A ⊆ H} = I-
∨

βJ-closure of A.

BND
I−
∧
β J (A) = R

I−
∧
β J (A) − RI−

∧
β J (A).

ACCI−
∧
β J (A) =

|R
I−
∧
β J (A)|

|R
I−
∧
β J (A)|

, where |R
I−
∧
β J (A)| , 0.

The following proposition studies the main properties of the current I-
∧

βJ-lower and I-
∧

βJ-upper
approximations.

Proposition 6.1. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A, B ⊆ X. Then,

(i) RI−
∧
β J (A) ⊆ A ⊆ R

I−
∧
β J (A) equality hold if A = φ or X.

(ii) A ⊆ B⇒ R
I−
∧
β J (A) ⊆ R

I−
∧
β J (B).

(iii) A ⊆ B⇒ RI−
∧
β J (A) ⊆ RI−

∧
β J (B).

(iv) R
I−
∧
β J (A ∩ B) ⊆ R

I−
∧
β

J (A) ∩ R
I−
∧
β J (B).

(v) RI−
∧
β

J (A ∪ B) ⊇ RI−
∧
β J (A) ∪ RI−

∧
β J (B).
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(vi) R
I−
∧
β J (A ∪ B) = R

I−
∧
β J (A) ∪ R

I−
∧
β J (B).

(vii) RI−
∧
β J (A ∩ B) = RI−

∧
β J (A) ∩ RI−

∧
β J (B).

(viii) RI−
∧
β J (A) = (R

I−
∧
β J (A

′

))
′

, R
I−
∧
β J (A) = (RI−

∧
β J (A

′

))
′

.

(ix) R
I−
∧
β J (R

I−
∧
β J (A)) = R

I−
∧
β J (A).

(x) RI−
∧
β J (RI−

∧
β J (A)) = RI−

∧
β J (A).

(xi) RI−
∧
β J (RI−

∧
β J (A)) ⊆ R

I−
∧
β J (RI−

∧
β J (A)).

(xii) RI−
∧
β J (R

I−
∧
β J (A)) ⊆ R

I−
∧
β J (R

I−
∧
β J (A)).

(xiii) x ∈ R
I−
∧
β J (A)⇔ G ∩ A , φ,∀G ∈ τI−

∧
β

J , x ∈ G.

(xiv) x ∈ RI−
∧
β J (A)⇔ ∃ G ∈ τI−

∧
β

J , x ∈ G,G ⊆ A.

The proof of this proposition is simple using I-
∧

βJ-interior and I-
∨

βJ-closure, so I omit it.

Remark 6.1. Example 3.3 shows that

(a) The inclusion in Proposition 6.1 parts (i), (iv), (v), (xi) and (xii) can not be replaced by equality
relation:

(i) For part (i), if A = {b, c, e},R
I−
∧
βR(A) = {a, b, c, e}, then R

I−
∧
βR(A) * A, take

A = {a},RI−
∧
βR(A) = φ. Then, A * RI−

∧
βR(A).

(ii) For part (iv), if A = {b, c, d, e}, B = {a, c, d, e}, A ∩ B = {c, d, e},R
I−
∧
βR(A) = X,R

I−
∧
βR(B) =

B,R
I−
∧
βR(A∩B) = A∩B, thenR

I−
∧
βR(A)∩R

I−
∧
βR(B) = {a, c, d, e} * {c, d, e} = R

I−
∧
βR(A∩B).

(iii) For part (v), if A = {a}, B = {b}, A ∪ B = {a, b},RI−
∧
βR(A) = φ,RI−

∧
βR(B) = B,RI−

∧
βR(A ∪

B) = A ∪ B, then RI−
∧
βR(A ∪ B) = {a, b} * {b} = RI−

∧
βR(A) ∪ RI−

∧
βR(B).

(iv) For part (xi), if A = {b, c, d, e},RI−
∧
βR(RI−

∧
βR(A)) = A,R

I−
∧
βR(RI−

∧
βR(A)) = X, then

R
I−
∧
βR(RI−

∧
βR(A)) * RI−

∧
βR(RI−

∧
βR(A)).

(v) For part (xii), if A = {a},R
I−
∧
βR(R

I−
∧
βR(A)) = A,RI−

∧
βR(R

I−
∧
βR(A)) = φ, then

R
I−
∧
βR(R

I−
∧
βR(A)) * RI−

∧
βR(R

I−
∧
βR(A)).

(b) The converse of parts (ii) and (iii) is not necessarily true:

(i) For part (ii), if A = {a, b, c, e}, B = {b, c, d, e}, then R
I−
∧
βR(A) = A,R

I−
∧
βR(B) = X. Therefore,

R
I−
∧
βR(A) ⊆ R

I−
∧
βR(B), but A * B.

(ii) For part (iii), if A = {a}, B = {c, d, e}, then RI−
∧
βR(A) = φ,RI−

∧
βR(B) = B. Therefore,

R
I−
∧
βR(A) ⊆ RI−

∧
βR(B), but A * B.

Definition 6.2. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. A is an I-
∧

βJ-definable

(I-
∧

βJ-exact) set if R
I−
∧
β J (A) = RI−

∧
β J (A). Otherwise, A is an I-

∧
βJ-rough set.
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In Example 3.3 A = {c} is I-
∧

βR-exact, while B = {a} is I-
∧

βR-rough.

Remark 6.2. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then the intersection of two
I-
∧

βJ-rough sets does not need to be an I-
∧

βJ-rough set as in Example 3.3, {c, d} and {c, e}, are
I-
∧

βR-rough sets, but {c, d} ∩ {c, e} = {c} is not an I-
∧

βR-rough set.

The following theorem and corollary present the relationships between the current approximations
in Definition 6.1 and the previous ones in Definitions 2.4 [2], 2.7 [8] and 2.14 [11].

Theorem 6.1. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) RαJ (A) ⊆ Rp
J(A) ⊆ RγJ(A) ⊆ RβJ(A) ⊆ R

∧
β

J (A) ⊆ RI−
∧
β J (A).

(ii) RαJ (A) ⊆ Rs
J(A) ⊆ RγJ(A) ⊆ RβJ(A) ⊆ R

∧
β

J (A) ⊆ RI−
∧
β J (A).

(iii) RJ(A) ⊆ RI−
∧
β J (A).

(iv) R
I−
∧
β J (A) ⊆ R

∧
β

J (A) ⊆ R
β

J(A) ⊆ R
γ

J(A) ⊆ R
p
J(A) ⊆ R

α

J (A).

(v) R
I−
∧
β J (A) ⊆ R

∧
β

J (A) ⊆ R
β

J(A) ⊆ R
γ

J(A) ⊆ R
s
J(A) ⊆ R

α

J (A).

(vi) R
I−
∧
β J (A) ⊆ RJ(A).

Proof. (i) By Theorem 2.3 [11], RαJ (A) ⊆ Rp
J(A) ⊆ RγJ(A) ⊆ RβJ(A) ⊆ R

∧
β

J (A), and R
∧
β

J (A) = ∪{G ∈

τ
∧
β

J : G ⊆ A : G ⊆ A} ⊆ ∪{G ∈ τI−
∧
β

J : G ⊆ A} = RI−
∧
β J (A) (by Proposition 5.1).

(ii) It is similar to (i).

(iii) By Theorem 2.3 [11], RJ(A) ⊆ R

∧
β

J (A), and by (1) R
∧
β

J (A) ⊆ R
I−
∧
β J (A). Hence,

RJ(A) ⊆ RI−
∧
β J (A).

(iv)–(vi) They are similar to (i)–(iii).
�

Corollary 6.1. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) BNDI−
∧
β J (A) ⊆ BND

∧
β

J (A) ⊆ BNDβ
J(A) ⊆ BNDγ

J(A) ⊆ BNDp
J(A) ⊆ BNDα

J (A).

(ii) BNDI−
∧
β J (A) ⊆ BND

∧
β

J (A) ⊆ BNDβ
J(A) ⊆ BNDγ

J(A) ⊆ BNDs
J(A) ⊆ BNDα

J (A).

(iii) BNDI−
∧
β J (A) ⊆ BNDJ(A).

(iv) ACCα
J (A) 6 ACCp

J(A) 6 ACCγ
J(A) 6 ACCβ

J(A) 6 ACC
∧
β

J (A) 6 ACCI−
∧
β

J (A).

(v) ACCα
J (A) 6 ACC s

J(A) 6 ACCγ
J(A) 6 ACCβ

J(A) 6 ACC
∧
β

J (A) 6 ACCI−
∧
β J (A).

(vi) ACCJ(A) 6 ACCI−
∧
β J (A).

Corollary 6.2. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) A is αJ-exact⇒ A is S J-exact⇒ A is βJ-exact⇒ A is
∧

βJ-exact⇒ A is I-
∧

βJ-exact.

(ii) A is PJ-exact⇒ A is βJ-exact⇒ A is
∧

βJ-exact⇒ A is I-
∧

βJ-exact.
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(iii) A is J-exact⇒ A is I-
∧

βJ-exact.

(iv) A is I-
∧

βJ-rough⇒ A is
∧

βJ-rough⇒ A is βJ-rough⇒ A is S J-rough⇒ A is αJ-rough.

(v) A is I-
∧

βJ-rough⇒ A is
∧

βJ-rough⇒ A is βJ-rough⇒ A is PJ-rough.

(vi) A is I-
∧

βJ-rough⇒ A is J-rough.

The converse of parts of Corollary 6.2 is not necessarily true as in Example 5.2:

(i) If A = {a}, then it is I-
∧

βR-exact, but it is neither
∧

βR-exact nor R-exact.

(ii) If A = {b}, then it is R-rough and
∧

βR-rough, but it is not I-βR-rough.

The following proposition and corollary are introduced the relationships between the current
approximations in Definition 6.1 and the previous one in Definition 2.17 [12].

Proposition 6.2. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) RI−P
J (A) ⊆ RI−βJ (A) ⊆ RI−

∧
β J (A).

(ii) RI−αJ (A) ⊆ RI−S
J (A) ⊆ RI−βJ (A) ⊆ RI−

∧
β J (A).

(iii) R
I−
∧
β J (A) ⊆ R

I−β

J (A) ⊆ R
I−P
J (A).

(iv) R
I−
∧
β J (A) ⊆ R

I−β

J (A) ⊆ R
I−S
J (A) ⊆ R

I−α

J (A).

Proof. By Proposition 5.2, the proof is obvious. �

Corollary 6.3. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) BNDI−
∧
β J (A) ⊆ BNDI−βJ (A) ⊆ BNDI−P

J (A).

(ii) BNDI−
∧
β J (A) ⊆ BNDI−βJ (A) ⊆ BNDI−S

J (A) ⊆ BNDI−αJ (A).

(iii) ACCI−P
J (A) 6 ACCI−βJ (A) 6 ACCI−

∧
β J (A).

(iv) ACCI−αJ (A) 6 ACCI−S
J (A) 6 ACCI−βJ (A) 6 ACCI−

∧
β J (A).

Corollary 6.4. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) A is J-exact⇒ A is I-αJ-exact⇒ A isI-S J-exact⇒ A is I-βJ-exact⇒ A is I-
∧

βJ-exact.

(ii) A is I-PJ-exact⇒ A is I-βJ-exact⇒ A is I-
∧

βJ-exact.

(iii) A is I-
∧

βJ-rough⇒ A is I-βJ-rough⇒ A is I-S J-rough⇒ A is I-αJ-rough.

(iv) A is I-
∧

βJ-rough⇒ A is I-βJ-rough⇒ A is I-PJ-rough.

Remark 6.3. Example 3.3 shows that the converse of the implications in Corollaries 6.3, 6.4 and
Proposition 6.2 is not true in general.
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In Table 2, the lower, upper approximations, boundary region and accuracy are calculated by using
Hosny’s method 2.17 [12] and the current approximations in Definition 6.1 by using Example 3.3.

Table 2. Comparison between the boundary and accuracy by Hosny’s method 2.17 [12] and
the current approximations in Definition 6.1.

A Hosny’s method 2.17 [12] The current method in Definition 6.1

R
I−β
R (A) R

I−β

R (A) BND
I−β
R (A) ACCI−βR (A) R

I−
∧
βR(A) R

I−
∧
βR(A) BND

I−
∧
βR(A) ACCI−

∧
βR(A)

{a} φ {a} φ 0 φ {a} {a} 0

{b} {b} {a, b} {a} 1
2 {b} {a, b} {a} 1

2

{c} {c} {c} φ 1 {c} {c} φ 1

{d} {d} {d} φ 1 {d} {d} φ 1

{e} φ {e} {e} 0 {e} {e} φ 1

{a, b} {a, b} {a, b} φ 1 {a, b} {a, b} φ 1

{a, c} {c} {a, c} {a} 1
2 {c} {a, c} {a} 1

2

{a, d} {d} {a, d} {a} 1
2 {d} {a, d} {a} 1

2

{a, e} φ {a, e} {a, e} 0 {e} {a, e} {a} 1
2

{b, c} {b, c} {a, b, c} {a} 2
3 {b, c} {a, b, c} {a} 2

3

{b, d} {b, d} {a, b, d} {a} 2
3 {b, d} {a, b, d} {a} 2

3

{b, e} {b, e} {a, b, e} {a} 2
3 {b, e} {a, b, e} {a} 2

3

{c, d} {c, d} {c, d} φ 1 {c, d} {c, d} φ 1

{c, e} {c, e} {c, e} φ 1 {c, e} {c, e} φ 1

{d, e} {d, e} {d, e} φ 1 {d, e} {d, e} φ 1

{a, b, c} {a, b, c} {a, b, c} φ 1 {a, b, c} {a, b, c} φ 1

{a, b, d} {a, b, d} {a, b, d} φ 1 {a, b, d} {a, b, d} φ 1

{a, b, e} {a, b, e} {a, b, e} φ 1 {a, b, e} {a, b, e} φ 1

{a, c, d} {c, d} {a, c, d} {a} 2
3 {c, d} {a, c, d} {a} 2

3

{a, c, e} {c, e} {a, c, e} {a} 2
3 {c, e} {a, c, e} {a} 2

3

{a, d, e} {d, e} {a, d, e} {a} 2
3 {d, e} {a, d, e} {a} 2

3

{b, c, d} {b, c, d} X {a, e} 3
5 {b, c, d} X {a, e} 3

5

{b, c, e} {b, c, e} {a, b, c, e} {a} 3
4 {b, c, e} {a, b, c, e} {a} 3

4

{b, d, e} {b, d, e} {a, b, d, e} {a} 3
4 {b, d, e} {a, b, d, e} {a} 3

4

{c, d, e} {c, d, e} {c, d, e} φ 1 {c, d, e} {c, d, e} φ 1

{a, b, c, d} {a, b, c, d} X {e} 4
5 {a, b, c, d} {a, b, c, d} φ 1

{a, b, c, e} {a, b, c, e} {a, b, c, e} φ 1 {a, b, c, e} {a, b, c, e} φ 1

{a, b, d, e} {a, b, d, e} {a, b, d, e} φ 1 {a, b, d, e} {a, b, d, e} φ 1

{a, c, d, e} {c, d, e} {a, c, d, e} {a} 3
4 {c, d, e} {a, c, d, e} {a} 3

4

{b, c, d, e} {b, c, d, e} X {a} 4
5 {b, c, d, e} X {a} 4

5

X X X φ 1 X X φ 1
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For example, take A = {e}, then the boundary and accuracy by the present method in Definition 6.1
are φ and 1 respectively. Whereas, the boundary and accuracy by using Hosny’s method 2.17 [12] are
{e} and 0 respectively.

Remark 6.4. It should be noted that the I-
∧

βJ-approximations in this section and the
I-δβJ-approximations in Section 4 are different and independent. As, the concepts of I-δβJ-open sets
and I-

∧
βJ-sets are different and independent as shown in Remark 5.5.

7. I-δβJ-rough membership functions and I-
∧

βJ-rough membership functions

This section concentrates on generalization the concept of rough membership functions by
introducing the concepts of I-δβJ-rough membership functions and I-

∧
βJ-rough membership

functions.

Definition 7.1. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X, x ∈ X and A ⊆ X :

(i) If x ∈ RI−δβJ (A), then x is J-δβ-surely with respect to I ( I − δβJ-surely) belongs to A, denoted by
x ∈I−δβJ A.

(ii) If x ∈ R
I−δβ

J (A), then x is J-δβ-possibly with respect to I (briefly I − δβJ-possibly) belongs to A,
denoted by x ∈I−δβJ A.

(iii) If x ∈ RI−
∧
β J (A), then x is J-

∧
β-surely with respect to I ( I −

∧
βJ-surely) belongs to A, denoted

by x ∈I−δβJ A.

(iv) If x ∈ R
I−
∧
β J (A), then x is J-

∧
β-possibly with respect to I (briefly I −

∧
βJ-possibly) belongs to

A, denoted by x ∈I−
∧
β J A.

It is called J-δβ-strong (J-
∧

β-strong) and J-δβ-weak (J-
∧

β-weak) membership relations with respect
to I respectively.

Remark 7.1. According to Definitions 4.1 and 6.1, the I-δβJ-lower, I-δβJ-upper approximations, I-∧
βJ-lower and I-

∧
βJ-upper approximations for any A ⊆ X can be written as:

(i) RI−δβJ (A) = {x ∈ X : x ∈I−δβJ A}.

(ii) R
I−δβ

J (A) = {x ∈ X : x ∈I−δβJ A}.

(iii) RI−
∧
β J (A) = {x ∈ X : x ∈I−

∧
β J A}.

(iv) R
I−
∧
β J (A) = {x ∈ X : x ∈I−

∧
β J A}.

Lemma 7.1. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) If x ∈I−δβJ A, then x ∈ A.

(ii) If x ∈ A, then x ∈I−δβJ A.

(iii) If x ∈I−
∧
β J A, then x ∈ A.
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(iv) If x ∈ A, then x ∈I−
∧
β J A.

Proof. Straightforward. �

Remark 7.2. The converse of Lemma 7.1 is not true in general, as it is shown in Example 3.3 that if:

(i) A = {a, b, c, d}, then a ∈ A, but a<I−δβR A.

(ii) A = {a, b, c, d}, then e ∈I−δβR A, but e < A.

(iii) A = {a, c, d, e}, then a ∈ A, but a <I−
∧
βR A.

(iv) A = {b, c, d}, then e ∈I−
∧
βR A, but e < A.

Proposition 7.1. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) If x ∈JA⇒ x ∈ηJA⇒ x ∈I−ηJ A⇒ x ∈I−δβJ A.

(ii) If x ∈I−δβJ A⇒ x ∈I−ηJ A⇒ x ∈ηJA⇒ x ∈JA.

(iii) If x ∈JA⇒ x ∈ηJA⇒ x ∈I−ηJ A⇒ x ∈I−
∧
β J A.

(iv) If x ∈I−
∧
β J A⇒ x ∈I−ηJ A⇒ x ∈ηJA⇒ x ∈JA.

Proof. I prove (i) and the other similarly. x ∈JA⇒ x ∈ηJA⇒ x ∈I−ηJ A by Proposition 2.6. Let x ∈I−ηJ A.
Then, x ∈ RI−ηJ (A)⇒ x ∈ RI−δβJ (A)( by Theorem 4.1)⇒ x ∈I−δβJ A. �

Remark 7.3. The converse of Proposition 7.1 is not true in general, as it is shown in

(i) Example 3.2 that if A = {b, c}, then b ∈I−δβR A, but b <βRA.

(ii) Example 3.2 that if A = {b, c}, then a ∈I−βR A, but a <
I−δβR A.

(iii) Example 3.3 that if A = {e}, then e ∈I−
∧
βR A, but e <βRA.

(iv) Example 3.3 that if A = {a, b, c, d}, then e ∈I−βR A, but e <
I−
∧
βR .

Definition 7.2. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X, A ⊆ X and x ∈ X. The I − δβJ-rough
membership functions of A are defined by µI−δβJ

A → [0, 1], where

µ
I−δβJ
A (x) = {

1 i f 1∈ψI−δβJ
A (x).

min(ψI−δβJ
A (x)) otherwise.

}.

and ψI−δβJ
A (x) =

|I−δβJ(x)∩A|
|I−δβJ(x)| , x ∈ I − δβJ(x), I − δβJ(x) ∈ I-δβJO(X).

Remark 7.4. The I − δβJ-rough membership functions are used to define the I-δβJ-lower and I-δβJ-
upper approximations as follows:

(i) RI−δβJ (A) = {x ∈ X : µI−δβJ
A (x) = 1}.

(ii) R
I−δβ

J (A) = {x ∈ X : µI−δβJ
A (x) > 0}.

(iii) BNDI−δβJ (A) = {x ∈ X : 0 < µI−δβJ
A (x) < 1}.
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The following results give the fundamental properties of the I − δβJ-rough membership functions.

Proposition 7.2. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A, B ⊆ X. Then

(i) If µI−δβJ
A (x) = 1⇔ x ∈I−δβJ A.

(ii) If µI−δβJ
A (x) = 0⇔ x ∈ X − R

I−δβ

J (A).

(iii) If 0 < µI−δβJ
A (x) < 1⇔ x ∈ BNDI−δβJ (A).

(iv) If µI−δβJ

A′
(x) = 1 − µI−δβJ

A (x),∀ x ∈ X.

(v) If µI−δβJ
A∪B (x) ≥ max(µI−ζJ

A (x), µI−δβJ
B (x)),∀ x ∈ X.

(vi) If µI−δβJ
A∩B (x) ≤ min(µI−δβJ

A (x), µI−δβJ
B (x)),∀ x ∈ X.

Proof. I prove (i), and the others similarly.

x ∈I−δβJ A ⇔ x ∈ RI−δβJ (A). Since RI−δβJ (A) is I − δβJ-open set contained in A, thus |R
I−δβ
J (A)∩A|

|R
I−δβ
J (A)(A)|

=

|R
I−δβ
J (A)|

|R
I−δβ
J (A)|

= 1. Then, 1 ∈ ψI−δβJ
A (x) and accordingly µI−δβJ

A (x) = 1. �

The following lemma is very interesting since it is given the relations between the J-rough
membership relations [3], J-nearly rough membership relations [3], J-nearly rough membership
relations with respect to I [12] and I-δβJ-rough membership functions.

Lemma 7.2. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) µJ
A(x) = 1⇒ µ

ηJ
A (x) = 1⇒ µ

I−ηJ
A (x) = 1⇒ µ

I−δβJ
A (x) = 1,∀ x ∈ X.

(ii) µJ
A(x) = 0⇒ µ

ηJ
A (x) = 0⇒ µ

I−ηJ
A (x) = 0⇒ µ

I−δβJ
A (x) = 0,∀ x ∈ X.

Proof. (i) µJ
A(x) = 1 ⇒ µ

ηJ
A (x) = 1 ⇒ µ

I−ηJ
A (x) = 1 directly from Lemma 2.1. Let µI−ηJ

A (x) = 1, then
x ∈ RI−ηJ (A)⇒ x ∈ RI−δβJ (A)⇒ µ

I−δβJ
A (x) = 1,∀ x ∈ X.

(ii) µJ
A(x) = 0 ⇒ µ

ηJ
A (x) = 0 directly from Lemma 2.1. Let µηJ

A (x) = 0, then x ∈ X − R
I−η

J (A) ⇒ x ∈

X − R
I−δβ

J (A)⇒ µ
I−δβJ
A (x) = 0,∀ x ∈ X.

�

Remark 7.5. The converse of Lemma 7.2 is not true in general, as it is shown in Example 3.2.

Definition 7.3. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X, A ⊆ X and x ∈ X. The I −
∧

βJ-rough

membership functions of a J-ndS on X for a A are defines by µ
I−
∧
β J

A → [0, 1], where

µ
I−
∧
β J

A (x) = {
1 i f 1∈ψ

I−
∧
β J

A (x).

min(ψ
I−
∧
β J

A (x)) otherwise.
}.

and ψ
I−
∧
β J

A (x) =
|I−
∧
β J(x)∩A|

|I−
∧
β J(x)| , x ∈ I −

∧
βJ(x), I −

∧
βJ(x) ∈ I-

∧
βJO(X).

Remark 7.6. The I-J-nearly rough membership functions are used to define the I-
∧

βJ-lower and
I-
∧

βJ-upper approximations as follows:
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(i) RI−
∧
β J (A) = {x ∈ X : µ

I−
∧
β J

A (x) = 1}.

(ii) R
I−
∧
β J (A) = {x ∈ X : µ

I−
∧
β J

A (x) > 0}.

(iii) BNDI−
∧
β J (A) = {x ∈ X : 0 < µ

I−
∧
β J

A (x) < 1}.

The following results give the fundamental properties of the I −
∧

βJ-rough membership functions.

Proposition 7.3. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A, B ⊆ X. Then

(i) If µ
I−
∧
β J

A (x) = 1⇔ x∈I−
∧
β J A.

(ii) If µ
I−
∧
β J

A (x) = 0⇔ x ∈ X − R
I−
∧
β J (A).

(iii) If 0 < µ
I−
∧
β J

A (x) < 1⇔ x ∈ BNDI−
∧
β J (A).

(iv) If µ
I−
∧
β J

A′
(x) = 1 − µ

I−
∧
β J

A (x),∀ x ∈ X.

(v) If µ
I−
∧
β J

A∪B (x) ≥ max(µ
I−
∧
β J

A (x), µ
I−
∧
β J

B (x)),∀ x ∈ X.

(vi) If µ
I−
∧
β J

A∩B (x) ≤ min(µ
I−
∧
β J

A (x), µ
I−
∧
β J

B (x)),∀ x ∈ X.

Proof. It is similar to Proposition 7.2. �

Lemma 7.3. Let (X,R,ΞJ) be a J-ndS, I be an ideal on X and A ⊆ X. Then

(i) µJ
A(x) = 1⇒ µ

ηJ
A (x) = 1⇒ µ

I−ηJ
A (x) = 1⇒ µ

I−
∧
β J

A (x) = 1,∀ x ∈ X.

(ii) µJ
A(x) = 0⇒ µ

ηJ
A (x) = 0⇒ µ

I−ηJ
A (x) = 0⇒ µ

I−
∧
β J

A (x) = 0,∀ x ∈ X.

Proof. It isimilar to Lemma 7.2. �

Remark 7.7. The converse of Lemma 7.3 is not true in general, as it is shown in Example 3.3.

Remark 7.8. According to Lemmas 7.2 and 7.3, the current Definitions 7.2 and 7.3 are also
generalization of the approaches in [22] and 2.19 [28].

8. Applications

Finally in this section, an applied example in Chemistry field is introduced by applying the present
Definition 3.1 and the previous one 2.6 in [8]. Furthermore, a practical example uses an equivalence
relation that induced from an information system is introduced to compare between the current
approach in Definition 7.2 and the previous approach for Pawlak and Skoworn 2.19 [28].

Example 8.1. Let X = {x1, x2, x3, x4, x5} be five amino acids (for short, AAs). The (AAs) are described
in terms of seven attributes: a1 = PIE and a2 = SAC = surface area, a3 = MR =molecular refractivity,
a4 = LAM =the side chain polarity and a5 = Vol = molecular volume ( [10, 34]). Table 3 shows all
quantitative attributes of five AAs.
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I consider the relations on X defined as: Ri = {(xi, x j) : xi(ak)− x j(ak) < σk
2 , i, j, k = 1, 2, ..., 5} where

σk represents the standard deviation of the quantitative attributes.
The right neighborhoods ∀x ∈ X with respect to the relations are shown in Table 4.

Table 3. Quantitative attributes of five amino acids.

a1 a2 a3 a4 a5

{x1} 0.23 254.2 2.216 −0.02 82.2
{x2} −0.48 303.6 2.994 −1.24 112.3
{x3} −0.61 287.9 2.994 −1.08 103.7
{x4} 0.45 282.9 2.933 −0.11 99.1
{x5} −0.11 335.0 3.458 −0.19 127.5

Table 4. Right neighborhood of seven reflexive relations.

xiR1 xiR2 xiR3 xiR4 xiR5

{x1} {x1, x4} X X {x1, x4, x5} X
{x2} X {x2, x5} {x2, x3, x4, x5} X {x2, x5}

{x3} X {x2, x3, x4, x5} {x2, x3, x4, x5} X {x2, x3, x4, x5}

{x4} {x4} {x2, x3, x4, x5} {x2, x3, x4, x5} {x1, x4, x5} {x2, x3, x4, x5}

{x5} {x1, x4, x5} {x5} {x5} {x1, x4, x5} {x3, x5}

The intersection of all right neighborhoods ∀x ∈ X is:
x1R = ∩5

k=1(x1Rk) = {x1, x4},

x2R = ∩5
k=1(x2Rk) = {x2, x5},

x3R = ∩5
k=1(x3Rk) = {x2, x3, x4, x5},

x4R = ∩5
k=1(x4Rk) = {x4},

x5R = ∩5
k=1(x5Rk) = {x5}.

Then,
τR = {φ, X, {x4}, {x5}, {x4, x5}, {x1, x4}, {x2, x5}, {x1, x4, x5}, {x2, x4, x5}, {x1, x2, x4, x5}, {x1, x3, x4, x5}},

βRO(X) = {φ, X, {x4}, {x5}, {x1, x4}, {x1, x5}, {x2, x5}, {x3, x4}, {x3, x5}, {x4, x5}, {x1, x3, x5}, {x1, x4, x5},

{x2, x3, x5}, {x2, x4, x5}, , {x3, x4, x5}, {x1, x2, x4, x5}, {x1, x3, x4, x5}, {x2, x3, x4, x5}}.

Let I = {φ, {x1}}, then I-δβRO(X) = P(X).

(i) It is clear that every βR-open is I-δβR-open, but the converse is not necessary to be true. For
example take A = {x1} which is I-δβR-open, but it is not βR-open. Hence, the current concept
generalize and extend the previous one 2.6 in [8].

(ii) The current approximations which are depended on I-δβR-open is better than the previous
approximations 2.7 [8] which depended on βR-open. As for any concept A ⊆ X (collection of
Amino Acid), this concept is determine by the lower and upper approximations which defines its
boundary. Moreover, the accuracy increases by the decreases of the boundary region. Clearly the
accuracy measure by using the suggested class I-δβR-open in general is greater than the
accuracy measure by using βR-open. For example take A = {x1, x4, x5}, Then,
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(a) by the current Definition 4.1, BNDI−δβR (A) = φ and ACCI−δβR (A) = 1;

(b) by the previous one in Definition 2.7 [8], BNDβ
R(A) = {2, 3} and ACCβ

R(A) = 3
5 .

(iii) Similarly, it is easy to calculate I-βRO(X), τI−
∧
β

R and their approximations by the same manner
in Tables 1 and 2. This also shows that the present methods is better than the previous ones
in [2, 8, 11, 12].

Example 8.2. Consider the following information system as in Table 5. The data about six students is
given as shown below:

Table 5. Decision system.

S tudent S cience German Mathematics Decision
{x1} Bad Good Medium Accept
{x2} Good Bad Medium Accept
{x3} Good Good Good Accept
{x4} Bad Good Bad Re ject
{x5} Good Bad Medium Re ject
{x6} Bad Good Good Accept

From Table 5:

(i) The set of universe: X = {x1, x2, x3, x4, x5, x6}.

(ii) The set of attributes: AT = {S cience, German, Mathematics}.

(iii) The sets of values:

VS cience = {Bad,Good},

VGerman = {Bad,Good},

VMathematics = {Bad,Medium,Good}

and

VDecision = {Accept,Re ject}.

I take the set of condition attributes, C = {S cience,German,Mathematics}. Thus, the corresponding
equivalence relation is R = {(x1, x1), (x2, x5), (x3, x3), (x4, x4), (x5, x2), (x6, x6)}, let I = {φ, {x1}}. Then,
I-δβRO(X) = P(X). Let A (Decision: Accept) = {x1, x2, x3, x6}. Then

(i) The rough membership functions with respect to the Definition of Pawlak and Skowron 2.19 [28]
are computed as follows:

µA(x1) = µA(x3) = µA(x6) = 1, µA(x2) =
1
2
.
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(ii) The I-δβR-rough membership functions in Definition 7.2 are calculated as follows:

µ
I−δβR
A (x1) = µ

I−δβR
A (x2) = µ

I−δβR
A (x3) = µ

I−δβR
A (x6) = 1.

Obviously, the current Definition 7.2 is accurate more than the Definition of Pawlak and Skowron
2.19 [28].

Remark 8.1. It should be noted that for some elements that have decision (Reject) such that x5

(i) The rough membership function with respect to the Definition of Pawlak and Skowron 2.19 [28] is
µA(x5) = 1

2 . This means that x5 may belong to the set A (Decision: Accept), A = {x1, x2, x3, x6}

and this contradicts to Table 5.

(ii) The I-δβR-rough membership function in Definition 7.2 is µI−δβR
A (x5) = 0. This means that x5 < A

(Decision: Accept) = {x1, x2, x3, x6} which is coincide with Table 5.

9. Conclusions

Rough set theory is a vast area that has varied inventions, applications and interactions with many
other branches of mathematical sciences. Deriving rough sets from topology is one such interaction.
There is a close homogeneity between rough set theory and general topology. Topology is a rich
source for constructs that can be helpful to enrich the original model of approximation spaces. Ideal is a
fundamental concept in topological spaces and played an important role in the study of a generalization
of rough set. Since the advent of the ideals, several research papers with interesting results in different
respects came to existence. In the current results, ideals were very helpful for increasing the current
lower approximations and decreasing the current upper approximations. Consequently, they reduced
the boundary region and increased the accuracy measure. So, they removed the vagueness of a concept
that is an essential goal for the rough set. The properties of the proposed concepts and methods were
studied. It should be noted that the two methods in this paper were different and independent as it was
shown. I gave not only their characterizations but also discussed the relationships among them and
between the previous ones and shown to be more general. The present accuracy measures were more
accurate and higher than the previous ones. Since, the boundary regions were decreased (or empty)
by increasing the lower approximations and decreasing the upper approximations. Further, two kind
of the rough membership functions with respect to ideals were introduced as extension of the former
functions. Moreover, an applied example in chemical field was suggested by applying the current
methods to illustrate the concepts in a friendly way. Finally, a particle example was provided to clarify
the technique of the present rough membership functions and demonstrate their utility and efficiency.
I hope the beauty of this work can pave way to many other research fields such as:

(i) Fuzzy topologies, soft topologies and Multiset topologies.

(ii) New applications of these new approximations in various real-life fields.

This is a part of the future research.
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