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Abstract: The well-studied eccentric connectivity index directly consider the contribution of all edges
in a graph. By considering the total eccentricity sum of all non-adjacent vertex, Hua et al. proposed
a new topological index, namely, eccentric connectivity coindex of a connected graph. The eccentric
connectivity coindex of a connected graph G is defined as

ξ
c
(G) =

∑
uv<E(G)

(εG(u) + εG(v)).

Where εG(u) (resp. εG(v)) is the eccentricity of the vertex u (resp. v). In this paper, some extremal
problems on the ξ

c
of graphs with given parameters are considered. We present the sharp lower bounds

on ξ
c

for general connecteds graphs. We determine the smallest eccentric connectivity coindex of cacti
of given order and cycles. Also, we characterize the graph with minimum and maximum eccentric
connectivity coindex among all the trees with given order and diameter. Additionally, we determine
the smallest eccentric connectivity coindex of unicyclic graphs with given order and diameter and the
corresponding extremal graph is characterized as well.
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1. Introduction

Throughout this paper, all graphs considered are finite, simple, undirected and connected. For a
graph G = (V, E) with vertex set V = V(G) and edge set E = E(G). The degree of a vertex v ∈ V(G),
denoted by dG(v), is the number of edges incident with v. For vertices u, v ∈ V(G), the distance d(u, v)
is defined as the length of a shortest path between u and v in G. The eccentricity εG(v) or ε(v) of a
vertex v is the maximum distance from v to any other vertex in a graph G. The diameter of a connectd
graph is the maximum eccentricity of any vertex in the graph. A pendent vertex is a vertex of degree 1.
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Let Pn, S n and Cn denote the path, the star and the cycle on n vertices, respectively. By G − v or G\v
we denote the graph obtained from G by deleting a vertex v ∈ V(G). By G − uv we denote the graph
obtained from G by deleting an edge uv ∈ E(G) (This notation is naturally extended if more than one
edge are deleted). Similarly, G + uv is obtained from G by adding an edge uv < E(G). A path in
a connected graph is said to be a diametrical path, if this path is of length equal to the diameter. A
connected graph is said to be a tree if it contains no cycles. Connected graphs in which the number
of edges equals the number of vertices are called unicyclic graphs. A cactus is a connected graph in
which any two simple cycles have at most one vertex in common. The set of cacti with n vertices and
k cycles is denoted by C(n, k). If G ∈ C(n, k), then |E(G)| = n + k − 1. Other notation and terminology
not defined here will conform to those in [4]. In organic chemistry, a molecular graph represents the
topology of a molecule. A topoloical index is a function defined on a molecular graph regardless of
the labeling of its vertices. Till now, a number of topological indices are introduced and widely used
in QSAR/QSPR studies. One of them is the eccenric connectivity index (ECI) of graph G, denoted by
ξc(G), was introduced by Gupta et al. [12], which is defined as

ξc(G) =
∑

u∈V(G)

dG(u)εG(u).

The eccentric connectivity index has been shown to give a high degree of predictability properties
and may provide leads for the development of safe and potent anti-HIV compounds [5, 13].
Furthermore, the eccentric connectivity index also has a lot of applications in neural science and
entropy, see [14, 18]. For the mathematical properties of this index see [1, 9, 11, 17] and the references
cited therein.

The eccentric connectivity index of a connected graph G can be rewritten as

ξc(G) =
∑

uv∈E(G)

(εG(u) + εG(v)).

As is know that the eccentric connectivity index has been used extensively in physical and biological
properties. They are defined as sums of contributions dependent on the eccentricity of adjacent vertices
over all edges of a graph. By considering analogous contributions from pairs of non-adjacent vertices
capturing and quantifying a possible influence of remote pairs of vertices to the molecule’s properties,
and motivated from [2, 3], Hua and Miao [8] considered the total eccentricity sum of non-adjacent
vertex pairs which is defined for a connected graph G as

ξ
c
(G) =

∑
uv<E(G)

(εG(u) + εG(v)), (1)

and call this eccentricity-based graph invariant the eccentric connectivity coindex ξ
c
(G). By (1),

eccentric connectivity coindex can be rewritten as

ξ
c
(G) =

∑
u∈V(G)

εG(u)(n − 1 − dG(u)). (2)

The cactus graph has many applications in real life and much works has been done to study the
extremal graph according to different index. For more results on the cactus one may be referred to
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[6,7,10,15,16]. In this paper, we continue the above direction of research by considering the extremal
problems on the eccentric connectivity coindex.

This paper is complied as follows. In Section 2, we present the sharp lower bounds on ξ
c

for general
connecteds graphs. In Section 3, we characterize the extremal graphs with the minimum ξ

c
among cacti

of given order and cycles. In Section 4, we characterize the minimal and maximal ξ
c

of trees with given
order and diameter. In Section 5, we study the minimal ξ

c
among unicyclic graphs on n vertices with

diameter and characterize the extremal graphs.

2. Eccentric connectivity coindex of connected graphs

Hua (2019) characterize all extremal graphs with the maximum and minimum eccentric connectivity
coindex among all connected graphs of given order and establish various lower bounds for this index
in terms of several other graph parameters. In this section, we continue the investigation along the lines
of [8] and present the sharp lower bounds on ξ

c
for general connected graphs with minimum degree.

Theorem 2.1. Let G (, Kn) be a connected graph of order n with minimum degree δ. Then

ξ
c
(G) ≥ 4(n − 1 − δ),

with equality if and only if G � Kδ
n (δ < n − 1). Where Kδ

n is a connected graph of order n obtained by
joining a vertex to the δ vertices in Kn−1.

Proof. Let vn be one vertex of degree δ. Denote by NG(vn) = {v1, v2, · · · , vδ}, also let
S = {vδ+1, · · · , vn−1}. Since G , Kn, we have δ ≤ n − 2 and |s| ≥ 1. Thus V(G) = NG(vn) ∪ S n ∪ S . For
vi ∈ NG(vn), we have εG(vi) ≥ 1 and dG(vi) ≤ n − 1. For vi ∈ S , we have dG(vi) ≤ n − 2 and εG(vi) ≥ 2.
Moreover, εG(vn) ≥ 2 and dG(vn) = δ. By the definition of ξ

c
(G), we have

ξ
c
(G) =

∑
v∈NG(vn)

εG(v)(n − 1 − dG(v)) +
∑
v∈S

εG(v)(n − 1 − dG(v)) + εG(vn)(n − 1 − δ)

≥ 0 + 2(n − 1 − (n − 2))(n − δ − 1) + 2(n − 1 − δ)
= 4(n − 1 − δ).

Suppose the equality holds in above equation, then all the inequalities in the above must be equalities.
Thus, we have dG(vi) = n− 2, εG(vi) = 2 for each vi ∈ S , dG(vi) = n− 1, εG(vi) = 2 for each vi ∈ NG(vn)
and dG(vn) = δ, εG(vn) = 2. Hence, we find that vertex vn is adjacent to the vertices of degree n− 1 and
each vertex in S is degree n − 2. So G � Kδ

n (δ < n − 1). This completes the proof. �

3. Eccentric connectivity coindex of cacti

In this section, we turn our attention to eccentric connectivity coindex for cacti and in particular on
extremal cacti regarding ξ

c
.

We start with a useful lemma.

Lemma 3.1 ( [8]). Let G be a connected graph of order n, size m and diameter d. Then

ξ
c
(G) ≥ 2n(n − 1) − 4m,

with equality if and only if d ≤ 2.
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Let Ck
n be the cactus by adding k indepent edges among pendent vertices of S n (see Figure 1).
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Figure 1. The graph Ck
n with n vertices and k cycles of length 3.

Theorem 3.2. Let G be a cactus on n ≥ 5 vertices with k cycles. Then

ξ
c
(G) ≥ 2n2 − 6n − 4k + 4.

The equality holds if and only if T � Ck
n.

Proof. Suppose that N is the set of vertices of degree n−1. n0 is the number of elements in N. Assume
that n0 ≥ 2, let u, v be two vertices in G such that dG(u) = dG(v) = n − 1. Then εG(u) = εG(v) = 1.
It follows that G is not a cactus. Since there exists cycles sharing common edges in G, then n0 = 0 or
n0 = 1. If n0 = 1, then there is a unique vertex v in G such that dG(v) = n − 1, thus εG(v) = 1, hence
each vertex in G\v is adjacent to v. Therefore the cacutus G is obtained by introducing k indepedent
edges among pendent vertices of S n, then G � Ck

n and ξ
c
(G) = 2n2 − 6n − 4k + 4.

Now, we assume that n0 = 0. Let d be the diameter of G. Then d ≥ 3. Otherwise, if d ≤ 2, let u
be the vertex of maximal degree in G. Then any other vertex of G\u must be adjacent to u, otherwise
d ≥ 3, then n0 ≥ 1, a contradiction. By Lemma 3.1,

ξ
c
(G) > 2n(n − 1) − 4m = 2n(n − 1) − 4(n + k − 1) = 2n2 − 6n + 4 − 4k.

Note that, there are exactly n + k − 1 edges in cacutus on n vertices and k cycles. This completes the
proof. �

4. Eccentric connectivity coindex of trees with given diameter

In this section, we shall determine the tree of diameter d with the minimum and maximum ξ
c

respectively.
The volcano graph Vn,d is the graph obtained from a path Pd+1 and a set S of n − d − 1 vertices by

joining vertex in S to the central vertex of Pd+1. Obviously, if d is even, there is only one center of
Pd+1. If d is odd, there are two central vertices of Pd+1 (See Figure 2). The caterpillar tree with respect
to Pd+1 = u0u1 · · · ud, denoted by CP(S 1, · · · , S d−1), is the tree obtained from Pd by attaching S i new
vertices to ui, for 1 ≤ i ≤ d − 1.
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Figure 2. The graph Vn,d with d even and d odd.

Let

f1(n, d) =


∑ d

2−1
i=1 (d − i)(2n − 6) + n2d−nd2−nd+2n2−6n−4d+3d2+4

2 if n is even,∑ d−1
2 −1

i=1 (d − i)(2n − 6) + n2d−nd2+3n2+3nd−8n+3d2−4d+1
2 if n is odd,

Theorem 4.1. Let T be a tree on n (n ≥ 5) vertices with diameter d ≥ 2. Then

ξ
c
(T ) ≥ f1(n, d).

The equality holds if and only if T � Vn,d.

Proof. Let T0 be a graph chosen among all trees of order n with diameter d such that T0 has the
smallest ξ

c
. First, we have the following claim.

Claim 1. Among all trees T with order n and diameter d, min(ξ
c
(T )) is achived on caterpillars.

Proof of Claim 1. Let T be any tree that is not a caterpillar with order n and diameter d. Let P be
the diametral path of T , connecting u0 to ud. Then the eccentricity of each vertex w of T is equal to
max{d(w, u0), d(w, ud)}. Let z < {u0, ud} be a vertex of P and let Tz be a maximal subtree of T which
contains z but no other vertex of P. We may assume that z can be selected such that εTz(z) = k ≥ 2,
for otherwise T is a caterpillar. Let u be vertex of Tz with d(u, z) = k − 1 and let v be the neighbor of
u with d(v, z) = k − 2. Let S = N(u)\v and let s = |S |. Note that s ≥ 1. Let T

′

be the tree from T

by replacing the edges between u and the vertices of S with the edges between v and the vertices of S .
Then we have

ξ
c
(T ) − ξ

c
(T ′) =

∑
w∈V(T )

εT (w)(n − 1 − dT (w)) −
∑

w∈V(T ′)

εT ′(w)(n − 1 − dT ′(w))

= εT (u)(n − 1 − dT (u)) + εT (v)(n − 1 − dT (v))

+
∑
w∈S

εT (w)(n − 1 − dT (w)) − εT ′(u)(n − 1 − dT ′(u))

−εT ′(v)(n − 1 − dT ′(v)) −
∑
w∈S

εT ′(w)(n − 1 − dT ′(w))
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≥ s(εT (v) − εT (u)) +
∑
w∈S

(n − 1 − dT (w)).

Note that εT (u) = εT (v) + 1, εT (w) ≥ εT ′(w) + 1 for w ∈ S and since d ≥ 2, we get that dT (w) < n − 2.
Hence

ξ
c
(T ) − ξ

c
(T ′) ≥ −s + (n − 1)s −

∑
w∈S

dT (w)

= (n − 2)s −
∑
w∈S

dT (w)

> (n − 2)s − (n − 2)s = 0.

Therefore,
ξ

c
(T ) > ξ

c
(T ′).

If T ′ is not a caterpillar, we can repeat the construction as many times as required to arrive at a
caterpillar. Since at each step the value of ξ

c
(T ) is decreased. Thus the claim is proven.

Since T0 is the extremal tree with diametral path P = u0u1, · · · , ud. By claim 1, we conclude that
all vertices of V(T )\V(P) must be pendent vertices attached at some vertices of P, we denote this tree
T1. We now consider the case when d is even, if there exists some vertex ui (i , d

2 ) of P with pendent
vertices (say w1, w2 · · · ,wt t ≥ 1) attached. Let

T2 = T1 − {uiw1, uiw2, · · · , uiwt} + {u d
2
w1, u d

2
w2, · · · , u d

2
wt}.

By the definition of ξ
c
, we have

ξ
c
(T1) − ξ

c
(T2) =

t∑
k=1

εT1(wk)
(
n − 1 − dT1(wk)

)
+ εT1(ui)

(
n − 1 − dT1(ui)

)
+εT1(u d

2
)
(
n − 1 − dT1(u d

2
)
)
−

t∑
k=1

εT2(wk)
(
n − 1 − dT2(wk)

)
−εT2(ui)

(
n − 1 − dT2(ui)

)
− εT2(u d

2
)
(
n − 1 − dT2(u d

2
)
)
.

As dT1(wk) = dT2(wk) = 1, (k = 1, 2, · · · , t) and εT1(wk) > εT2(wk), εT1(ui) = εT2(ui) > εT1(u d
2
) =

εT2(u d
2
), εT1(wk) − εT2(wk) = εT1(ui) − εT2(u d

2
).

Then, we have

ξ
c
(T1) − ξ

c
(T2) = tεT1(wk)(n − 2) − tεT2(wk)(n − 2) − tεT1(ui) + tεT1(u d

2
)

≥ t(n − 2)
(
εT1(wk) − εT2(wk)

)
− t

(
εT1(ui) − εT2(u d

2
)
)

=
[
(n − 2)t − t

](
εT1(wk) − εT2(wk)

)
= (n − 3)t

(
εT1(wk) − εT2(wk)

)
AIMS Mathematics Volume 7, Issue 1, 651–666.
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> 0.

Therefore,

ξ
c
(T1) > ξ

c
(T2).

Continue this procedure, forming new trees, untill all the pendent vertices in T1 are adjacent to u d
2
.

If d is odd, similarly, the extremal graph must be the graph obtained from a path Pd+1 by some pendent
vertices attched on the center of Pd+1. That is to say, T0 � Vn,d. This completes the proof. �

For even d,

ξ
c
(Vn,d) =

d
2−1∑
i=1

(d − i)(2n − 6) +
n2d − nd2 − nd + 2n2 − 6n − 4d + 3d2 + 4

2

=
n(n − 2)(d + 2)

2
−

(n − 2)(d2 + 3d + 2)
2

+
d(d − 2)(3n − 7)

4
+ 2d(n − 2).

Let f (x) =
n(n−2)(x+2)

2 −
(n−2)(x2+3x+2)

2 +
x(x−2)(3n−7)

4 + 2x(n − 2), (x ≥ 2). It remains to determine which
value of x minimizes f (x). For this, we use the first and second derivative test. Noting that

f ′(x) =
n(n − 2)

2
−

(n − 2)(2x + 3)
2

+
(x − 1)(3n − 7)

2
+ 2(n − 2).

f ′′(x) = −(n − 2) +
3n − 7

2
=

n − 3
2

> 0.

f ′′(x) is positive for x ≥ 2, then f ′(x) is an increasing function for x ≥ 2. So

f ′(x) > f ′(2) =
n(n − 2)

2
−

7(n − 2)
2

+
(3n − 7)

2
+ 2(n − 2)

=
n2 − 2n − 1

2

=
(n − 1)2 − 2

2
> 0.

Therefore, f (x) is an increasing function for x ≥ 2.

Then

ξ
c
(Vn,d) < ξ

c
(Vn,d+1).

For odd d, we obtain the same result. Therefore, we obtain the following chain inequality

ξ
c
(Pn) = ξ

c
(Vn,n−1) > ξ

c
(Vn,n−2) > · · · > ξ

c
(Vn,2) = ξ

c
(S n). (3)

We denote by H(p, n, q) one double starlike tree which is obtained by attaching the centers of two
stars K1,p and K1,q to the ends of path Pd−2, respectively, where p + q = n−d−1. The broom graph Bn,d
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consists of a path Pd−1, together with n − d pendent vertices all adjacent to the same pendent vertex of
Pd−1, obviously, Bn,d = H(0, n, n − d − 1), see Figure 3.
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Figure 3. The graphs Hp,n,q and B(n, d).

For any tree T ∈ H(p, n, q), we have ξ
c
(T ) = ξ

c
(Bn,d) = f2(n, d). Let

f2(n, d) =


∑ d

2−1
i=1 (d − i)(2n − 6) + 6d2−3nd+2n2d−2nd2+2n−2−7d

2 if n is even,∑ d−1
2

i=1 (d − i)(2n − 6) + 3d2 − 2nd + n2d − nd2 + n − 1 − 2d if n is odd,

Theorem 4.2. If T is a tree of order n and diameter d, then

ξ
c
(T ) ≤ f2(n, d).

The equality holds if and only if T � H(p, n, q).

Proof. Let P = u0u1, · · · , ud be a diametral path in T . Asssume that T is not the graph H(p, n, q), then
there exists a pendent vertex v of T , v , u0 such that v is adjacent to a vertex u, where u , ud−1 and
u , u1 (It is possible that u lies on P). Denote by {v1, v2, · · · , vk} be the set of pendent vertices which
are adjacent to u and vi , u0 for i = 1, 2, · · · , k. Let

T
′

= T − {uv1, uv2, · · · , uvk} + {ud−1v1, ud−1v2, · · · , ud−1vk}.

Note that T ′ has the same order and diameter as T . We will show that T ′ has a larger eccentric
connectivity coindex than T .

ξ
c
(T ′) − ξ

c
(T ) =

k∑
i=1

εT ′(vi)
(
n − 1 − dT ′(vi)

)
+ εT ′(u)

(
n − 1 − dT ′(u)

)
+εT ′(ud−1)

(
n − 1 − dT ′(ud−1)

)
−

k∑
i=1

εT (vi)
(
n − 1 − dT (vi)

)
−εT (u)(n − 1 − dT (u)) − εT (ud−1)

(
n − 1 − dT (ud−1)

)
.
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As dT ′(vi) = dT (vi) = 1, (i = 1, 2, · · · , k) and εT ′(vi) > εT (vi),
εT ′(u) = εT (u) < εT ′(ud−1) = εT (ud−1), εT ′(vi) − εT (vi) = εT ′(ud−1) − εT (u). Then, we have

ξ
c
(T ′) − ξ

c
(T ) = k(n − 2)(εT ′(vi) − εT (vi)) − k

(
εT ′(ud−1) − εT (u)

)
= k(n − 2)(εT ′(vi) − εT (vi)) − k

(
εT ′(vi) − εT (vi)

)
= k(n − 3)(εT ′(vi) − εT (vi))

> 0.

Then
ξ

c
(T ′) > ξ

c
(T ).

Continue this procedure, forming new trees untill all vertices outside P having degree one are
adjacent to xd−1. Thus a tree H(p, n, q) of order n and diameter d is obtained, one has

ξ
c
(Bn,d) = ξ

c
(H(P, n, q)) ≥ ξ

c
(T ).

This completes the proof. �
Similar to previous discussion, we have ξ

c
(Bn,d) < ξ

c
(Bn,d+1) for any d ≥ 2. Therefore, it follows

that
ξ

c
(Pn) = ξ

c
(Bn,n−1) > ξ

c
(Bn,n−2) > · · · > ξ

c
(Bn,2) = ξ

c
(S n). (4)

Summarizing theorems 4.1, 4.2 and these inequlities (3), (4), we have the following result.

Theorem 4.3. Let T be a tree on n vertices. Then

2n2 − 6n + 4 ≤ ξ
c
(T ) ≤ f2(n, n − 1).

Where f2(n, n − 1) as mentioned in theorem 4.2. The left quality holds if and only if T � S n and the

right equality holds if and only if T � Pn.

5. Eccentric connectivity coindex of unicyclic graphs with given diameter

In this section, we consider the minimum ξ
c

of unicyclic graphs with given diameter. Let Gd
n be

the unicyclic graph with order n and diameter d. First, for even d, let V1
n,d be the graph obtained from

Pd+1 = u0u1. · · · , ud by attaching n − d − 1 pendent edges to u d
2

and adding an edge between u d
2 +1 and

one of the attached pendent vertices of u d
2
. Let V2

n,d be the graph obtained from Pd+1 = u0u1. · · · , ud by
attaching n − d − 1 pendent edges to u d

2
and adding an edge between two attached pendent vertices of

u d
2
, (see Figure 4).
For odd d, let V3

n,d be the unicyclic graphs in which there are s, t (s + t = n− d− 2) pendent vertices
adjacent to u d−1

2
and u d+1

2
of diametrel path respectively. Let V4

n,d be the unicyclic graphs in which there
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are p, q (p + q = n − d − 3) pendent vertices adjacent to u d−1
2

and u d+1
2

of diametrel path respectively,
(see Figure 4).
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Figure 4. The graphs in Theorem 4.1.

By direct calculation, for even d,

ξ
c
(V1

n,d) = ξ
c
(V2

n,d) =

d
2−1∑
i=1

(d − i)(2n − 6) + 2d(n − 2) +
d(d − 2)

2
+

(d + 2)
(
(n − 2)(n − d) − n

)
2

.

For odd d, any G ∈ V3
n,d, we have

ξ
c
(G) =

d−1
2 −1∑
i=1

(d − i)(2n − 6) + 2d(n − 2) +
(d + 1)(2n + d − 9)

2
+

(n − 2)(d + 3)(n − d − 2)
2

.

If G1 ∈ V3
n,d and G2 ∈ V4

n,d. By direct calculation we find that, ξ
c
(G1) < ξ

c
(G2). Let

f3(n, d) =


∑ d

2−1
i=1 (d − i)(2n − 6) + 3d2−6d+n2d−nd2+2n2−6n−nd

2 if n is even,∑ d−1
2 −1

i=1 (d − i)(2n − 6) + 3d2−nd−6d−10n+n2d−nd2+3n2+3
2 if n is odd.

Theorem 5.1. Let G be a unicyclic graph on n (≥ 7) vertices with diameter d ≥ 2. Then

ξ
c
(G) ≥ f3(n, d).

The equality holds if and only if G � V1
n,d or G � V2

n,d for even d and G � V3
n,d for odd d.
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Proof. Choose G0 in Gd
n such that ξ

c
(G0) is as small as possible. Let Pd+1 = u0u1, · · · , ud be a

diametral path and Ck be the unique cycle in G0. Similar as the proof of theorem 4.1 all vertices in
V(G0)\{V(P)∪V(Ck)} must be pendent vertices and adjacent to some vertices of V(P)∪V(Ck), we
denote it by G∗. First, we consider when the diameter d is even, we proceed by considering the
following possible cases.
Case 1. |V(Ck) ∩ V(Pd+1)| = 1.

In this case, let V(Ck) ∩ V(Pd+1) = ui. In the following, we show three facts.
Fact 1. All vertices in V(G∗)\{V(P)∪V(Ck)} must be adjacent to u d

2
of P.

Proof of Fact 1. If there exists a vertex us (with s , d
2 ) of P with pendent vertices, say w1,w2, · · · ,wk

attached in G∗. Let

G1 = G∗ − {usw1, usw2, · · · , uswk} + {u d
2
w1, u d

2
w2, · · · , u d

2
wk}.

By a similar approach in the proof of theorem 4.1, we get ξ
c
(G∗) > ξ

c
(G1), a contradiction to our

choice of G∗. Similarly, we conclude that there is no pendent vertices attached the vertex of cycle Ck

in G∗ other than ui. That is to say, each of the vertices other ui on cycle Ck in G∗ is of degree 2. This
completes the proof of fact 1.
Fact 2. The length of the cycle Ck is equal to 3, i.e., k = 3 in G∗.
Proof of Fact 2. If the length of the cycle k , 3.

Let Ck = uiv1v2, · · · , vk−1ui and NG∗(ui) ∩ V(Ck) = {v1, vk−1}. Let

G2 = G∗ − E(Ck) + v1vk−1 + {uiv1, uiv2, · · · , uivk−1}.

Clearly, G2 is in Gd
n and C3 is the unique cycle in G2. It is routine to check that

ξ
c
(G∗) − ξ

c
(G2) =

k−2∑
j=2

εG∗(v j)
(
n − 1 − dG∗(v j)

)
+ εG∗(ui)

(
n − 1 − dG∗(ui)

)
+εG∗(v1)

(
n − 1 − dG∗(v1)

)
+ εG∗(vk−1)

(
n − 1 − dG∗(vk−1)

)
−

k−2∑
j=2

εG2(v j)
(
n − 1 − dG2(v j)

)
− εG2(ui)

(
n − 1 − dG2(ui)

)
−εG2(v1)

(
n − 1 − dG2(v1)

)
− εG2(vk−1)

(
n − 1 − dG2(vk−1)

)
.

Note that εG∗(ui) = εG2(ui), εG∗(v1) = εG2(v1), εG∗(vk−1) = εG2(vk−1) and εG∗(v j) ≥ εG2(v j) > εG∗(ui)
for j = 2, · · · , k − 2 and εG∗(v2) = εG∗(ui) + 2, εG2(v2) = εG2(ui) + 1.

Therefore,

ξ
c
(G∗) − ξ

c
(G2) > (k − 3)εG∗(ui) +

k−2∑
j=2

εG∗(v2)(n − 3) −
k−2∑
j=2

εG2(v2)(n − 2)
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> (k − 3)εG∗(ui) + (k − 3)(n − 3)εG∗(v2) − (k − 3)(n − 2)εG2(v2)

= (k − 3)εG∗(ui) + (k − 3)(n − 3)(εG∗(ui) + 2)

−(k − 3)(n − 2)(εG∗(ui) + 1)

= (k − 3)εG∗(ui) + (k − 3)(−εG∗(ui) + n − 4)

= (k − 3)(n − 4)

> 0.

Then ξ
c
(G∗) > ξ

c
(G2), a contradiction. This completes the proof of fact 2.

Fact 3. ui is the center of the diametral path P in G∗.
Proof of Fact 3. Based on fact 2, we know that Pd+1 = u0u1, · · · , ud and Ck = uiv1vk−1. If ui , u d

2
, we

assume without loss of generality that dG∗(u0, ui) < d
2 , that is to say, dG∗(u0, ui) < dG∗(ui+1, ud). Move

the triangle and all the pendent edges from ui to u d
2

in G∗ and denote the result graph by G3. It is routine
to check that G3 in Gd

n. Since

εG∗(ui) − εG∗(u d
2
) = εG∗(v1) − εG3(v1) = εG∗(vk−1) − εG3(vk−1) = εG∗(v2) − εG3(v2).

We have

ξ
c
(G∗) − ξ

c
(G3) = εG∗(ui)

(
n − 1 − dG∗(ui)

)
+ εG∗(u d

2
)
(
n − 1 − dG∗(u d

2
)
)

+

k−1∑
i=1

εG∗(vi)
(
n − 1 − dG∗(vi)

)
− εG3(ui)

(
n − 1 − dG3(ui)

)
−εG3(u d

2
)
(
n − 1 − dG3(u d

2
)
)
−

k−1∑
i=1

εG3(vi)
(
n − 1 − dG3(vi)

)
> (k − 1)

(
εG∗(u d

2
) − εG∗(ui)

)
+ (n − 3)εG∗(v1)

+(n − 3)εG∗(vk−1) + (k − 3)(n − 2)εG∗(v2) − (n − 3)εG3(v1)

−(n − 3)εG3(vk−1) − (k − 3)(n − 2)εG3(v2)

=
[
− (k − 1) + 2(n − 3) + (n − 2)(k − 3)

](
εG∗(ui) − εG∗(u d

2
)
)

> (k − 1)(n − 4)
(
εG∗(ui) − εG∗(u d

2
)
)

> 0.

Then ξ
c
(G∗) > ξ

c
(G3), a contradiction again. This completes the proof of fact 3.

Case 2. P and Ck are vertex and edge disjoint.
Let Q = uiz1z2, · · · , zs−1zs be a path connecting path P and Ck. By the similar approach in the proof

of theorem 4.1, we can contract the whole path Q (i.e., ui and zs coincide and then attaching suitable
number of pendent vertices at ui) to get a new graph G4 with P and Ck having exactly one vertex in
common. So the following procedure similar as case 1.
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By the discussion as above, we obtain that for all G in Gd
n. If the unique cycle and the diameter in G

have no edges in common, then the extremal graph is V2
n,d when d is even. When d is even, the diameter

path has only one center, while when d is odd, the diameter path has two centers. In either case, the
pendent vertices in the minimum graph except the endpoints of the diameter path are all adjacent to
the center of the diameter path, the proof process is exactly the same. Here we omit the proof when d

is odd. Hence, the extremal graph is V4
n,d when d is odd. As is depicted in Figure 4.

Case 3. |V(Ck) ∩ V(Pd+1)| ≥ 2.
If there exist common edges between Pd+1 and Ck, then we get that all vertices in

V(G0)\{V(P)∪V(Ck)} must be adjacent to u d
2

of P similar as case 1. We denote it by G∗. Let
Pd+1 = u0u1, · · · , ud and Ck = uiui+1, · · · , u jy1y2, · · · , ymui. In this case, we first show that the unique
cycle Ck contained in G∗ is just C3, that is to say, k = 3, otherwise, we assume that k ≥ 4. First we
consider the diameter d is even. Let

G5 = G∗ − {uiym, ymym−1, · · · , y2y1, y1u j} + {u d
2
ym + u d

2
ym−1, · · · , u d

2
y2, u d

2
y1} + {u d

2 +1y1}.

By the definition of ξ
c

and bearing in mind that it is possible u j−1 = ui. As εG∗(yi) ≥ εG5(yi), i =

1, · · · ,m and εG5(y1) = εG5(y2) = εG5(y3) = · · · = εG5(ym). εG5(ui) = εG∗(ui) and εG5(u j+1) = εG∗(u j+1),
εG5(yi) ≥ εG5(u d

2
) + 1, εG∗(yi) ≥ εG∗(u d

2
) + 2, εG5(u d

2
) = εG∗(u d

2
), εG5(u d

2 +1) = εG∗(u d
2 +1),

Moreover, dG∗(yi) = 2, dG5(yi) = 1, i = 2, · · · ,m
dG∗(y1) = 2, dG5(y1) = 2 and dG5(u d

2
) = dG∗(u d

2
) + m, dG5(u d

2 +1) = dG∗(u d
2

+ 1) + 1
It follows that

ξ
c
(G∗) − ξ

c
(G5) =

m∑
i=2

εG∗(yi)(n − 3) + εG∗(y1)(n − 3)

+εG∗(ui)(n − 4) + εG∗(u j)(n − 4) + εG∗(u d
2
)(n − 1 − dG∗(u d

2
))

+εG∗(u d
2 +1)(n − 1 − dG∗(u d

2 +1))

−

m∑
i=2

εG5(yi)(n − 2) − εG5(y1)(n − 3) − εG5(ui)(n − 3)

−εG5(u j)(n − 3) − εG5(u d
2
)(n − 1 − dG5(u d

2
))

−εG5(u d
2 +1)(n − 1 − dG5(u d

2 +1))

=

m∑
i=2

[
εG∗(yi)(n − 3) − εG5(yi)(n − 2)

]
− εG∗(ui)

−εG∗(u j) + mεG∗(u d
2
) + εG∗(u d

2 +1)

> (m − 1)
[
(εG∗(u d

2
) + 2)(n − 3) − (n − 2)(εG∗(u d

2
) + 1)

]
−εG∗(ui) − εG∗(u j) + (m − 1)εG∗(u d

2
) + εG∗(u d

2
) + εG∗(u d

2 +1)

> (m − 1)
(
n − 4 − εG∗(u d

2
)
)

+ d

−εG∗(ui) − εG∗(u j) + (m − 1)εG∗(u d
2
)
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= (m − 1)(n − 4) + d −
(
εG∗(ui) + εG∗(u j)

)
> (m − 1)(n − 4) + d − 2d

= (m − 1)(n − 4) − d

> (m − 1)(n − 4) − (n − 2)

> 2(n − 4) − (n − 2) = n − 6

> 0.

Therefore,

ξ
c
(G∗) > ξ

c
(G5),

which contradicts the chioce of G∗.

Hence, the structure of G∗ can be described as follows: its unique cycle C3 and its diametral path
Pd+1 = u0u1, · · · , ud have only one edge u d

2
u d

2 +1 in common and there are some pendent edges attached
to u d

2
in G∗.

Summarizing the discussion as in case 3, we obtain that for all G in Gd
n, if the unique cycle and the

diameter in G have edge in common. When d is even, then the graph say V1
n,d with the minimum ξ

c
and

when d is odd, we can similarly get that the extremal graph belongs to V3
n,d.

Summarizing cases 1–3, when d is odd, for any G1 ∈ V3
n,d and G2 ∈ V4

n,d, we can easily obtain that
ξ

c
(G1) < ξ

c
(G2). Therefore, V3

n,d achieved the minimum ξ
c

for d is odd.

When d is even, ξ
c
(V1

n,d) = ξ
c
(V2

n,d), V1
n,d and V2

n,d obtain the minimum value of Eccentric connectivity
coindex at the same time (See Figure 4).

This completes the proof. �

6. Conclusions

In this paper, we first present the sharp lower bounds on ξ
c

for general connecteds graphs and
present a structure of the extremal graphs for eccentric connectivity coindex over cacti graphs with
n vertices and k cycles, then characterize the extremal trees with given order and diameter on the
eccentric connectivity coindex. Moreover, we optimize the extremal structure of unicyclic graphs with
given order and diameter. Along this line, some other interesting extremal problems on the eccentric
connectivity coindex are valuable to be considered.
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