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Abstract: In this paper, advertising competition among m firms is studied in a discrete-time dynamic
game framework. Firms maximize the present value of their profits which depends on their advertising
strategy and their market share. The evolution of market shares is determined by the firms’ advertising
activities. By employing the concept of the discrete-time potential games of González-Sánchez
and Hernández-Lerma (2013), we derived an explicit formula for the Nash equilibrium (NE) of the
game and obtained conditions for which the NE is an overtaking optimal. Moreover, we analyze
the asymptotic behavior of the overtaking NE where the convergence towards a unique steady state
(turnpike) is established.
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1. Introduction

This paper is concerned with the problem of finding conditions for overtaking optimality and
asymptotic behavior of the Nash equilibrium solution of a discrete-time advertising game problem.
The study of advertising competition in a differential game framework has received a good deal of
attention in the last three decades. Most of the studies which involve numerical, analytical, and
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qualitative analysis are devoted to the continuous-time model (see e.g. [12, 14, 19, 29] and the survey
paper of Huang et al. [18]). Articles on the discrete-time model of advertising games are rare because
of the difficulty in obtaining an explicit solution. Among the few papers [1, 8, 19, 25, 30] on
discrete-time models, the authors [1, 8, 25, 30] literally addressed the problem of finding,
characterising or comparing the optimal advertising strategies in duopolistic scenarios. Park and
Hahn [25] investigated the effects of pulsing for a firm responding to its competitor’s even or pulsed
advertising using the discrete version of the Lanchester model. In [8], Chintagunta and Vilcassim
derived an equlibrium profit-maximizing advertising policies for firms operating in a dynamic
duopoly. The authors [1] studied the optimal advertising problem of a monopolistic seller using the
Bellman method of dynamic programming and obtained an explicit recurrence relations for the
optimal control and the market share up to the step t. With the exception of the early work of
Sorger [30] on convergence to steady-state, asymptotic behavior of the Nash equilibrium advertising
strategies in the discrete-time case has remained unexplored to the best of our knowledge.

The concept of overtaking optimality criterion was first studied in economics in the framework of
capital accumulation models (see Ramsey [26], vonWeizsäcker [31], Gale [15], Brock [4]). Thereafter
it was considered in many papers on Markov decision processes and optimal control problems (OCP)
(see e.g. the survey paper of Carlson and Haurie [6], Nowak and Vega Amaya [24], McKenzie [21],
Dana and Le Van [9]). In differential games, Brock [5] first considered this concept with the classical
open-loop information structure of the equilibrium advertising strategies. This is followed by few other
papers (e.g. Rubinstein [28], Carlson and Haurie [6] and Nowak [23]). In [23], Nowak studied a class
of discrete-time symmetric games of capital accumulation and obtained the equilibrium properties
using some functional characterization of the overtaking optimality in dynamic programming. We
have found Nowak’s approach in [23] very useful to study overtaking optimality in advertising game
because it concerns the closed-loop information structures which is the case in advertising games.

The problem of finding the overtaking optimality conditions and some properties of the Nash
equilibrium (NE) solutions of the advertising game drew our attention to the potential game concept
proposed in [16] (see also [17]). The concept associates an OCP to the original game, whose optimal
solution is a Nash equilibrium for the game. Hence, finding these properties of the NE solution
reduces to that of the optimal control of the associated OCP. An obvious question here will be, is the
discrete-time advertising game a potential game? If this is the case, can we extend to advertising
games some results (e.g. overtaking optimality and turnpike property) in the literature of OCPs?
Finding answers to these questions is one of the key contributions of the present paper.

Summarizing, the main objective of this paper is to find conditions for overtaking optimality and
turnpike property of Nash equilibrium for discrete-time advertising games of m ≥ 2 competing firms.
To this end, we employ the concept of the discrete-time potential games.

The rest of the paper is organized as follows. In Section 2, we present the general model of discrete
time advertising model including the concept of potential games and overtaking optimality. Section 3
presents the main results of the paper which includes three subsections 3.1–3.3. Section 3.1 presents
an explicit formula of the Nash equilibrium solution at any stage of the game, while in Sections 3.2
and 3.3, we provide conditions for overtaking optimality and asymptotic turnpike property of the Nash
equilibrium solution, respectively. Section 4 concludes the paper.
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2. Discrete-time advertising game model

Consider the advertising difference game of m ≥ 2 firms competing for the same market share. For
each firm i = 1, 2, · · · ,m, the state xi

t ∈ Xi := [0, 1] is firm i’s market share at time period t, and the
control variable ui

t ∈ U i = [0, 1] is the rate advertising expenditure of firm i at time t. The set U i denotes
the set of all possible advertising strategies of firm i. The game’s state space X := X1 × · · · × Xm is the
m−simplex in Rm, that is, the set of vectors xt = (x1

t , · · · , x
m
t ) with nonnegative components whose sum

equals 1.
An extension of the discrete-time duopolistic Lanchester model of advertising games proposed in [8,

25, 30] to m competing firms is given for each firm i = 1, · · · ,m by

xi
t+1 = f i

t (xi
t, u

1
t , · · · , u

m
t ), (2.1)

where

f i
t (xi

t, u
1
t , · · · , u

m
t ) =

1 − ui
t −

m∑
j,i

u j
t

 xi
t + ui

t

is a given function which decomposes the market share of firm i into that carried over from the previous
period and that gained by advertising.

The Markov strategy for firm i is a sequence µi = {ui
0, u

i
1(xi

1), ui
2(xi

2), · · · } that specifies the rate
of advertising expenditure ui

t of firm i in every period t as a function of its market share. Let the
strategy profile of all firms µ = (µ1, · · · , µm) determine the sequence (ui

0, u
i
1, u

i
2, u

i
3, · · · ) of advertising

expenditure rate for every firm i. The goal of each firm i is to maximize the following payoff functions

Ji(xi
0, µ) =

∞∑
t=0

gi
t(xi

t+1, u
i
t) (2.2)

subject to (2.1), where gi
t(xi

t+1, u
i
t) := βt

i(qixi
t+1 −

ci
2 (ui

t)
2) denotes the running payoff of player i at stage

t, βi > 0 represents firm i’s discount rate, qi > 0 is firm i’s revenue per unit of market share and ci is
the advertising cost function of firm i. Note that the function gi

t can also be expressed as a function of
xt and ut for all i.

Let σi ∈ U i, and write (µ−i, σi) to denote µ with µi replaced by σi.

Definition 2.1. A profile of strategies µ∗ = (µ1∗, · · · , µm∗) is a Nash equilibrium for the noncooperative
advertising difference game (ADG) problems (2.1) and (2.2) if

Ji(xi
0, µ
∗) − Ji(xi

0, (µ
−i∗, σi)) ≥ 0 (2.3)

for every firm i and σi ∈ U i, xi
0 ∈ (0, 1].

Since the series (2.2) might fail to converge, we introduce the finite horizon payoff function

Ji
T (xi

0, µ) =
T∑

t=0

gi
t(xi

t+1, u
i
t),

for any T ∈ N.
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Definition 2.2. A profile µ∗ = (µ1∗, · · · , µm∗) is said to be an overtaking Nash equilibrium if, for every
i ∈ {1, ...,m} and σi ∈ U i, we have

lim inf
T→∞

[Ji
T (xi

0, µ
∗) − Ji

T (xi
0, (µ

−i∗, σi))] ≥ 0. (2.4)

The inequality (2.4) is equivalent to the following. For any given ε > 0: For every i = 1, ...,m and
σi ∈ U i, there exists T ∗ = T ∗(ε, σi, i = 1, ...,m) such that

Ji
T (·, µ∗) ≥ Ji

T (·, (µ−i∗, σi)) + ε (2.5)

for all T > T ∗. In other words, (2.5) states that, for any given ε > 0, the left-hand side of (2.5) overtakes
(or “catches up”) the right-hand side for all T “sufficiently large” (i.e., for all T > T ∗).

Definition 2.3 (Definition 5.1, [16]). The noncooperative ADGs (2.1) and (2.2) is said to be a potential
difference game (PDG) if there exists an OCP such that a solution to the OCP is also a Nash equilibrium
for the game. A PDG is called a Markov potential game if only Markov multistrategies are considered
for the game as well as in the corresponding OCP.

Remark 1. Given a real valued function ρt on X × U, where U =
∏m

i=1 U i, we can define an objective
function

J(x0, ut) :=
∞∑

t=0

ρt(xt+1, ut), (2.6)

which together with the system (2.1) describes an OCP.
From [16], if the games (2.1) and (2.2) is a PDG with an associated OCP as in Remark 1, then ρt is

called a potential function for the noncooperative difference games (2.1) and (2.2).
Research problem. The research problem is to use the concept of potential difference game to

1. prove the existence of overtaking equilibria for the discrete-time ADGs (2.1) and (2.2);
2. analyze the asymptotic behaviour of the overtaking equilibria in (1).

3. Main results

To address the research problems 1 and 2, we first verify if the noncooperative ADGs (2.1) and (2.2)
is indeed a PDG. To this end, we prove the discrete time version of the potential games proposed
in [13].

Theorem 3.1. Let G= ({U i}mi=1, {J
i}mi=1, { f

i
t }

m
i=1) be the compact form of the games (2.1), (2.2) and Pt :

X × U → R a certain function. Then G is a PDG with potential function Pt if, for every i = 1, · · · ,m,
there exists a function hi

t : X−i × U−i → R where U−i :=
∏

j,i U j and X−i :=
∏

j,i X j such that

gi
t(xt+1, ut) = Pt(xt+1, ut) + hi

t(x−i
t , u

−i
t ), (3.1)

for all ut ∈ U.

Proof. In the difference game G, observe that the running payoff

gi
t(xt+1, ut) = βt

i(qixi
t+1 −

ci

2
(ui

t)
2)

=

m∑
i=1

βt
i

(
qixi

t+1 −
ci

2
(ui

t)
2
)
+

∑
j,i

βt
j

(c j

2
(u j

t )
2 − q jx

j
t+1

)
.

(3.2)
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Let the functions Pt and hi
t be defined by

Pt(xt+1, ut) := ρt(xt, ut) :=
m∑

i=1

βt
i(qixi

t+1 −
ci

2
(ui

t)
2) (3.3)

and
hi

t(x−i
t , u

−i
t ) :=

∑
j,i

βt
j

(c j

2
(u j

t )
2 − q jx

j
t+1

)
, i = 1, 2, · · · ,m. (3.4)

It follows from (3.2) that
gi

t(xt+1, ut) = Pt(xt+1, ut) + hi
t(x−i

t , u
−i
t )

for all i = 1, · · · ,m. That is, the expression (3.1) holds for i. In view of Remark 1, consider the OCP
defined by the function Pt as follows:

max
(xt ,µ)∈X×U

∞∑
t=0

Pt(xt+1, ut) (3.5)

subject to

xt+1 =

1 − m∑
i=1

ui
t

 xt + ut, (3.6)

where xt+1 = (x1
t+1, · · · , x

m
t+1) and ut = (u1

t , · · · , u
m
t ).

Let u∗t = (u1∗
t , · · · , u

m∗
t ) ∈ U be an optimal solution (that will be characterized in the next section)

of the associated OCPs (3.5)–(3.6) at stage (or step) t with corresponding optimal state
x∗t+1 = (x1∗

t+1, · · · , x
m∗
t+1) ∈ X.

This implies
∞∑

t=0

Pt(x∗t+1, u
∗
t ) ≥

∞∑
t=0

Pt(xt+1, ut).

For an arbitrary i fixed, let ui
t , ui∗

t be the advertising strategy of firm i. Let xt+1 = (x1
t+1, · · · , x

m
t+1) be

the current market share given by (3.6) corresponding to (u−i∗
t , u

i
t).

The optimality of u∗t and x∗t+1 implies that
∞∑

t=0

Pt(x∗t+1, u
∗
t ) ≥

∞∑
t=0

Pt(xt+1, (ui
t, u
−i∗
t )). (3.7)

By adding
∑∞

t=0 hi
t(x−i∗

t , u
−i∗
t ) to both sides of the inequality (3.7), we obtain

∞∑
t=0

gi
t(x∗t+1, u

∗
t ) ≥

∞∑
t=0

gi
t(xt+1, (u−i∗

t , u
i
t)) (3.8)

for all i = 1, · · · ,m.
Since (3.8) holds for arbitrary i, we conclude from Definition 2.1 that u∗t is a Nash equilibrium for

the games (2.1) and (2.2).
Consequently the research problems 1 and 2 are now simplified in the sense that, rather than dealing

with the complex cases (2.1) and (2.2), we solve both problems in the framework of the associated
OCPs (3.5) and (3.6). To this end, we first derive a formula for the optimal solution of the associated
OCPs (3.5) and (3.6) at any stage k (as in Nowak’s papers [22, 23]).
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3.1. The k-step nonsymmetric Nash equilibrium

To simplify notations, we let

At := 1 −
m∑

i=1

ui
t and ft(xt, ut) := Atxt + ut, (3.9)

so that (3.6) becomes
xt+1 = ft(xt, ut). (3.10)

Observe that for almost all t, the functions Pt and ft are both continuously differentiable in the interior
of X × U, and also have defined and bounded partial derivatives. Moreover, Pt can be expressed in
terms of the vectors xt and ut since

Pt(xt+1, ut) =
m∑

i=1

βt
i

(
qixi

t+1 −
ci

2
(ui

t)
2
)

=

m∑
i=1

βt
i

(
qi(Atxi

t + ui
t) −

ci

2
(ui

t)
2
)
.

(3.11)

Assumption 1. For all t ∈ N, At ∈ (0, 1].

Lemma 3.2. Under Assumption 1, the series

∞∑
r=0

βr
i

1∏
s=r

At+s (3.12)

converges uniformly for all i = 1, 2, · · · ,m, where

r0∏
p=r

Ap :=

ArAr−1Ar−2 · · · Ar0 if r ≥ r0,

1 if otherwise.

Proof. For each fixed t ∈ N, Assumption 1 implies that

1∏
s=r

At+s ≤ 1

for all r ∈ N ∪ {0}. This further implies

βr
i

1∏
s=r

At+s ≤ β
r
i

for all r ∈ N ∪ {0} and i = 1, 2, · · · ,m.
Since the geometric series

∑∞
r=0 β

r
i converges for each i, then the conclusion of the lemma follows

from the Weierstrass M−test of series convergence.
□

Assumption 2. Let the compact set U be connected, convex, and

J(x0, ut) =
∞∑

t=0

Pt(xt, ut) < ∞
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for each ut ∈ U.
Given the vector of initial market shares x0 ∈ X and T ∈ N, let

JT (x0, ut) :=
T∑

t=0

Pt(xt, ut).

Theorem 3.3. Let Assumptions 1 and 2 hold. Then the k-step Markov Nash equilibrium
u∗k = (u1∗

k , · · · , u
m∗
k ) for the ADGs (2.1) and (2.2) is such that

ui∗
k :=

qiη
i
k

ci
(1 − xi∗

k ), i = 1, 2, · · · ,m,

where ηi
k :=

∑∞
r=0 β

r
i
∏1

s=r A∗k+s.

Proof. Let the hypotheses of the theorem hold and Hk : X × U × Rm
+ → R be the Hamiltonian function

of the OCPs (3.5) and (3.6) at each step k given by

Hk(xk, uk, λk+1) = Pk(xk, uk) + λk+1 · fk(xk, uk), (3.13)

where λk = (λ1
k , · · · , λ

m
k ) is the adjoint sequence at stage k = 1, 2, · · · .

Since Assumption 2 holds and the potential function Pk is concave, then in view of the maximum
principle for discrete time OCPs proposed in [11] (see also [2]), the optimal advertising control u∗k of
the OCPs (3.5) and (3.6) must satisfy

λk =
∂H∗k
∂x

0 =
∂H∗k
∂y
,

(3.14)

where
H∗k := Hk(x∗k, u

∗
k, λk+1),

while ∂
∂x and ∂

∂y denote the gradients corresponding to the first and the second variables respectively.
Note that the convexity of the set U in Assumption 2 is required to guarantee the Eq (3.14) in [11].

For any k ∈ N, the trajectory x∗k corresponding to u∗k starting from ξ (=x∗0) can be obtained as follows:

x∗1 = A∗0ξ + u∗0
x∗2 = A∗1x1 + u∗1 = A∗1A∗0ξ + A∗1u∗0 + u∗1
...

x∗k+1 =

0∏
p=k

A∗pξ +
k∑

s=0

s+1∏
p=k

A∗pu∗s.

(3.15)

That is, fk(ξ, u∗k) =
∏0

p=k A∗pξ +
∑k

s=0
∏s+1

p=k A∗pu∗s.
Then it follows from (3.14) (using (3.11) and (3.15)) that for each i = 1, 2, · · · ,m, we have

λi
k = β

k
i qi

0∏
p=k

A∗p + λ
i
k+1

0∏
p=k

A∗p =
0∏

p=k

A∗p(βk
i qi + λ

i
k+1)

ui∗
k = (βk

i ci)−1(1 − f i
k−1(ξi, ui∗

k−1))(βk
i qi + λ

i
k+1),
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where A∗p = 1 −
∑m

i=1 ui∗
p .

Thus

ui∗
k =

1 − f i
k−1(ξi, ui∗

k−1)

βk
i ci

∏1
p=k A∗p

λi
k (3.16)

for all i = 1, 2, · · · ,m.
The formula for the adjoint sequence {λk}

∞
k=1 proposed in [2] suggests that

λk =

∞∑
s=k

∂

∂ξ
Ps(ξ, u∗s)|ξ=x∗0

=

∞∑
s=k

(βs
1q1, · · · , β

s
mqm)

0∏
p=s

A∗p. (3.17)

Indeed the expression (3.17) satisfies the Eq (3.14) for all k ∈ N as shown in [11] using some concept
of Gâteaux differentials.

We now apply Lemma 1 and (3.17) on (3.16) to obtain

ui∗
k =

1 − f i
k−1(ξi, ui∗

k−1)

βk
i ci

∏0
p=k A∗p

∞∑
s=k

βs
i qi

0∏
p=s

A∗p

=
qi(1 − xi∗

k−1)

βk
i ci

∏0
p=k A∗p

βk
i

0∏
p=k

A∗p + β
k+1
i

0∏
p=k+1

A∗p + β
k+2
i

0∏
p=k+2

A∗p + · · ·


=

qi

ci
(1 − xi∗

k )
(
1 + βiA∗k+1 + β

2
i A∗k+2A∗k+1 + · · ·

)
=

qiη
i
k

ci
(1 − xi∗

k ).

That is,
u∗k =

(
q1η

1
k(1 − x1∗

k )/c1, · · · , qmη
m
k (1 − xm∗

k )/cm

)
. (3.18)

The expression (3.18) is the k−step optimal solution of the OCPs (3.5) and (3.6) which according to
Definition 2.1, is also the k−step Markov Nash equilibrium for the ADGs (2.1) and (2.2).

Remark 2. It is worth noting that the closed-loop optimal solution (3.18) is comparable to the Markov
strategies for continuous time duopolistic advertising game obtained in [10], Section 11.1.

3.2. Conditions for overtaking optimality (OO)

To establish these conditions, we first present the following concept of overtaking optimality (OO)
with respect to the associated OCPs (3.5) and (3.6).

Definition 3.4. The sequence {u∗t }
∞
t=1 is said to be OO if for all ε > 0 and {ut}

∞
t=1 ∈ U, there exists

T ∗ = T ∗(ε, ut) > 0 such that for all T > T ∗ holds

JT (x0, ut) − JT (x0, u∗t ) ≤ ε,

which is equivalent to saying that

lim inf
T→∞

[JT (x0, u∗t ) − JT (x0, ut)] ≥ 0. (3.19)
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Assumption 3. For almost all t > 0, there exists T ∗ = T ∗(t) > 0 such that the Hamiltonian Hτ is
concave in (xτ+1, uτ) for each τ ≥ T ∗, where we take λτ as defined in (3.17).

Let the brackets ⟨·, ·⟩ denotes the scalar product of two vectors.

Theorem 3.5. Under Assumptions 2 and 3, the optimal control u∗t with corresponding trajectory x∗t+1
is an OO for the associated OCPs (3.5) and (3.6) if for each xt+1 ∈ X the following holds:

lim inf
τ→∞

τ∑
t=1

⟨λt − λt+1, x∗t+1 − xt+1⟩ ≥ 0. (3.20)

Proof. Consider the optimal pair (x∗t+1, u
∗
t ) ∈ X × U obtained in Theorem 3.3. The concavity of Ht in

Assumption 3 implies

Ht − H∗t ≤
〈
∂

∂x
H∗t , xt+1 − x∗t+1

〉
+

〈
∂

∂y
H∗t , ut − u∗t

〉
(3.21)

for all (xt+1, ut) ∈ X × U, t = 1, 2, · · · , τ.
Then for any admissible pair (xt+1, ut) ∈ X × U, we have from (3.13) that

Jτ(x0, u∗t ) − Jτ(x0, ut) =
τ∑

t=1

[Pt(x∗t+1, u
∗
t ) − Pt(xt+1, ut)]

=

τ∑
t=1

[H∗t − Ht] +
τ∑

t=1

⟨λt+1, ft(xt, ut) − ft(x∗t , u
∗
t )⟩.

(3.22)

Applying (3.14) and (3.21) on (3.22), and rearranging some terms yields

Jτ(x0, u∗t ) − Jτ(x0, ut) ≥
τ∑

t=1

〈
∂

∂x
H∗t , x

∗
t+1 − xt+1

〉
+

τ∑
t=1

〈
∂

∂y
H∗t , u

∗
t − ut

〉
+

τ∑
t=1

⟨λt+1, ft(xt, ut) − ft(x∗t , u
∗
t )⟩

=

τ∑
t=1

⟨λt, x∗t+1 − xt+1⟩ +

τ∑
t=0

⟨λt+1, xt+1 − x∗t+1⟩

=

τ∑
t=1

⟨λt − λt+1, x∗t+1 − xt+1⟩.

(3.23)

Hence
lim inf
τ→∞

[Jτ(x0, u∗t ) − Jτ(x0, ut)] ≥ 0.

The last inequality follows from (3.20) and (3.23). Thus, the optimal solution u∗t = (u1∗
t , · · · , u

m∗
t )

(which is also a Markov Nash equilibrium) with corresponding optimal path x∗t+1 is an overtaking
optimal for the associated OCPs (3.5) and (3.6) of the ADGs (2.1) and (2.2).

Remark 3. Conditions for OO similar to our Theorem 3.5 is obtained for continuous-time OCPs in [3]
where the author considered a Cauchy-type formula for the adjoint function λ(·). Here, we obtain the
same result in discrete-time settings. More precisely, we obtain a discrete-time version of the adjoint
formula (3.17) using the concept of Gâteaux differentials and obtain the conditions for OO using the
concavity of the Hamiltonian function Ht and the discrete-time maximum principle (3.14).
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3.3. Asymptotic turnpike property of the overtaking NE

To study the asymptotic behaviour of the overtaking optimal pair (x∗t+1, u
∗
t ), we transform the OCP

to a dynamic programming problem (described in terms of the state evolution) that is consistent with
the standard approach to overtaking optimality as follows.

From the OCPs (3.5) and (3.6), observe that for all t = 1, 2, · · · ,

ui
t =

xi
t+1 + (Σ−it − 1)xi

t

1 − xi
t

for all i = 1, 2, · · · ,m, (3.24)

where Σ−it :=
∑

j,i u j
t .

Then the potential function Pt can be rewritten as

Pt(xt, xt+1) =
m∑

i=1

βt
i

qixi
t+1 −

ci

2

(
xi

t+1 + (Σ−it − 1)xi
t

1 − xi
t

)2 . (3.25)

Consequently, the OCPs (3.5) and (3.6) becomes

max
(xt ,xt+1)∈Ω

∞∑
t=1

Pt(xt, xt+1), (3.26)

where Ω is a closed subset of X × X. In the terminology of Gale [15] (see also [33]), the sequence of
market share {xt}

∞
t=1 is said to be a program for Ω if (xt, xt+1) ∈ Ω for all t = 1, 2, · · · .

In the sequel, we assume equal discount rate β1 = · · · = βm = β and refer to the potential function
Pt as in (3.25).

Definition 3.6. The program {x̄t}
∞
t=1 is called:

i. A stationary (constant) program if x̄t+1 = x̄t = x̄ for all t;

ii. An optimal stationary program (OSP) if (i) holds and

x̄ = argmax
x∈X

Pt(x, x) (3.27)

for all t = 1, 2, · · · .

Let x̄ be a unique solution of the maximization problem (3.27).

Definition 3.7. A program {xt}
T
t=1 is said to be good if the sequence T∑

t=1

[Pt(xt, xt+1) − Pt(x̄, x̄)]


∞

T=1

(3.28)

is bounded or if

lim inf
T→∞

T∑
t=1

[Pt(xt, xt+1) − Pt(xt
′, xt+1

′)] > −∞ (3.29)

for any other program {xt
′}Tt=1.
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In the classical turnpike theory for OCPs, the objective function Pt is said to possess the turnpike
property if there exists a point x̄ ∈ X (a turnpike) such that for each positive number ε there exists an
integer L ≥ 1 such that for each integer T ≥ 2L and each solution {xt}

T
t=0 of the OCPs (3.5) and (3.6),

the inequality ρ(xt, x̄) ≤ ε is true for all t = L, · · · ,T − L ( where (X, ρ) is a compact metric space,
and L does not depend on x0 and xT ) [32]. Moreover, if the turnpike x̄ is a singleton (unique) then it is
calculated as a solution of the maximization problem (3.27).

As noted in [33], some of the basic tools required to establish this property are: the compactness
of the state space X, convexity of Ω and the (strict) concavity of the the objective function Pt (see
e.g. [15, 20, 27, 31]). The author [33] further described the asymptotic turnpike property of a program
{xt} using the notion of a “good” program. That is, the asymptotic turnpike property is established if
the program {xt} is good and converges to the turnpike x̄ as T tends to infinity (see [33] Section 1.2,
property (iii)). Brock [4] also established this property for the average utility functions using the
concept of good programmes and termed it “average turnpike property” (see [4], Lemma 4).

Equipped with the aforementioned tools and the fact that the OO program {x∗t }
T
t=1 is a good program

(in view of (3.19)), to establish the asymptotic turnpike property we show the existence of the turnpike
x̄ and the convergence of the sequence {x∗t }

T
t=1 to x̄ as T tends to infinity.

Note that x̄ = (x̄1, · · · , x̄m) solves (3.27) if and only if x̄i solves

x3
i − 3x2

i + (3 + Σ2
−itci/qi)xi − 1 = 0, i = 1, 2, · · · ,m. (3.30)

The cubic equation (3.30) is obtained by applying the first-order conditions for maximum on (3.27).

Lemma 3.8. There exists a unique real solution

x̄i = 1 +
κi
3√
18
−

3
√

2
3Σ

2
−itci

κiqi
, i = 1, 2, · · · ,m, (3.31)

where

κi :=
3

√
√

3
√

4(Σ2
−it

ci/qi)3 + 27(Σ2
−it

ci/qi)2 − 9(Σ2
−it

ci/qi)

for all t = 1, 2, · · · , to the cubic equation (3.30).

Proof. The solution (3.31) can be analytically derived using the Cardano’s method [7].
Let ci and qi be chosen such that x̄i ∈ (0, 1) for all i = 1, 2, · · · ,m, then x̄ = (x̄1, · · · , x̄m) is the

unique solution of (3.27).
The next two lemmas are crucial in proving the convergence of the OO program. Results similar to

Lemma 3.9 below is proved in McKenzie [21] and Dana and Le Van [9] for bounded objective
functions, and in Nowak [23] for unbounded objective functions.

Assumption 4. The components of the vector

∂

∂x
Pt(x̄, x̄) −

∂

∂y
Pt(x̄, x̄)

are all positive.
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Lemma 3.9. Under Assumption 4, let

ζ :=
1

2βt

(
∂

∂x
Pt(x̄, x̄) −

∂

∂y
Pt(x̄, x̄)

)
. (3.32)

Then for all (xt, xt+1) ∈ Ω holds

Pt(xt, xt+1)/βt + ⟨ζ, xt+1 − xt⟩ ≤ P̄, (3.33)

where P̄ = Pt(x̄, x̄)/βt.

Proof. Define
ϕ(x, y) := Pt(x, y)/βt + ⟨ζ, y − x⟩.

for all (x, y) ∈ Ω.
Observe that

∂

∂x
ϕ(x, y) =

1
βt

∂

∂x
Pt(x, y) − ζ

=
1
βt

(
∂

∂x
Pt(x, y) −

1
2
∂

∂x
Pt(x̄, x̄) +

1
2
∂

∂y
Pt(x̄, x̄)

)
.

Hence,

∂

∂x
ϕ(x̄, x̄) =

1
2βt

(
∂

∂x
Pt(x̄, x̄) +

∂

∂y
Pt(x̄, x̄)

)
=

1
βt

∂

∂x
Pt(x̄, x̄) = 0.

Similarly, ∂
∂yϕ(x̄, x̄) = 0.

This implies that x̄ is also a candidate for the maximizer of ϕ. Since X is compact and ϕ is continuous
(which implies boundedness of ϕ), then it follows from the concavity of ϕ that the maximizer is unique.
Hence we must have

ϕ(x, y) ≤ P̄

for all (x, y) ∈ Ω. □

Lemma 3.10. There exists a number M such that for any program {xt}
T
t=1 starting from x0,

T∑
t=1

[Pt(xt, xt+1)/βt − P̄] ≤ M

for all T .

Proof. The proof follows directly from Lemma 3.9. That is, for all T we have

T∑
t=1

[Pt(xt, xt+1)/βt − P̄] ≤
〈
ζ,

T∑
t=1

[xt − xt+1]
〉

= ⟨ζ, x0 − xT ⟩

≤ M,
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where M = ⟨ζ, x0⟩.
□

Now, let Pt be concave at the interior point (x̄, x̄) and define

δt := P̄ − Pt(x∗t , x
∗
t+1)/βt + ⟨ζ, x∗t − x∗t+1⟩.

From Lemma 3.8, we have δt ≥ 0 for all t = 1, 2, · · · ,T. Note that

Pt(x∗t , x
∗
t+1)/βt − P̄ = ⟨ζ, x∗t − x∗t+1⟩ − δt. (3.34)

Summing (3.34) on t and using the fact that {x∗t } is a good program, then there exists a number N
and a positive integer TN such that for all T ≥ TN we have

N ≤
T∑

t=1

[Pt(x∗t , x
∗
t+1)/βt − P̄]

= ⟨ζ,

T∑
t=1

[x∗t − x∗t+1]⟩ −
T∑

t=1

δt

≤ ⟨ζ, x∗0⟩ −
T∑

t=1

δt.

This implies

0 ≤
T∑

t=1

δt ≤ ⟨ζ, x∗0⟩ − N

for all T ≥ TN . That is, the series
∑∞

t=1 δt is convergent (which implies limt→∞ δt = 0).
Next we define

Θ(x∗t , x
∗
t+1) := Pt(x∗t , x

∗
t+1)/βt − P̄ + ⟨ζ, x∗t+1 − x∗t ⟩.

It is easy to see from Lemma 3.9 that the maximum value of Θ is zero. Moreover, Θ is strictly concave
(from concavity of Pt). Hence, (x̄, x̄) is the unique maximum point of Θ and Θ(x̄, x̄) = 0.

Since
lim
t→∞
Θ(x∗t , x

∗
t+1) = − lim

t→∞
δt = 0.

Then it follows from the continuity of Θ that limt→∞ x∗t = x̄.

4. An example

Consider the ADGs (2.1) and (2.2) with m = 3. Let the firms discount rate (β1, β2, β3), revenue per
unit market shares (q1, q2, q3), and advertising costs (c1, c2, c3) be given by
(0.1, 0.12, 0.13), (0.59, 0.6, 0.63), and (1, 1, 1) respectively. Suppose the initial market shares
x0 = (0.49, 0.5, 0.52), then the Theorem 3.3 suggests that the k−step Markov Nash equilibrium

(u1∗
k , u

2∗
k , u

3∗
k ) =

(
0.59kη1

k(1 − x1∗
k ), 0.6kη2

k(1 − x2∗
k ), 0.63kη3

k(1 − x3∗
k )

)
,

where ηi
k is the sum of the series

1 + βiAk+1 + β
2
i Ak+2Ak+1 + · · · ,
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for each i = 1, 2, 3.
Consequently, the corresponding market shares of the firms become

x1∗
k+1 = 0.49

0∏
p=k

A∗p +
k∑

s=0

s+1∏
p=k

A∗pη
1
s(1 − x1∗

s )0.59s;

x2∗
k+1 = 0.5

0∏
p=k

A∗p +
k∑

s=0

s+1∏
p=k

A∗pη
2
s(1 − x2∗

s )0.6s;

x3∗
k+1 = 0.52

0∏
p=k

A∗p +
k∑

s=0

s+1∏
p=k

A∗pη
3
s(1 − x3∗

s )0.63s.

In view of Theorem 3.1, the potential function here takes the form

Pt(xt+1, ut) = 0.1t

(
0.59x1

t+1 −
1
2

(u1
t )2

)
+ 0.12t

(
0.6x2

t+1 −
1
2

(u2
t )2

)
+ 0.13t

(
0.63x3

t+1 −
1
2

(u3
t )2

)
.

The associated OCP becomes

max
(xt ,µ)∈X×U

∞∑
t=0

Pt(xt+1, ut)

subject to

xi
t+1 =

1 − 3∑
i=1

ui
t

 xt + ui
t, i = 1, 2, 3.

The Hamiltonian function Hk can be obtained from the expression

Hk = Pk(xk, uk) + (λ1
k+1, λ

2
k+1, λ

3
k+1)T · (x1

t+1, x
2
t+1, x

3
t+1), (4.1)

and the adjoint sequence

(λ1
k , λ

2
k , λ

3
k) =

∞∑
s=k

(
0.1s(0.59)

0∏
p=s

A∗p, 0.12s(0.6)
0∏

p=s

A∗p, 0.13s(0.63)
0∏

p=s

A∗p
)
.

Since Hk is concave in (x∗t+1, u
∗
t ) with respect to the associated OCP above, then it follows from

Theorem 3.5 that the Markov Nash equilibrium strategy {(u1∗
t , u

2∗
t , u

3∗
t )}∞t=1 is indeed an overtaking

optimal provided the

lim inf
τ→∞

τ∑
t=1

3∑
i=1

(λi
t − λ

i
t+1)(xi∗

t+1 − xi
t+1) ≥ 0

for each xi
t+1 ∈ X, i = 1, 2, 3.
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5. Conclusions

We have studied a discrete-time game of advertising competition among m ≥ 2 firms where firms
maximize the present value of their profits which depend on their advertising strategy and their market
share. The evolution of market shares is determined by the firms’ advertising activities. By first
identifying the advertising game as a potential game, an optimal control problem is obtained whose
optimal solution is a Nash equilibrium of the game. We derived an explicit formula for the Nash
equilibrium (NE) in Theorem 3.3 and obtained conditions for which the NE is an overtaking optimal
(see Theorem 3.5). Lastly, we analyze the asymptotic behavior (that is, the turnpike property) of the
overtaking NE where the convergence towards a unique steady state (turnpike) is established.

Abbreviations

ADG, Advertising difference games; PDG, potential difference game; OO, overtaking optimality;
NE, Nash equilibrium.
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