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Abstract: It is of great importance for physicists and engineers to assess a lifetime distribution of a
series-parallel system when its components’ lifetimes are subject to a finite mixture of distributions.
The present article addresses this problem by introducing a new distribution called “Poisson-geometric-
Lomax distribution”. Important properties of the proposed distribution are discussed. When the
stress is an increasing nonlinear function of time, the progressive-stress model is considered and the
inverse power-law model has suggested a relationship between the stress and the scale parameter
of the proposed distribution. Based on the progressive type-II censoring with binomial removals,
estimation of the included parameters is discussed using maximum likelihood and Bayes methods.
An example, based on two real data sets, demonstrates the superiority of the proposed distribution over
some other known distributions. To compare the performance of the implemented estimation methods,
a simulation study is carried out. Finally, some concluding remarks followed by certain features and
motivations to the proposed distribution are presented.
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1. Introduction

Because of advancements in manufacturing and technical development, products and devices are
becoming increasingly reliable, making typical life tests under normal conditions difficult, if not
impossible. For the industrial markets, such tests are too time-consuming and costly to get sufficient
information about a product’s lifetime distribution or even a prototype. As a result, the accelerated life
test (ALT) is becoming more popular as well as important, as it gives information on a highly reliable
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product’s lifetime in a short amount of time, see [1, 2]. More failures can be collected quickly by
conducting the life test at higher stress levels than normal operating conditions. A suitable
stress-response regression model is then used to estimate the lifetime distribution at the usage stress.
As a particular class of ALT, the progressive-stress test implements a special stress-loading scheme
where the stress increases in time, see [3–6].

Censoring often occurs when some lifetimes of products are missing or when some experimental
design purposes are being implemented. Type-I and type-II censoring are the most prevalent schemes.
These two types of censoring do not have the flexibility to allow the experimenter to withdraw units
from a life test at different stages during the experiment. Because of this lack of flexibility,
progressive censoring is proposed as a more general censoring technique. This technique enables the
experimenter to withdraw units from a life test at different stages, other than the final point, through
the test experiment.

One of various risk factors could cause the units to fail in reliability, engineering, biomedicine,
physical studies, and other fields. If the risks are unclear, an issue may occur regarding the factor
that caused the unit to fail, and as a result, the lifetime associated with this particular risk cannot be
determined. In such cases, the maximum (minimum) lifetime value with all risks can only be observed.
This is referred to as a “series (parallel) system” in the literature. These two systems can be joined to
form a new system known as a “series-parallel system”, see its description in Figure 1. In a series
system, components are connected in such a way that the failure of a single component leads to the
failure of the system. On the other hand, a system in which failure of all components leads to the
failure of the system is called a parallel system. Finally, a series-parallel system is a system in which m
subsystems are connected in series and each subsystem consists of k components connected in parallel,
see Figure 1. For such a system, failure is observed if a subsystem fails. The technique of compounding
of distribution functions may be used to construct the lifetime distribution of the series-parallel system.

Figure 1. Diagram for a series-parallel system.

Abdel-Hamid and Hashem [7] introduced a new distribution for the series-parallel system by
compounding two Poisson distributions (truncated at zero) with an exponential distribution. They
used six estimation methods to estimate the included parameters. In [8], they obtained a new
distribution by compounding two discrete distributions with a mixture of continuous distributions
based on a parallel-series system. Nadarajah et al. [9] applied the progressive-stress ALT technique
using type-I progressively hybrid censored data with binomial removal to components connected as a
parallel-series structure. Hu et al. [10], suggested an ideally distributed series-parallel system, as well
as two analytical reliability assessment approaches to analyze the reliability of a distributed power
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system. Hashem and Alyami [11] introduced a new distribution based on a parallel-series system.
In this article, we introduce a new distribution that describes the lifetime of a series-parallel system

when the lifetimes of the included components are subject to a mixture of exponential and gamma
distributions. The distribution will be called Poisson-geometric-Lomax distribution (PGLD) which
can be obtained by compounding truncated Poisson, geometric, and Lomax distributions

The following is how the rest of the article is put together: The distribution of a series-parallel
system based on a finite mixture of distributions is constructed in Section 2. In Section 3, the model is
described based on progressive-stress ALT and progressive type-II censoring. In Section 4, estimation
of the parameters is obtained using the maximum likelihood and Bayes methods. In Section 5, the
parameters are estimated numerically using maximum likelihood and Bayes estimation methods. An
illustrative example, based on two real data sets, is studied in Section 6. A simulation study is worked
done in Section 7. Concluding remarks followed by certain features and motivations of the PGLD as
well as future work are presented in Section 8.

2. Finite mixture of distributions and distribution of a series-parallel system

A mixture of distributions is considered a combination of statistical distributions, that occur when
sampling from inhomogeneous populations (or mixed populations) with a different probability density
function (PDF) in each component.

Let F(y | ω) be the cumulative distribution function (CDF) of a continuous random variable (RV)
Y , with realization y, that is dependent on a continuous RV Ω, with realization ω, and Π(ω) be the CDF
of Ω. The marginal CDF F(y) is given by

F(y) =

∫
Ω

F(y | ω) dΠ(ω), (2.1)

which is called a mixture (according to Teicher [12]) of the CDFs F(y | ω) and Π(ω). Fisher [13] called
F(y) “compound distribution”.

The corresponding PDF is given by

f (x) =

∫
Ω

f (y | ω)π(ω)dω. (2.2)

If the RV Ω assumes only a finite number of points {ω j, j = 1, . . . , κ}, Π(ω) is then a mass function
and assigns positive probabilities to only ω j. The integral in (2.1) is then replaced by a sum to give a
finite mixture of the form

F(y) =

κ∑
j=1

F(y;ω j) Π(ω j). (2.3)

Suppose, in (2.3), Π(ω j) = p j, j = 1, . . . , κ, and F(y;ω j) = F j(y). Then (2.3) takes the form

F(y) =

κ∑
j=1

p j F j(y). (2.4)

A corresponding finite mixture of PDFs is given by

f (y) =

κ∑
j=1

p j f j(y). (2.5)
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In (2.4) and (2.5) the masses p j are called mixing proportions with the conditions:

0 ≤ p j ≤ 1, j = 1, . . . , κ, and
κ∑

j=1

p j = 1.

The functions F j and f j are called jth components in the finite mixture of CDFs (2.4) and PDFs (2.5),
respectively. For more details on finite mixture of distributions, see [14,15]. Several distributions may
arise due to compound distribution (2.2) and mixture distribution (2.5), see [16], such as

(i) If in (2.2), f (y | ω) has exp(y | ω) distribution and π(ω) has gamma(α, γ) distribution, then we get
Lomax(α, γ) distribution (LD) as follows:

Lomax(α, γ) ≡ f (y;α, γ) =

∫ ∞

0
ωe−ωy γα

Γ(α)
ωα−1e−γωdω

=
α

γ

(
1 +

y
γ

)−(α+1)

, y > 0, (α, γ > 0).
(2.6)

Therefore, the corresponding CDF is given by

F(y;α, γ) = 1 −
(
1 +

y
γ

)−α
, x > 0, (α, γ > 0). (2.7)

(ii) If in (2.5), κ = 2, p1 = θ
θ+1 , f1(y) has exp(θ) distribution and f2(y) has gamma(2, θ) distribution,

then we get Lindley distribution as follows:

Lindley(θ) ≡ f (y; θ) =
θ

θ + 1

[
θe−θy

]
+

1
θ + 1

[
θ2 y e−θy

]
=

θ2

θ + 1
(1 + y)e−θy, y > 0, (θ > 0).

2.1. Mixture of two components with mixing proportion as a random variable

If in (2.2), f (y | Ω = ω) = ω f1(y)+ (1−ω) f2(y) and the RV Ω subjects to a beta distribution, B(a, b),
then

f (y) =

∫ 1

0
f (y | ω)π(ω)dω

=
1

B(a, b)

∫ 1

0
(ω f1(y) + (1 − ω) f2(y))ωa−1(1 − ω)b−1dω

=
a

a + b
f1(y) +

b
a + b

f2(y), t > 0, (a, b > 0).

(2.8)

2.2. Distribution of a series-parallel system

Several new distributions of the series-parallel system may emerge by choosing different
distributions for the number of subsystems as well as those describing the lifetimes of the included
components, as explained in [7, 8], but in exchange, several questions may arise, for example:
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• Does the presented distribution have any interesting properties?
• Does it arise naturally in some observable process like natural phenomena?
• Does it have any motivations?

There is no need for new distributions if there are no positive answers to the above questions. A
response to these questions will be illustrated in Section 8.

According to [7, 8], the following theorem gives the CDF and PDF of the PGLD which represents
the failure time distribution of the series-parallel system when the number of series subsystems and
the number of their components, that are connected as a parallel structure, are RVs subject to truncated
Poisson and geometric distributions, respectively. At the same time, the failure times of the components
have a finite mixture of distribution functions each of which may be responsible for a different cause
of failure.

Theorem 2.1. Suppose that, for i = 1, 2, . . . , k j, j = 1, 2, . . . ,m, a mixed system of series-parallel
structure type has the lifetime X = min j(maxi Yi j), where Yi j are IID RVs, see Figure 1, with PDF(CDF)
fY(y)(FY(y)) of Lomax distribution given by (2.6) ((2.7)). Consider M and K j are two discrete RVs
subject to truncated Poisson and geometric distributions with PMFs P(M = m) = e−λλm

m!(1−e−λ) , m =

1, 2, . . . , (λ > 0) and P(K j = k j) = (1 − θ) θk j−1, k j = 1, 2, . . . , (0 < θ < 1), respectively. Then the
distribution of X has the PGLD with CDF and PDF given, respectively, by

FX(x) =
1 − e−λΩ(x)

1 − e−λ
, (2.9)

fX(x) =
λΩ2(x)e−λΩ(x) fY(x)

(1 − θ)(1 − e−λ)F2
Y(x)

, (2.10)

where

Ω(x) =
(1 − θ)FY(x)
1 − θFY(x)

, x > 0. (2.11)

Proof. The proof is similarly as in [7]. �

Remark 2.1. It is worth noting that while γ is a scale parameter for LD with CDF (2.7), it is also a
scale parameter for PGLD with CDF (2.9).

The PDF and hazard rate function (HRF), h(x) = f (x)/(1 − F(x)), of the PGLD are plotted in
Figure 2, in which one can observe that the PDF exhibits decreasing and unimodal shapes while the
HRF exhibits a unimodal shape and may be sudden fluctuation at its end. These fluctuations usually
imply that the product’s performance has degraded over time. Non-stationary data can exhibit this
characteristic, and the PGLD can help to represent such data. The non-stationary nature of failure
times may help the researcher forecast how some items will behave in the environment.

The features and motivations of the PGLD with CDF and PDF (2.9) and (2.10) are summarized in
the last section.

In the following section, some important properties of the PGLD are given.
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Figure 2. The PDF (left panel) and HRF (right panel) of PGLD for different values of θ, α,
γ, and λ.

3. Properties of the PGLD

In this section, some important properties of the PGLD, such as the q-th quantile, mode, r-th
moment, mean residual lifetime, Bonferroni and Lorenz curves, Rényi and Shannon’s entropies, PDF
and CDF of the i-th order statistic, are given.

Theorem 3.1. The q-th quantile xq of the PGLD with CDF (2.9) can be obtained as

xq = γ


1 +

ln
[
1 − q(1 − e−λ)

]
λ − λθ − θ ln

[
1 − q(1 − e−λ)

]
−1
α

− 1

 . (3.1)

Proof. By solving the equation FX(xq) = q with respect to xq, the proof can be achieved immediately.
�

Remark 3.1. As a particular case, the median of PGLD with CDF (2.9) can be obtained by putting
q = 1/2 in Eq (3.1).

Theorem 3.2. Let X be a RV subject to the PGLD with PDF (2.10). Then the mode is given by

x∗ = γ



−D2 +

√
D2

2 − 4D1D3

2D1


1
α

− 1

 , (3.2)
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where

D1 = (α + 1)(1 − θ)2,

D2 = 2θ(1 − θ)(α + 1) + α(λ − 2θ)(1 − θ),
D3 = θ2(1 − α).

Proof. The mode can be directly obtained by solving d ln[ fX(x)]
dx = 0 with respect to x. �

Theorem 3.3. Let X be a RV subject to PGLD with PDF (2.10). Then, for r = 1, 2, . . . , the r-th moment
of X is given by

m
(r) =

N∑
ı=0

2νı
(1 − yı)2 Φ(r)(y∗ı ),

where yı, νı are the zeros and the corresponding Christoffel numbers of the Legendre-Gauss quadrature
formula on the interval (-1, 1), see Canuto et al. [17].

Proof. The r-th moment of X is given by

m
(r) =

∫ ∞

0
xr fX(x)dx

=
αλ

γ(1 − θ)(1 − e−λ)

∫ 1

−1

2
(1 − y)2 Φ(r) (y∗) dy,

where y∗ =
1+y
1−y , and

Φ(r)(y) =
yrΩ2(y)e−λΩ(y)

(
1 +

y
γ

)−α−1(
1 −

(
1 +

y
γ

)−α)2 . (3.3)

The last integral can be approximated, by using Legendre-Gauss quadrature formula, as

m
(r) =

N∑
ı=0

2νı
(1 − yı)2 Φ(r)(y∗ı ), (3.4)

where

νı =
2

(1 − y2
ı )[L′N+1(yı)]2 and L′N+1(yı) =

dLN+1(y)
dy

aty = yı, (3.5)

and LN(.) is the Legendre polynomial of degree N. �

Theorem 3.4. The mean residual lifetime of the PGLD is given by

MRL(x0) =
2x0

e−λΩ(x0) − e−λ

N∑
ı=0

νı
(1 − yı)2

(
e−λΩ

(
2x0
1−yı

)
− e−λ

)
,

where νı is given by (3.5).
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Proof. The mean residual lifetime of the PGLD is given by

MRL(x0) = E[X − x0 | X > x0]

=
1

S (x0)

∫ ∞

x0

S (x)dx

=
1

S (x0)

∫ 1

−1

2x0

(1 − y)2 S
(

2x0

1 − y

)
dy,

where S (x) = 1 − F(x) is the survival function.
The last integral can be approximated, by using Legendre-Gauss quadrature formula, as

MRL(x0) =
2x0

e−λΩ(x0) − e−λ

N∑
ı=0

νı
(1 − yı)2

(
e−λΩ

(
2x0
1−yı

)
− e−λ

)
,

where νı is given by (3.5). �

Theorem 3.5. Let X be a RV subject to the PGLD with PDF (2.10). Then, the Bonferroni curve (BC)
and Lorenz curve (LC) are given, respectively, by

BC(η) = Aη

N∑
ı=0

νı Φ
(1)

( pη
2

(yı + 1)
)
,

LC(η) = ηAη

N∑
ı=0

νı Φ
(1)

( pη
2

(yı + 1)
)
,

(3.6)

where νı is given by (3.5), 0 < η < 1 and

Aη =
αλpη

2m(1)ηγ(1 − θ)(1 − e−λ)
,

pη = F−1(η) = γ


1 +

ln
[
1 − η(1 − e−λ)

]
λ − λθ − θ ln

[
1 − η(1 − e−λ)

]
−1
α

− 1

 ,
and Φ(1)(.) and m(1) are given, respectively, by (3.3) and (3.4) at r = 1.

Proof. The Bonferroni curve of PGLD is given by

BC(η) =
1

ηm(1)

∫ pη

0
x fX(x)dx

= Aη

∫ 1

−1
Φ(1)

( pη
2

(y + 1)
)

dy

= Aη

N∑
ı=0

νı Φ
(1)

( pη
2

(yı + 1)
)
.
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The Lorenz curve of PGLD is given by

LC(η) =
1
m(1)

∫ pη

0
x fX(x)dx

= ηAη

N∑
ı=0

νı Φ
(1)

( pη
2

(yı + 1)
)
.

�

The Bonferroni and Lorenz curves are plotted in Figure 3.
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Figure 3. Left (Right) panel: The Bonferroni (Lorenz) Curve of the PGLD.

Theorem 3.6. Let X be a RV subject to the PGLD with PDF (2.10). Then, the Rényi and Shannon’s
entropies of X are given, respectively, by

RE(`) =
1

1 − `

` ln
[

αλ

γ(1 − θ)(1 − e−λ)

]
+ ln

 N∑
ı=0

νı
2

(1 − yı)2 W`

(
1 + yı
1 − yı

) ,
S HE = ln

[
γ(1 − θ)(1 − e−λ)

αλ

]
+

2αλ
γ(1 − θ)(1 − e−λ)

N∑
ı=0

2νı
(1 − yı)2 W∗

(
1 + yı
1 − yı

)
Φ(0)

(
1 + yı
1 − yı

)
,

(3.7)

where νı is given by (3.5) and

W`(y) = Ω2`(y) e−λ`Ω(y)

(
1 +

y
γ

)−α`−`[
1 −

(
1 +

y
γ

)−α]2` ,

W∗(y) = −2 ln[Ω(y)] + λΩ(y) + (α + 1) ln
[
1 +

y
γ

]
+ 2 ln

[
1 −

(
1 +

y
γ

)−α]
.

Proof. The Rényi entropy of X is given by

RE(`) =
1

1 − `
ln

[∫ ∞

0
f `X(x)dx

]
,
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where ` > 0 and ` , 1.
Based on PDF (2.10), we obtain

∫ ∞

0
f `X(x)dx =

[
αλ

γ(1 − θ)(1 − e−λ)

]` ∫ ∞

0
W`(x)dx

=

[
αλ

γ(1 − θ)(1 − e−λ)

]` N∑
ı=0

νı
2

(1 − yı)2 W`

(
1 + yı
1 − yı

)
.

Then,

RE(`) =
1

1 − `

` ln
[

αλ

γ(1 − θ)(1 − e−λ)

]
+ ln

 N∑
ı=0

νı
2

(1 − yı)2 W`

(
1 + yı
1 − yı

) .
The Shannon’s entropy of T is given by

S HE = E[− ln
[
fX(x)

]
]

= ln
[
α(1 − θ)(1 − e−λ)

αλ

]
+ E[W∗(x)]

= ln
[
γ(1 − θ)(1 − e−λ)

αλ

]
+

2αλ
γ(1 − θ)(1 − e−λ)

N∑
ı=0

2νı
(1 − yı)2 W∗

(
1 + yı
1 − yı

)
Φ(0)

(
1 + yı
1 − yı

)
.

�

Theorem 3.7. Let X1, . . . , Xn is a random sample from the PGLD with CDF (2.9) and PDF (2.10).
Then, the PDF and CDF of the i-th order statistic, say Xi:n, are given, respectively, by

f j:n(x) = j
(
n
j

)
αλ

γ(1 − θ)

Ω2(x)
(
1 + x

γ

)−α−1[
1 −

(
1 + x

γ

)−α]2

×

n− j∑
r1=0

j+r1−1∑
r2=0

(−1)r1+r2

(
n − j

r1

)(
j + r1 − 1

r2

)
e−λ(1+r2)Ω(x)

(1 − e−λ)r1+ j ,

(3.8)

F j:n(x) =

n∑
r3= j

n−r3∑
r4=0

r3+r4∑
r5=0

(−1)r4+r5

(
n
r3

)(
n − r3

r4

)(
r3 + r4

r5

)
e−λr5Ω(x)

(1 − e−λ)r3+r4
. (3.9)

Proof. The PDF f j:n(t) of the j-th order statistic, see [18, 19], is given by

f j:n(x) = j
(
n
j

)
fX(x)[FX(x)] j−1[1 − FX(x)]n− j, (3.10)

where FX(x) and fX(x) are given by Eqs (2.9) and (2.10), respectively.
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Therefore,

f j:n(x) = j
(
n
j

) n− j∑
r1=0

(−1)r1

(
n − j

r1

)
fX(x)[FX(x)] j+r1−1

= j
(
n
j

)
αλ

γ(1 − θ)

Ω2(x)
(
1 + x

γ

)−α−1[
1 −

(
1 + x

γ

)−α]2

×

n− j∑
r1=0

j+r1−1∑
r2=0

(−1)r1+r2

(
n − j

r1

)(
j + r1 − 1

r2

)
e−λ(1+r2)Ω(x)

(1 − e−λ)r1+ j .

The CDF F j:n(x), corresponding to PDF (3.10), is given by

F j:n(x) =

n∑
r3= j

(
n
r3

)
[FX(x)]r3[1 − FX(x)]n−r3

=

n∑
r3= j

n−r3∑
r4=0

r3+r4∑
r5=0

(−1)r4+r5

(
n
r3

)(
n − r3

r4

)(
r3 + r4

r5

)
e−λr5Ω(x)

(1 − e−λ)r3+r4
.

�

4. Model description

Based on units connected in a series-parallel structure, we discuss, in this section, the application of
a progressive-stress model to units whose lifetime distribution subjects to the PGLD with CDF (2.9).
We assume that the units are subject to progressive type-II censoring and that the number of surviving
units eliminated follows a binomial distribution.

It is well-known in the previous literature regarding the progressive-stress model that the stress is
considered an increasing linear function of time. Now, in the current article, the stress is supposed to
be represented by an increasing nonlinear function of time.

4.1. Basic assumptions

(1) The lifetime of units under normal conditions is governed by CDF (2.9) of PGLD with scale
parameter γ.

(2) According to the progressive-stress model, it is assumed that the stress s is a function of time t
and affects the scale parameter γ of CDF (2.7) which is also a scale parameter of CDF (2.9).

(3) The parameter γ follows the inverse power law with two parameters c and d. This means that

γ ≡ γ(t) =
1

c(s(t))d . For the sake of simplicity, we’ll assume that the parameter d assigns the

value 1 from now on.
(4) The progressive-stress s(t) assigns an increasing nonlinear function of time, s(t) = sinh(v t), which

is also continuous and differentiable for t > 0.
(5) To start the testing procedure, the total N units to be tested are split into ~(≥ 2) groups, each of

them consists of ni units under progressive-stress si(t) = sinh(vit), i = 1, 2, . . . , ~, such that the
stress rates satisfy 0 < v1 < v2 < · · · < v~.
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(6) At whatever stress level vi, i = 1, 2, . . . , ~, a unit’s failure mechanisms are the same.
(7) The cumulative exposure model holds for the effect of changing stress, see [1].

According to Steps 1, 3, and 5, and using Assumption 7, we can write

Φi(x) =

∫ x

0

1
γ(si(t))

dt =
c
vi

(cosh(vix) − 1), i = 1, 2, . . . , ~, (4.1)

where c is a parameter that should be estimated.
Therefore, if GiY(.) denotes the CDF for a unit in group i under progressive-stress model, then using

Assumption 7, it takes the form

GiY(x) = FiY(Φi(x)) = 1 −
[
1 +

c
vi

(cosh(vix) − 1)
]−α

= 1 − [Ψi(x)]−α, (4.2)

where FiY(.) is the CDF (2.7) of LD , included in (2.9), under group i, with scale parameter value equal
to 1 and

Ψi(x) = Φi(x) + 1, (4.3)

where Φi(x) is given by (4.1).
The corresponding PDF of (4.2) is given by

giY(x) = α c sinh(vix) [Ψi(x)]−α−1 . (4.4)

Then, by replacing FY(y) and fY(y) with CDF (4.2) and PDF (4.4), respectively, CDF (2.9) under
progressive-stress ALT becomes

FiX(x) =
1 − e−λΩi(x)

1 − e−λ
. (4.5)

The corresponding PDF of (4.5) is given by

fiX(x) =
λα c Ω2

i (x) sinh(vi(x))Ψ−α−1
i (x)

(1 − θ)(1 − e−λ)eλΩi(x)(1 − Ψ−αi (x))2 , (4.6)

where

Ωi(x) =
(1 − θ)(1 − Ψ−αi (x))
1 − θ(1 − Ψ−αi (x))

, x > 0, (4.7)

and Ψi(x) is given by (4.3).

4.2. The model under progressive type-II censoring

There are a variety of censored tests available. Progressive type-II censoring is one of the most
widely used censored tests. It is implemented under progressive-stress model as follows: Suppose
that, in the i-th group, i = 1, 2, . . . , ~, ni units are put through a life test and the experimenter specifies
beforehand quantity wi, the number of failure units that will be observed. Now, when the first failure
occurs, ri1 of the remaining ni − 1 surviving units are eliminated from the experiment at random.
Continuing, when the second failure occurs, ri2 of the remaining ni−ri1−2 surviving units are eliminated
from the experiment at random. Finally, at the time of occurring the wi-th failure, all the remaining
riwi = ni−wi− ri1− ri2− · · ·− ri wi−1 surviving units are eliminated from the experiment at random. Note
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that, in this scheme, ri1, ri2, . . . , riwi are all prefixed. However, these numbers may occur at random, in
some practical situations. For example, in some reliability experiments, an experimenter may assess
that it is unsuitable or too risky to perform the test on some of the tested units even though these units
have not failed. In such situations, the pattern of elimination at each failure is random. Such a situation
leads to progressive censoring with random removals, see [20, 21].

5. Estimations under progressive-stress ALT and progressive type-II censoring with binomial
removals

We discuss, in this section, two estimation methods (maximum likelihood estimation (MLE) and
Bayesian estimation (BE)) for the parameters included in CDF (4.5) under progressive type-II
censoring with binomial removals.

5.1. Maximum likelihood estimation

For group i, i = 1, 2, . . . , ~, suppose xi1, xi2, . . . , xini are ni lifetimes from a population with CDF (4.5)
and PDF (4.6), and x =

(
x

(ri1...,riwi )
i1:wi:ni

, x
(ri1...,riwi )
i2:wi:ni

, . . . , x
(ri1...,riwi )
iwi:wi:ni

)
is a vector of wi progressively type-II ordered

lifetimes out of ni with progressive censoring scheme (ri1 . . . , riwi). Suppose also wi and ri j are all
predetermined before the test. From now on, we will write xi j instead of x

(ri1...,riwi )
i j:wi:ni

, j = 1, 2, . . . ,wi, for
simplicity. Then, based on Eqs (4.2)–(4.7), the conditional likelihood function is given by

L1(α, λ, θ, c; x | R = r) ∝
~∏

i=1

wi∏
j=1

fiX(xi j)[1 − FiX(xi j)]ri j

=

(
λα c
1 − θ

)∑~
i=1 wi

×

~∏
i=1

wi∏
j=1

Ω2
i (xi j) sinh(vi(xi j))Ψ−α−1

i (xi j)
(1 − e−λ)ri+1eλΩi(xi j)(1 − Ψ−αi (xi j))2

(e−λΩi(xi j) − e−λ)ri j .

(5.1)

The numbers ri j may occur at random in some practical scenarios as a result of unanticipated dropout
experimental units. Therefore, we assume that Ri j (i = 1, 2, . . . , ~, j = 1, 2, . . . ,wi − 1) are RVs, with
realizations ri j, subject to the following binomial distributions

Ri1 ∼ b(ni − wi, p),

whereas,

(Ri j | ri1, ri2, . . . , ri( j−1)) ∼ b(ni − wi −

j−1∑
k=1

rik, p), j = 2, 3, . . . ,wi − 1.

Then

L(α, λ, θ, c; x) =L1(α, λ, θ, c; x | R = r)P(Ri1 = ri1)

×

wi−1∏
k=2

P(Rik = rik | Ri1 = ri1, . . . ,Ri(k−1) = ri(k−1)),
(5.2)
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where, for fixed i and j, ri j is an integer number satisfying 0 ≤ ri j ≤ ni −wi − (ri1 + ri2 + . . . , ri( j−1)), i =

1, 2, . . . , ~, j = 2, 3, . . . ,wi − 1, and

P(Ri j = ri j | Ri( j−1) = ri( j−1), . . .Ri1 = ri1) =

(
ni − wi −

∑ j−1
k=1 rik

ri j

)
pri j(1 − p)ni−wi−

∑ j
k rik .

Furthermore, suppose that Ri j is independent of Xi j for i = 1, . . . , ~, j = 1, . . . ,wi. Then

P(R = r) =

~∏
i=1

[P(Ri(wi−1) = ri(wi−1) | Ri(wi−2) = ri(wi−2), . . . ,Ri1 = ri1) . . . P(Ri1 = ri1)]

=

~∏
i=1

 (ni − wi)!

(ni − wi −
∑wi−1

k=1 rik)!
∏wi−1

k=1 rik!
p
∑wi−1

k=1 rik(1 − p)(wi−1)(ni−wi)−
∑wi−1

k=1 rik(wi−k)

 .
(5.3)

Since P(R = r) does not depend on the parameters (α, λ, θ, c), hence the MLE of them can be derived
by maximizing (5.1). Similarly, (5.1) does not involve the binomial parameter p, the MLE of p can be
found by maximizing (5.3) directly. Thus

∂(lnL)
∂p

= 0 =
1
p

~∑
i=1

wi−1∑
k=1

rik −

~∑
i=1

 (wi − 1)(ni − wi) −
∑wi−1

k=1 (wi − k)rik

1 − p

 .
Therefore,

p̂ =

∑~
i=1

∑wi−1
k=1 rik∑~

i=1(wi − 1)(ni − wi) −
∑~

i=1
∑wi−1

k=1 (wi − k − 1)rik
. (5.4)

The local Fisher information matrix, I, for (α̂, λ̂, θ̂, ĉ) is the 4 × 4 symmetric matrix of negative second
partial derivatives of £ = lnL1 with respect to α, λ, θ, and c, see [1]. Let (ϕ1 = α, ϕ2 = λ, ϕ3 = θ, ϕ4 =

c). Therefore, matrix I is given by

I = −

(
∂2£̂

∂ϕi∂ϕ j

)
4×4

, i, j = 1, . . . , 4,

where the caretˆdenotes that the derivative is computed at (ϕ̂1 = α̂, ϕ̂2 = λ̂, ϕ̂3 = θ̂, ϕ̂4 = ĉ). It is easy
to get the matrix’s elements.

The local estimate V of the asymptotic variance-covariance matrix of (α̂, λ̂, θ̂, ĉ) can be obtained by
inverting matrix I. Therefore,

V = I−1 =
(
cov

(
ϕi, ϕ j

))
4×4

, i, j = 1, . . . , 4. (5.5)

The sampling distribution of
ϕ̂i − ϕi√
var(ϕ̂i)

, i = 1, . . . , 4, follows the general asymptotic theory of

MLEs and hence it may be approximated by a standard normal distribution which can be used to create
confidence intervals (CIs) for unknown parameters.

Therefore, a two-sided (1 − η?)100% asymptotic CIs for the parameters ϕi, i = 1, . . . , 4, can then
be created as follows:

ϕ̂i ∓ zη?/2
√

var(ϕ̂i)
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where zη?/2 is the value of a standard normal RV that leaves an area η?/2 to the right and
√

var(ϕ̂i) can
be determined from (5.5).

It’s commonly beneficial in practical applications to have a concept of how long a test should last.
Because the time it takes to complete the test is proportional to the expense. For i = 1, . . . , ~, the
expected termination time under progressive type-II censoring scheme with binomial removals is given
by, see [22].

E[Xiwi | Ri = ri] =C(ri)
ri1∑
`1=0

· · ·

riwi∑
`wi =0

(−1)Ai

(
ri1

`1

)
. . .

(
riwi

`wi

)
∏wi−1

k=1 h(`k)

∫ ∞

0
x fX(x)F

h(`wi )−1
X (x)dx, (5.6)

where Ri = (Ri1 = ri1, . . . ,Ri(wi−1) = ri(wi−1)), (FX(x), fX(x)) is given by ((4.5), (4.6)), Ai =
∑wi

k=1 `k ,
h(`k) = `1 + · · ·+ `k + k, and C(ri) = ni(ni − ri1 − 1)(ni − ri1 − ri2 − 2) . . . (ni −

∑wi−1
k=1 (rik + 1)). Therefore,

E[Xiwi] =ER[E(Xiwi | Ri)]

=

q(ri1)∑
ri1=0

· · ·

q(ri(wi−1))∑
ri(wi−1)=0

P(R = r)E(Xiwi | R),

where q(ri1) = ni − wi, q(ri j) = ni − wi − ri1 − ri2 − · · · − ri( j−1), i = 1, 2, . . . , ~, j = 2, 3, . . . ,wi − 1,
and P(R = r) is given by Eq (5.3). Then compute the ratio of expected experiment time (REET) as
follows:

REET =
E(Xiwi)
E(Xini)

.

5.2. Bayesian estimation

Based on two asymmetric loss functions (general entropy (GE) and linear exponential (LINEX)),
we discuss the Bayesian estimation of the parameters of CDF (4.5). Because they offer overestimation
or underestimation of the parameters, symmetric loss functions may be unsuitable in many real-life
situations. Overestimating the parameters can have worse or worse repercussions than underestimating
them or vice versa. As a result, asymmetric loss functions have been the subject of research, see [23,
24].

The LINEX loss function was suggested by Varian [25]. It is given by

L(ξ) ∝ eνξ − νξ − 1, ν , 0,

where ξ = Θ̃ − Θ and Θ̃ is the LINEX estimator of Θ.
The Bayes estimate under LINEX (BEL) loss function of Θ is given by

Θ̃ =
−1
ν

ln[E(e−νΘ|x)]. (5.7)

The GE loss function was introduced by Calabria and Pulcini [26]. It is given by

L(Θ̈,Θ) ∝
(
Θ̈

Θ

)ν
− ν ln

(
Θ̈

Θ

)
− 1, ν , 0.

The Bayes estimate under GE (BEG) loss function of Θ is given by

Θ̈ =
[
E(Θ−ν)

] −1
ν . (5.8)
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5.2.1. Prior and posterior functions

Assume that the experimenter’s prior belief is measured by a function ϑ(α, λ, θ, c), with all
parameters being independent and having log-normal distributions except θ, which has a beta
distribution. Therefore, if (ϕ1 = α, ϕ2 = λ, ϕ3 = c, ϕ4 = θ), then the prior function of ϕi, i = 1, 2, 3, is
given by

ϑi(ϕi) =
1

σiϕi
√

2π
exp

−1
2

(
ln ϕi − µi

σi

)2
 , ϕi > 0, (−∞ < µi < ∞, σi > 0), (5.9)

and the prior function of ϕ4 is given by

ϑ4(ϕ4) =
1

B(a1, a2)
ϕa1−1

4 (1 − ϕ4)a2−1, 0 < ϕ4 < 1, (a1, a2 > 0). (5.10)

The joint prior density function is then calculated as follows:

ϑ(α, λ, θ, c) = ϑ1(α)ϑ2(λ)ϑ3(c)ϑ4(θ) ∝
1
αλc

e−∆θa1−1(1 − θ)a2−1, (5.11)

∆ =
1
2


(
ln α − µ1

σ1

)2

+

(
ln λ − µ2

σ2

)2

+

(
ln c − µ3

σ3

)2
 .

From (5.1) and (5.11), the joint posterior density function is then calculated as follows:

ϑ∗(α, λ, θ, c|x, r) = K−1α
∑~

i=1 wi−1λ
∑~

i=1 wi−1c
∑~

i=1 wi−1

(1 − e−λ)
∑~

i=1(wi+
∑wi

j=1 ri j)

θa1−1e−∆

(1 − θ)
∑~

i=1 wi−a2+1

×

~∏
i=1

wi∏
j=1

Ω2
i (xi j) sinh(vi xi j)(e−λΩi(xi j) − e−λ)ri j

[1 − (Ψi(xi j))−α]2[Ψi(xi j)]α+1eλΩi(xi j)
,

(5.12)

where

K =

∫ ∞

0

∫ 1

0

∫ ∞

0

∫ ∞

0
ϑ(α, λ, θ, c)L(α, λ, θ, c) dα dλ dθ dc.

It can be noted that K involves quad integral and it is not reducible in a closed form, and hence
generating samples directly from the joint posterior density is not possible. The MCMC algorithm,
presented in the following subsection, can be implemented in this case in which we need the following
conditional posterior distributions of the parameters α, λ, θ and c,
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ϑ∗(α | λ, θ, c) ∝ α
∑~

i=1 wi−1exp
−1

2

(
ln α − µ1

σ1

)2
×

~∏
i=1

wi∏
j=1

Ω2
i (xi j)(e−λΩi(xi j) − e−λ)ri j

[1 − (Ψi(xi j))−α]2[Ψi(xi j)]α+1eλΩi(xi j)
,

ϑ∗(λ | α, θ, c) ∝
λ

∑~
i=1 wi−1

(1 − e−λ)
∑~

i=1(wi+
∑wi

j=1 ri j)
exp

−1
2

(
ln λ − µ2

σ2

)2
×

~∏
i=1

wi∏
j=1

(e−λΩi(xi j) − e−λ)ri j

eλΩi(xi j)
,

ϑ∗(θ | α, λ, c) ∝
θa1−1

(1 − θ)
∑~

i=1 wi−a2+1

~∏
i=1

wi∏
j=1

Ω2
i (xi j)(e−λΩi(xi j) − e−λ)ri j

eλΩi(xi j)
,

ϑ∗(c | α, λ, θ) ∝ c
∑~

i=1 wi−1exp
−1

2

(
ln c − µ3

σ3

)2
×

~∏
i=1

wi∏
j=1

Ω2
i (xi j)(e−λΩi(xi j) − e−λ)ri j

[1 − (Ψi(xi j))−α]2[Ψi(xi j)]α+1eλΩi(xi j)
.



(5.13)

5.2.2. MCMC algorithm

The Metropolis-Hasting technique can be used if the conditional posterior distribution isn’t one of
the known parametric distributions. Then, it can be used to generate samples from conditional posterior
distributions using the MCMC algorithm, see [27].

The following procedure can be used to compute BELs and BEGs of α, λ, θ, and c,

(1) Assign some initial values of α, λ, θ and c say α0, λ0, θ0 and c0.
(2) For i = 1, using Metropolis-Hastings technique, generate αi, λi, θi and ci from the conditional

posterior distributions presented in (5.13).
(3) Repeat Step 2,M times.
(4) Calculate the BELs of α, λ, θ and c, using Eq (5.7), as

α̃ =
−1
ν

ln

 1
M −W

M∑
i=W+1

e−ναi

 , λ̃ =
−1
ν

ln

 1
M −W

M∑
i=W+1

e−νλi

 ,
θ̃ =
−1
ν

ln

 1
M −W

M∑
i=W+1

e−νθi

 , c̃ =
−1
ν

ln

 1
M −W

M∑
i=W+1

e−νci

 ,


(5.14)

whereW is the burn-in period.
(5) Calculate the BEGs of α, λ, θ and c, using Eq (5.8), as follows:
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α̈ =

 1
M −W

M∑
i=W+1

α−νi


−1
ν

, λ̈ =

 1
M −W

M∑
i=W+1

λ−νi


−1
ν

,

θ̈ =

 1
M −W

M∑
i=W+1

θ−νi


−1
ν

, c̈ =

 1
M −W

M∑
i=W+1

c−νi


−1
ν

.


(5.15)

(6) The highest posterior density (HPD) credible interval of parameter α can be computed by
arranging in an ascending order αW+1,. . . ,αM as α[1] < · · · < α[M−W], then compute the lower and
upper bounds of all (1 − η?)100% credible intervals of α as follows:(

α[1], α[(M−W)(1−η?)+1]

)
, . . . ,

(
α[(M−W)η?], α[M−W]

)
,

where [x] denotes the largest integer number less than or equal to x. Then the HPD credible
interval of α is the one with the shortest length. The HPD credible interval of λ, θ and c can also
be computed in the same way.

(7) The symmetric credible intervals of α can be computed as follows:(
α[(M−W) η

?

2 ], α[(M−W)(1− η
?

2 )]

)
.

The symmetric credible intervals of λ, θ and c can also be computed in the same way.

6. Illustrative example based on real data

Two real data sets are proposed, in this section, for fitting and comparing the PGLD, Poisson-Lomax
distribution (PLD) [28], geometric-Lomax distribution (GLD), exponentiated LD (ELD) [29] and LD
with CDF (2.7).

The CDFs of PLD, GLD, and ELD are given, respectively, by

FPLD =
e−λ

(
1+ x

γ

)−α
− e−λ

1 − e−λ
,

FGLD =

(1 − θ)
[
1 −

(
1 + x

γ

)−α]
1 − θ

[
1 −

(
1 + x

γ

)−α] ,
FELD =

[
1 −

(
1 +

x
γ

)−α]λ
.


(6.1)

It can be noticed that the GLD is a special case of the PGLD as λ→ 0+.

• The first data set is taken from [30]. It consists of 72 exceedances for the years from 1958 to
1984, rounded to one decimal place. The data are given as follows:
1.7, 2.2, 14.4, 1.1, 0.4, 20.6, 5.3, 0.7, 1.9, 13.0, 12.0, 9.3, 1.4, 18.7, 8.5, 25.5, 11.6, 14.1, 22.1,
1.1, 2.5, 14.4, 1.7, 37.6, 0.6, 2.2, 39.0, 0.3, 15.0, 11.0, 7.3, 22.9, 1.7, 0.1, 1.1, 0.6, 9.0, 1.7, 7.0,
20.1, 0.4, 2.8, 14.1, 9.9, 10.4, 10.7, 30.0, 3.6, 5.6, 30.8, 13.3, 4.2, 25.5, 3.4, 11.9, 21.5, 27.6, 36.4,
2.7, 64.0, 1.5, 2.5, 27.4, 1.0, 27.1, 20.2, 16.8, 5.3, 9.7, 27.5, 2.5, 27.0.
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• The second data set represents the marks of 48 slow space students in Mathematics in the final
examination of the Indian Institute of Technology, Kanpur in year 2003, [31]. The data are given
as follows:
29, 25, 50, 15, 13, 27, 15, 18, 7, 7, 8, 19, 12, 18, 5, 21, 15, 86, 21, 15, 14, 39, 15, 14, 70, 44, 6,
23, 58, 19, 50, 23, 11, 6, 34, 18, 28, 34, 12, 37, 4, 60, 20, 23, 40, 65, 19, 31.

The Kolmogorov-Smirnov (K-S) statistic and its corresponding p-value are used to check the
validity of the PGLD, PLD, GLD, ELD, and LD to fit the above two data sets. The results are shown
in Table 1. Also, the results of a comparison among these five distributions using some criteria such as
the Akaike information criterion (AIC), consistent AIC (CAIC), and Bayesian information criterion
(BIC), are shown in Table 1, where

AIC = 2 r − 2£(β̂),CAIC =
2 r w

w − r − 1
− 2£(β̂),BIC = r ln[w] − 2£(β̂),

where £(β̂) stands for the log-likelihood function calculated at the MLE β̂ of β, r and w denote the
number of parameters and the sample size, respectively.

According to the values of K-S statistic and its corresponding p-value, presented in Table 1, it’s
worth noting that the PGLD has the smallest(largest) K-S (p-)values than those for the PLD, GLD,
ELD, and LD. Therefore, the PGLD is a better fit for the data than the other four distributions. Since
the PGLD has the smallest values of AIC, CAIC, and BIC, then this is considered another indicator
of the superiority of the PGLD. Figure 4 shows the comparison graphically by plotting the empirical
CDF against the CDF of PGLD, PLD, GLD, ELD, and LD. In Table 1, we note that the PLD, ELD,
and LD (GLD, ELD, and LD) do not fit well the first (second) data set (based on the p-value (< 0.05))
but we use them for comparison purposes.

Table 1. The MLEs, K-S statistic, p-value, AIC, CAIC, and BIC for the two data sets.

The first data set

Model α̂ γ̂ θ̂ λ̂ K-S p-value AIC CAIC BIC

PGLD 1.40525 1.34963 0.94075 0.76069 0.109102 0.35816 522.134 522.731 531.241
PLD 1.12565 5.44626 − − − 0.07480 0.178738 0.02010 525.967 526.320 532.797
GLD 1.00741 2.49201 0.60639 − − − 0.111083 0.33669 525.289 525.642 532.119
ELD 0.66113 1.19104 − − − 1.59821 0.165565 0.03861 536.672 537.025 543.502
LD 1.10933 4.34354 − − − − − − 0.233859 0.00076 529.953 530.127 534.506

The second data set

Model α̂ γ̂ θ̂ λ̂ K-S p-value AIC CAIC BIC

PGLD 2.49409 0.63477 0.99986 0.20566 0.05039 0.99971 402.596 403.526 410.08
PLD 149.855 3788.06 − − − 0.72799 0.11165 0.58773 412.330 412.875 417.943
GLD 1.42011 5.41074 0.84701 − − − 0.21077 0.02811 425.597 426.143 431.211
ELD 0.27741 2.35554 − − − 0.79642 0.31822 0.00012 498.599 499.145 504.213
LD 22.3092 552.211 − − − − − − 0.19730 0.04765 413.502 413.769 417.244
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Figure 4. Left (Right) panel: Empirical CDF versus CDF of PGLD, PLD, GLD, ELD, and
LD for the first (second) data set.

7. Simulation study

In this section, a simulation study is performed to evaluate the performance of the estimation
methods presented in Section 5. The MLEs, BELs and BEGs of the parameters α, λ, θ and c are
computed and compared, through their mean squared errors (MSEs) and relative absolute biases
(RABs), via a Monte Carlo simulation. The 95% CIs, symmetric and HPD credible intervals are also
computed and compared through their average interval lengths (AILs). The following algorithm is
used to perform a simulation study:

(1) For i = 1, . . . , ~, generate the values of progressive censoring with binomial removals, ri j, such
that Ri j ∼ Binomial(ni − wi −

∑ j−1
k=1 Rik, p) distribution, where p is the removal probability, j =

1, . . . ,wi − 1 and Riwi = ni − wi −
∑wi−1

j=1 Ri j.
(2) For given values of the prior parameters (µ1, µ2, µ3, σ1, σ2, σ3, a1, a2), generate values for the

parameters (α, λ, θ, c).
(3) For i = 1, . . . , ~, generate a progressively type-II censored sample of size wi from PGLD with

CDF (2.9), according to the algorithm given in [32].
(4) The MLEs, BELs and BEGs of the parameters α, λ, θ and c are computed as shown in Section 5.

The BELs and BEGs of the parameters α, λ, θ and c are computed based on M(= 5500) MCMC
samples and discard the first 500 values as burn-in period.

(5) Repeat the above steps N(= 1, 000) times.
(6) If Θ̂ is an estimate of Θ, then the average of estimates, MSE and RAB of Θ̂ over N samples are

given, respectively, by

Θ̂ =
1
N

N∑
i=1

Θ̂i,MSE(Θ̂) =
1
N

N∑
i=1

(Θ̂i − Θ)2,RAB(Θ̂) =
1
N

N∑
i=1

|Θ̂i − Θ|

Θ
.

(7) Calculate the average of estimates of the parameters α, λ, θ and c and their MSEs and RABs as
shown in Step 6. Calculate also the average of the MSEs (MMSE) and the average of the RABs
(MRAB) over the four parameter estimates.
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(8) Calculate the 95% CIs (as shown in Subsection 5.1), symmetric and HPD credible intervals (as
shown in Subsection 5.3) of the parameters and then calculate the average interval lengths (AILs)
of them. Calculate also the average of the AILs (MAIL) over the four parameter estimates.

Tables 2–4 provide the computational results, which take into account the prior parameter values:
µ1 = 0.154, µ2 = 0.8, µ3 = −1.65, σ1 = 0.8, σ2 = 0.07, σ3 = 0.3, a1 = 2.3 and a2 = 0.25 to
generate population parameter values: α = 1.6, λ = 2.3, θ = 0.9 and c = 0.2. Three distinct removal
probabilities p = 0.15, 0.55, and 0.95 are considered.

The total number of observations N is divided into two groups, ~ = 2, and then into four groups,
~ = 4, for comparison among MLEs, BELs, and BEGs.

• When there are two groups (~ = 2),

n1 = n2 = N/2andw1 = w2 = 50% and 80% of the sample size,
v1 = 0.5 and v2 = 1.

• When there are four groups (~ = 4),

n1 = n2 = n3 = n4 = N/4 and w1 = w2 = w3 = w4 = 50% and 80% of the sample size
v1 = 0.5, v2 = 1.0, v3 = 1.5, and v4 = 2.0.

The MLEs (BELs and BEGs) of the parameters α, λ, θ and c with their MSEs, RABs, MMSEs,
MRABs are displayed in Table 2 (Table 3). The HPD credible intervals, symmetric credible intervals,
and CIs with their AILs and MAILs are presented in Table 4.

We can observe from Tables 2–4 that:

(1) Through the MMSEs and MRABs, the BELs and BEGs outperform the MLEs.
(2) Through the MAILs, the HPD and symmetric credible intervals are superior to CIs. This confirms

that BELs and BEGs are superior to MLEs.
(3) The HPD is better than symmetric credible intervals via the MAILs.
(4) For fixed p, ~, N, and ni (or wi), i = 1, . . . , ~, by increasing wi (or ni) the MSEs, RABs, MMSEs,

MRABs, AILs and MAILs decrease. This assures that the more data we collect, the more accurate
our results will be.

(5) The BELs and BEGs are better at ν = 0.5 than those at ν = −0.5 through comparing the MMSE.
(6) The BELs are better than BEGs at ν = 0.5 but the converse is true at ν = −0.5 through comparing

the MMSE.
(7) The MLEs are better at p = 0.15 than those at p = 0.55, 0.95 through comparing the MMSE.
(8) Better results have been obtained at ~ = 2 than those obtained at ~ = 4 since the number of

observations in the subgroups became smaller than those at ~ = 2.

Except in a few rare cases, the above results are satisfactory, which could be related to data
fluctuations.

Furthermore, if the hyperparameters are unknown, we can estimate them using past samples
following the empirical Bayes approach, see [33]. Alternatively, the hierarchical Bayes technique,
which uses a suitable prior for the hyperparameters, could be utilized, see [34].
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Table 4. 95% CIs, symmetric credible intervals, HPD credible intervals for α, λ, θ and c with their AILs and MAILs based on 5500 MCMC samples
and 1, 000 simulations. Population parameter values are α = 1.6, λ = 2.3, θ = 0.9 and c = 0.2.

n1 w1 Credible interval
. . CI Symmetric HPD
. . AIL(α) MAIL AIL(α) MAIL AIL(α) MAIL
. . AIL(λ) AIL(λ) AIL(λ)
. . AIL(θ) AIL(θ) AIL(θ)

~ N n~ w~ p AIL(c) AIL(c) AIL(c)
2 80 40 20 0.15 3.4146 3.0673 1.6523 0.7144 1.5547 0.6651

40 20 9.3383 0.6109 0.5824
1.0622 0.3577 0.3046
1.5215 0.2369 0.2186

0.55 3.2483 3.0103 1.5301 0.6792 1.4479 0.6347
9.0989 0.6125 0.5825
1.1630 0.3370 0.2883
1.5413 0.2372 0.2199

0.95 3.2459 3.009 1.5365 0.6822 1.4581 0.6387
9.0252 0.6136 0.5840
1.1423 0.3394 0.2911
1.6318 0.2392 0.2214

32 0.15 2.7872 2.7832 1.2546 0.5955 1.1861 0.5567
32 8.7304 0.6134 0.5833

1.0233 0.2796 0.2412
1.3750 0.2345 0.2164

0.55 2.8056 2.7834 1.2551 0.5965 1.1847 0.5568
8.6419 0.6141 0.5831
1.0474 0.2795 0.2408
1.4224 0.2372 0.2188

0.95 2.8068 2.765 1.2616 0.5985 1.1935 0.5598
8.5702 0.6150 0.5858
1.0997 0.2818 0.2425
1.3484 0.2357 0.2174

140 70 35 0.15 2.8299 2.7787 1.2480 0.5913 1.1732 0.5512
70 35 8.8112 0.6169 0.5869

0.9287 0.2635 0.2278
1.3237 0.2366 0.2171

0.55 2.6886 2.7106 1.1792 0.5731 1.1093 0.5345
8.5189 0.6155 0.5842
0.9782 0.2632 0.2284
1.3673 0.2346 0.2160

0.95 2.7318 2.7344 1.2057 0.5815 1.1348 0.5427
8.6176 0.6126 0.5838
0.9898 0.2684 0.2324
1.3326 0.2392 0.2198

56 0.15 2.4536 2.5300 0.8753 0.4421 0.8257 0.4148
56 8.1685 0.6119 0.5802

0.8347 0.1885 0.1668
1.1931 0.0926 0.0864

0.55 2.3747 2.5060 0.8788 0.4427 0.8261 0.4143
8.0651 0.6095 0.5785
0.8548 0.1898 0.1667
1.2352 0.0927 0.0858

0.95 2.3900 2.5214 0.8759 0.4417 0.8271 0.4148
8.1405 0.6118 0.5818
0.8549 0.1877 0.1661
1.2216 0.0913 0.0844

Continued on next page
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n1 w1 Credible interval

. . CI Symmetric HPD

. . AIL(α) MAIL AIL(α) MAIL AIL(α) MAIL

. . AIL(λ) AIL(λ) AIL(λ)

. . AIL(θ) AIL(θ) AIL(θ)

~ N n~ w~ p AIL(c) AIL(c) AIL(c)

4 80 20 10 0.15 3.5514 2.9879 1.8141 0.7625 1.7046 0.7083

20 10 9.0555 0.6117 0.5818

20 10 0.9926 0.3838 0.3253

20 10 1.3399 0.2405 0.2214

0.55 3.3072 3.0253 1.5485 0.6838 1.4686 0.6395

9.1629 0.6124 0.5826

1.1114 0.3375 0.2875

1.5448 0.2368 0.2192

0.95 3.3013 3.0365 1.5334 0.6802 1.4531 0.6366

9.2126 0.6123 0.5846

1.2443 0.3335 0.2853

1.4244 0.2416 0.2234

16 0.15 3.0018 2.8487 1.2939 0.6085 1.2209 0.5677

16 8.8203 0.6151 0.5846

16 1.0622 0.2872 0.2464

16 1.3593 0.2380 0.2187

0.55 2.7877 2.8122 1.2833 0.6045 1.2083 0.5638

8.8808 0.6181 0.5875

1.0125 0.2804 0.2416

1.3797 0.2362 0.2180

0.95 2.6809 2.7709 1.2539 0.5955 1.1762 0.5541

8.6718 0.6139 0.5841

1.0059 0.2782 0.2396

1.4957 0.2359 0.2165

140 35 18 0.15 2.9768 2.8485 1.3322 0.6132 1.2466 0.5702

35 18 8.9141 0.6170 0.5870

35 18 0.9581 0.2688 0.2318

35 18 1.3934 0.2349 0.2153

0.55 2.7722 2.727 1.1958 0.5740 1.1280 0.5365

8.5091 0.6177 0.5868

0.9857 0.2487 0.2158

1.3680 0.2336 0.2155

0.95 2.7294 2.7466 1.1760 0.5731 1.1088 0.5356

8.7286 0.6159 0.5867

0.9769 0.2643 0.2290

1.2979 0.2362 0.2177

28 0.15 2.4586 2.5493 0.9017 0.4483 0.8475 0.4203

28 8.2247 0.6144 0.5847

28 0.8842 0.1858 0.1640

28 1.1792 0.0913 0.0849

0.55 2.3382 2.5347 0.8769 0.4407 0.8265 0.4129

8.2832 0.6080 0.5768

0.8100 0.1871 0.1651

1.2424 0.0907 0.0834

0.95 2.3738 2.5307 0.8765 0.4429 0.8254 0.4150

8.1678 0.6098 0.5791

0.8702 0.1914 0.1689

1.2415 0.0937 0.0867
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8. Conclusions

Due to the progress in manufacturing devices in the last decades, physicists and engineers may
face a problem in assessing the lifetime distribution of these devices if they are connected in a certain
mixed system such as a series-parallel system. To overcome this problem, we have introduced a new
distribution called PGLD. The mentioned distribution can describe the lifetime distribution of
series-parallel systems when the number of series subsystems, as well as the number of their parallel
components, are random variables. The PGLD may arise by compounding two discrete (truncated
Poisson and geometric) distributions with a mixture of continuous distributions, LD. Some important
properties of the PGLD have been investigated, such as the q-th quantile, mode, r-th moment, mean
residual lifetime, Bonferroni and Lorenz curves, Rényi and Shannon’s entropies, PDF and CDF of the
i-th order statistic. The progressive-stress model has been applied to units connected in a
series-parallel structure. The lifetimes of these units under normal stress conditions are assumed to
follow LD which is considered a mixture of exponential and gamma distributions. The
progressive-stress model was used when the stress is increasing nonlinearly over time, and the inverse
power law model had established a relationship between the stress and the proposed distribution’s
scale parameter. Based on progressively type-II censored data with binomial eliminations, two
estimation methods were performed to estimate the unknown parameters. The Bayesian estimation
was performed using two asymmetric (LINEX and GE) loss functions. CIs, symmetric, and HPD
credible intervals for the unknown parameters were established. The numerical results showed that
the Bayes estimates were performed well than the MLEs. An illustrative example, based on two real
data sets, demonstrated the superiority of the proposed distribution over some other four distributions.

8.1. Certain features and motivations to the PGLD

Finally, the features and motivations to the PGLD can be summarized as follows:

(1) The CDF of the PGLD has a closed-form. This feature simplifies its use.
(2) The four parameters included in the CDF of PGLD give it the ability to fit several data.
(3) The CDF of PGLD includes the CDF of GLD, PLD, and LD as special cases.
(4) The PGLD can represent the failure time of a series-parallel system. This is considered a

motivation to introduce the PGLD.
(5) The HRF of PGLD has a unimodal shape. This feature gives it more flexibility to fit and analyze

several data arising from increasing and decreasing hazard rates.
(6) The PGLD can represent the non-stationary data. This feature may be useful for the experimenter

to forecast how some products would behave in different environments.
(7) The PGLD is better to fit the data than some other distributions such as PLD, GLD, ELD, and

LD.
(8) Some other distributions may be emerged from Theorem 2.1 by choosing some other continuous

distributions rather than LD.

Based on the above features and motivations, we hope that the PGLD will attract more attention
from physicists and engineers in the near future.
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8.2. Future work

The following points may be investigated in future work:

(1) The inference procedure may be implemented based on a general progressive censoring scheme
such as hybrid progressive censoring.

(2) Some other estimation methods such as the moments and probability weighted moments may be
discussed.

(3) Some other types of ALTs such as the step-stress ALT may be considered.
(4) Prediction of future order statistics based on the PGLD may be investigated.
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