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Abstract: A warrant is a financial agreement that gives the right but not the responsibility, to buy or 
sell a security at a specific price prior to expiration. Many researchers inadvertently utilize call option 
pricing models to price equity warrants, such as the Black Scholes model which had been found to 
hold many shortcomings. This paper investigates the pricing of equity warrants under a hybrid model 
of Heston stochastic volatility together with stochastic interest rates from Cox-Ingersoll-Ross model. 
This work contributes to exploration of the combined effects of stochastic volatility and stochastic 
interest rates on pricing equity warrants which fills the gap in the current literature. Analytical pricing 
formulas for hybrid equity warrants are firstly derived using partial differential equation approaches. 
Further, to implement the pricing formula to realistic contexts, a calibration procedure is performed 
using local optimization method to estimate all parameters involved. We then conducted an empirical 
application of our pricing formula, the Black Scholes model, and the Noreen Wolfson model against 
the real market data. The comparison between these models is presented along with the investigation 
of the models’ accuracy using statistical error measurements. The outcomes revealed that our proposed 
model gives the best performance which highlights the crucial elements of both stochastic volatility 
and stochastic interest rates in valuation of equity warrants. We also examine the warrants’ moneyness 
and found that 96.875% of the warrants are in-the-money which gives positive returns to investors. 
Thus, it is beneficial for warrant holders concerned in purchasing warrants to elect the best warrant 
with the most profitable and more benefits at a future date. 
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1. Introduction 

Derivatives are products having payoffs with prices which depend on the stochastic development 
of underlying financial variables. Recently, the authors of [1] emphasized that warrants have been 
regarded as a leveraging mechanism for investment, hence warrants are broadly recognized as a high-return 
investment tool. A warrant is a contract between a buyer and a seller. As claimed by Sae-ue [2], this 
contract provides rights for investors to buy or sell the underlying shares in future at a fixed price, 
quantity and time as stipulated by issuers. Warrants are issued by third parties, normally the financial 
institutions which are not affiliated to the listed securities-issuing companies. There are two primary 
types of warrants known as company warrants and structured warrants. Company warrants are issued 
by a company which provide the holders the right but not an obligation, during a specified period of 
time, to subscribe new ordinary shares at a specified price. Meanwhile, structured warrants are issued 
by a third-party issuer, which allow the holders the right to purchase or sell the instrument for a fixed 
price in the future. The general formula for equity warrants was given by Xiao et al. [3] as 

𝑊(𝑡) =
1

𝑁 + 𝑀𝑘
(𝑘𝑆(𝑡) − 𝑁𝐺) ,  (1) 

where W is the equity warrant price, 𝑁 is the quantity of common stocks, 𝑀 is the number of equity 
warrants outstanding, and 𝑆 is the value of underlying shares. When 𝐺 is paid, the warrant holder 
shall obtain 𝑘 shares for each warrant at time 𝑡. The symbol + marks the role of the warrant as a 
call or put option. A call (put) warrant gives the holder a right, but not the obligation, to buy from (sell 
to) the issuer the underlying asset at a predetermined price, also known as the exercise price, on or 
before the expiry date. It is crucial for investors to differentiate these two types of put or call warrant 
based on their expectations of the underlying asset price. Basically, if a rise is expected, it will be a 
call warrant, whereas if adjustments are expected, then it will be categorized as a put warrant. 

In Malaysia, both types of warrants are products under securities in Bursa Malaysia which is the 
primary regulator for Malaysia’s market in securities and derivatives. The work of [4] informed that 
the CEO of Bursa Malaysia asserted that the development in derivative sectors and warrants listed 
induced Bursa Malaysia to a healthy performance in year 2012. However, a comparatively low annual 
sales rate for warrants was still recorded for the nation and was found less profitable than other markets. 
Further study by [5] divulged that market disparities were discerned in valuing warrants for a span of 
100 days, and thus declared that pricing efficiency allegedly occurred in the Malaysian market. These 
highlight the importance of conducting a research to improve the pricing of warrants by specifically 
investigating the revolving issues. 

At first glance, Abbasi [6] pointed out that warrants and options may elicit confusion as they share 
the similar concepts of underlying asset, strike price and expiry date. However, there are two important 
discrepancies where warrants can endure up to seven years to expire, while an option generally will 
not surpass a few months. Moreover, warrants are issued by the company itself, whereas options are 
issued by individuals that leads to the transition from one operator to another of the underlying assets. 
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In the literature, some papers such as [1, 6, 7] had used the Black Scholes Option Pricing formula as 
an alternative to evaluate warrant prices. Being one of the successful pricing models used in most 
markets, Arulanandam, Sin and Muita [8] claimed that this model is also easy to implement. 
Nevertheless, this model had some presumptions that other researchers criticized. These presumptions 
will be discussed below. 

In a recent research of [9], the authors mentioned that the issues in warrant pricing have been 
thoroughly discussed in theory and practice, but some concerns remain. First, the paper [10] revealed 
that the maturity period is substantially linked to warrant mispricing, as longer maturities had positive 
impacts on the increase of warrant pricing errors. In fact, they reported that the pricing errors of the 
Black Scholes model might increase as the maturity period increased. Haron [5] applied the Black 
Scholes model to price Malaysia’s warrant for six years period and found that the warrants were 
significantly mispriced. Moreover, possible dilution effect appears when new stocks are released, and 
influence the value of warrants. This effect leads to an issue with the prediction of warrant values. At 
the earliest, [10] established the principle of dilution effect in warrant pricing that was distribution-
free in the Black Scholes model. This study indicated that the improvement in the firm’s value was 
eliminated by dilution factor once warrants are exercised. Then, the academics scholars of [11–14] 
generalized the dilution adjustment based on option pricing model. However, Abínzano and Navas [15] 
reported that these papers involved the knowledge of the firm as a function of the warrant value which 
was commonly unobservable. For example, as stated by Bhat and Arekar [16], the underlying share’s 
volatility is the unobservable parameter in the Black Scholes formula, and maximum likelihood 
estimation is one way of estimating this parameter by deriving the volatility from the returns of 
physical assets using economic instruments. In addition, the Black Scholes model is commonly used 
to price all sorts of warrants and the value of the firm is considered to follow a stochastic differential 
equation. However, recent work by [17] claimed that this notion did not work well, as the principle of 
uncertainty managed to reduce the overweight small probability to guard against losses, and 
underweight large probability with reference to a low probability of worse outcome. Responding to 
this, recent research by [18] first studied equity warrants in an uncertain environment and presented 
formulas based on Liu’s stock model [19]. On the other hand, several authors investigated the problem 
of warrant pricing on the presumption that underlying share prices relied on diffusion process. In a 
latter study [20] analyzed warrant prices with jump diffusion that presumed the stock price adopts a 
model with default intensity and mean-reversion of the interest rate. They concluded that the warrant 
price decreased as the conversion price of warrant bonds increased, and the prices increased with the 
values of recovery rate. Alongside with this, fractional Brownian motion (fBm) also contributed to the 
issues in warrant pricing. fBm is a Gaussian family process characterized by the Hurst parameter in 
the interval [0,1]. Due to its non-semi-martingale property, Zili [21] asserted that the mixed fractional 
Brownian motion (mfBm) should be used by presenting the random aspects of financial derivatives. 
Some researchers had applied fBm to evade independence on warrant pricing. For instance, 
preliminary study by [22] investigated the fair value of warrants using fBm to investigate the analogy 
between warrant prices and capital stocks on Changdian warrants. At the end of the study, the author 
observed that the warrant values using fBm was close to the values of European call option. 

Among all these issues, the assumptions of constant volatility and constant interest rate in the 
Black Scholes model steal the limelight due to the failure of the model to represent important 
characteristics of financial markets. Formerly, early study by [23] found that market observations 
demonstrated that constant interest rates could not justify interest rate shifts over time. In agreement, 
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the authors of [3] revealed that it is inappropriate to assert the interest rate to be constant for long-term 
warrants as the rates evolved in the course of time. At the earliest, the scholars of [24] studied the Black 
Scholes model for valuing warrants, and they observed that volatility of stock warrants is non-
stationary. This was supported by [25] who investigated that the Black Scholes model will lead to 
pricing errors if there exist stochastic gestures in volatility. To defeat this predicament, the authors of [26] 
deemed the Black Scholes model under stochastic volatility and solved the pricing formula problem in 
series form. They explained that the volatility and asset prices were negatively correlated and found 
that the outcomes were responsive to the stochastic parameters. On the contrary, the Black Scholes 
model also restricted on constant risk-free interest rate which seems unrealistic to market trend. Yet, 
interest rates in real market is not constant but moves stochastically. Since then, many methodologies 
for warrant pricing have been developed by employing stochastic interest rates. For example, prior 
study by [27] was among the earliest who demonstrated that the Black Scholes model could be 
modified to accommodate stochastic interest rate. This study utilized the maturity rate for default-free 
bond which matures at the expiry date of the option to depict interest rates. Later, a work by [28] 
created the generalizations of Black Scholes pricing model, which considered short-term interest rate 
that follows stochastic Gaussian process. Their results supported the fact that models with stochastic 
interest rate produced better estimation compared to the Black Scholes model, and produced small 
pricing errors relative to market prices. Moreover, the paper [3] presented the fractional Vasicek model 
by applying a hybrid intelligent algorithm to explain the short rate dynamics for pricing equity warrants 
under stochastic interest rates. They indicated that stochastic interest rate with long memory property 
outperformed the existing traditional models. In addition, recent studies such as [29] and [30] 
readdressed the problems of financial models by incorporating stochastic interest rates. Hereby, these 
empirical findings revealed that by allowing the volatility or interest rate to be stochastic could enhance 
pricing efficiency of some financial derivatives. Motivated by these researches, the notion of stochastic 
volatility and stochastic interest rate has become increasingly important to demonstrate financial 
uncertainty. 

A robust justification exists on both theoretical and empirical grounds for employing the hybrid 
models of stochastic volatility and stochastic interest rate for pricing warrants. Even though many 
models have been proposed in the warrants pricing literature, the incorporation of stochastic volatility 
with stochastic interest rates into warrant pricing models in both theoretical and empirical contexts has 
not been proposed yet. Former work by [31] examined two hybrid models of Heston-Hull-White and 
Heston-Cox-Ingersoll-Ross (CIR) to value European-style options. In their paper, they intended to 
establish hybrid stochastic differential equation models that fit in the class of affine processes. Apart 
from that, Shen and Siu [32] investigated the Schöbel-Zhu-Hull-White hybrid model under Markovian 
regime-switching. They created an integral expression for variance swap pricing and further 
investigated the impact of the involved parameters towards the variance swap prices. Additionally, a 
hybrid model of the Heston-CIR has been employed in [33], where closed-form solutions for FX rate 
and interest rate products pricing were presented. In light of this, they utilized the Wishart process to 
construct a multi-factor model for specifying the currency return dynamics. Anew, we presented in [30] 
the characteristic function for warrant pricing under Heston and CIR models by performing the change 
of measure technique and Fourier transform of generalized function approaches. Another research of 
ours in [34] derived the warrant pricing formula under a different technique using the partial 
differential equation (PDE) approaches. Apart from the utilization of the Heston-CIR hybrid model, 
Recchioni, Sun, and Tedeschi [35] adopted the Heston-Hull-White model to estimate the call and put 
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options prices on the US S&P 500 index and Eurodollar futures. In their study, they allowed the interest 
rates to be negative. Thereof, in such situations, they explored the effect of negative rates towards 
index options as well as Eurodollar futures pricing. Another recent contribution in the literature of the 
Vasicek-Heston hybrid model was attained by [36]. This paper incorporated the stochastic property of 
the short rate and volatility into the option pricing model. The author presented a closed-form pricing 
formula and compared the prices computed from the proposed hybrid model and the Heston model. 
The results indicated that the prices of European call option under the Vasicek-Heston model were 
better than the Heston model.  

In this paper, we derive analytical pricing formulas for hybrid equity warrants using a combination 
of the Heston stochastic volatility model along with the CIR stochastic interest rate model and tested 
the formula both in theoretical and empirical contexts. It is imperative to model interest rates in market 
conditions via the CIR model since historic interest rates correspond to the CIR model even with 
negative rates [37,38]. In their study, the dataset from EURO interest rates with different maturities 
were adopted. They calibrated the CIR model parameters to market interest rates that moved randomly 
and employed a Monte Carlo scheme to simulate the expected value of interest rates. Aside from this, 
we particularly employ the Cauchy problem for heat equations and subsequently work it out using 
PDE techniques. This hybrid model extends the work of Xiao et al. [3] where stochastic volatility was 
ignored and unrealistic over time. Apart from that, the Vasicek interest rate model was adopted in their 
study to explain the short rate fluctuations in pricing equity warrants. However, the Vasicek interest 
rate model theoretically permits the interest rate to become negative, which is an unwanted 
characteristic in finance and economics. In periods of severe financial crisis, the negative rates are 
being used by central banks and it was regarded as extremely improbable. Additionally, the Vasicek 
interest rate model is a single-factor model where the more subtle structure shifts cannot be captured. 
Further, the authors of [3] used the data of China equity warrants to evaluate their model’s performance 
consisting of 29 equity warrants traded from 2005 to 2011. However, finally they only focused on a 
single most actively traded warrant, and this made their data analysis may not be rigorous enough for 
validation purposes.  

The contributions of this paper are as follows. First, we exhibit our pricing formula derived from 
the Heston-CIR model and implement it to realistic contexts via calibration and parameter estimation 
techniques. Second, to validate and evaluate the effectiveness of our pricing formula, we carry out 
empirical studies using data of equity warrants in Malaysia and compare the pricing results with the 
real market data and existing models. Finally, we also conduct a study on warrant moneyness to 
investigate the best warrant with the most profitable and more benefits at a future date. The remainder 
of this paper is structured as follows. Section 2 presents the model setup, while Section 3 deals with 
the derivation of pricing model for equity warrants. Section 4 presents the parameter estimation method 
for our proposed pricing formula, followed by section 5 which implements the proposed formula to 
validate and evaluate its efficiency. Here, the performance of our pricing formula is assessed against 
the Black Scholes model [39] and the Noreen Wolfson model of [24]. We also discuss about the 
warrants’ moneyness to describe the intrinsic value of a warrant in its current state in Section 6. Finally, 
Section 7 concludes with a brief summary of the paper. 

2. Model setup 

In this section, we introduce the outline of our hybrid model namely the Heston-CIR model, along 
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with the expressions for the bond price used as the numeraire in the model. 

2.1. The Heston-CIR model 

The structure of the model consists of a hybridization between the Heston stochastic volatility 
model [40] and the Cox-Ingersoll-Ross (CIR) stochastic interest rate model [41]. The following 
represents the Heston-CIR hybrid model in this paper  

𝑑𝑆(𝑡) = 𝑟(𝑡)𝑆(𝑡)𝑑𝑡 + 𝑣(𝑡)𝑆(𝑡)𝑑𝑤 (𝑡), 

 𝑑𝑣(𝑡)  = 𝑘∗(𝜃∗ − 𝑣(𝑡))𝑑𝑡 + 𝜎 𝑣(𝑡)𝑑𝑤 (𝑡), 

 𝑑𝑟(𝑡)  = 𝛼∗(𝛽∗ − 𝑟(𝑡))𝑑𝑡 + 𝜂 𝑟(𝑡)𝑑𝑤 (𝑡), 

 
 
 
(2)         

where 𝑆(𝑡), 𝑣(𝑡) and 𝑟(𝑡) represent the spot price of underlying asset, volatility, and interest rate 
respectively. We indicate 𝑆(𝑡) as the asset price driven by the drift 𝑟(𝑡), and 𝑣(𝑡) is its volatility. In 
the stochastic variance process of 𝑣(𝑡), the parameter 𝑘∗ refers to the mean reversion process, 𝜃∗ is 
the long-term mean and 𝜎  is the volatility. Moreover, 𝑟(𝑡)  is characterized as the instantaneous 
interest rate, whereupon 𝛼∗ typify its mean-reversion speed, 𝛽∗ is the long-term mean of the interest 
rate, and 𝜂 observes the volatility of the interest rate. The return-to-the-mean structure in the interest 
rate model has several important features, such as providing a steady-state distribution for the interest 
rates, ensuring positive interest rates if zero values are attained, and increasing the absolute variance 
of the interest rate as the interest rates increase. Additionally, the Brownian motions 

𝑑𝑤 (𝑡), 𝑑𝑤 (𝑡) = 𝜌𝑑𝑡 , 𝑑𝑤 (𝑡), 𝑑𝑤 (𝑡) = 0,  and 𝑑𝑤 (𝑡), 𝑑𝑤 (𝑡) = 0  are associated with 
the correlation coefficient of −1 < 𝜌 < 1  and 0 ≤ 𝑡 ≤ 𝑇 . Also, the conditions 2𝑘∗𝜃∗ ≥ 𝜎  and 
2𝛼∗𝛽∗ ≥ 𝜂   are required to be positive real constants. The parameters 𝑣(𝑡)  and 𝑟(𝑡)  follow a 
square root process, also known as the Feller process with parameters that meet the following 
requirements 

2(𝑘∗ − 𝜌𝜎)
𝑘∗𝜃∗

𝑘∗ − 𝜌𝜎
> 𝜎 ⟺ 2𝑘∗𝜃∗ ≥ 𝜎 , 

and 

2(𝛼∗ − 𝜌𝜂)
𝛼∗𝛽∗

𝛼∗ − 𝜌𝜂
> 𝜂 ⟺ 2𝛼∗𝛽∗ ≥ 𝜂 . 

Besides that, to return to the limit of fixed interest rates, paper [42] primarily emphasized on the 

almost everywhere convergence of the long-term return 𝑡 ∫ 𝑟(𝑢) 𝑑𝑢. The authors intrigued in the 

limit 𝑒∫ ( ) , the accumulated factor average, which is beneficial in defining the participation 

models for saving products with a guaranteed minimum return. By adopting the results in [43], they 

discovered that 𝑒∫ ( )  converges almost everywhere in most extant models of interest rates to 

a constant independent of the current market environment, as the observation span approaches infinity. 
The authors further claimed that the model possessed the “strong convergence property”, while when 
the returns converge to a constant, it may be advert to models with the “weak convergence property”. 
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In such situations, it typically will rely upon the current economic conditions and may change 
stochastically. Aside from that, paper [44] showed that the non-arbitrage assumption implies that the 
rate of asymptotic zero-coupon and long forward will never be lessened. Besides, they demonstrated 
that almost all models had unexpected implication that both zero-coupon and long run forward rates 
converge to a constant, and independent of the current economic environment. 

2.2. The CIR bond price 

Due to the incorporation of stochastic interest rate in this study, we utilized the bond price as the 
numeraire. For the CIR model, the price of a zero-coupon bond, 𝑃(𝑟, 𝑡, 𝑇) with maturity T at time 
𝑡 ∈ [0, 𝑇] is described by 

𝑃(𝑟, 𝑡, 𝑇) = 𝐴(𝑡, 𝑇)𝑒 ( , ) ( ), (3) 

where 𝐴(𝑡, 𝑇) =

⎝

⎜
⎛

∗ ( ∗)
( )

( ∗)

( ∗) ∗ ( ∗)
( ) ( ∗)

⎠

⎟
⎞

∗ ∗

and  

𝐵(𝑡, 𝑇) =

𝟐 𝒆
(𝑻 𝒕) (𝜶∗)𝟐 𝟐𝜼𝟐

𝟏

𝟐 (𝜶∗)𝟐 𝟐𝜼𝟐 𝜶∗ (𝜶∗)𝟐 𝟐𝜼𝟐 𝒆
(𝑻 𝒕) (𝜶∗)𝟐 𝟐𝜼𝟐

𝟏

. 

3. Pricing equity warrants under the Heston-CIR model 

In this section, we will derive a closed-form formula to price equity warrants using the Heston-
CIR model. We imply 𝑊(𝑡) as the valuation of the equity warrant. At time 𝑡 ∈ [0, 𝑇], the valuation 
of the equity warrant complies with the following partial differential equation (PDE) which 
corresponds to the derivative value 

𝜕𝑊

𝜕𝑡
+

1

2
𝑣𝑆

𝜕 𝑊

𝜕𝑆
+

1

2
𝜎 𝑣

𝜕 𝑊

𝜕𝑣
+

1

2
𝜂 𝑟

𝜕 𝑊

𝜕𝑟
+ 𝑟𝑆

𝜕𝑊

𝜕𝑆
+ 𝑘∗(𝜃∗ − 𝑣)

𝜕𝑊

𝜕𝑣

+ [𝛼∗𝛽∗ − (𝛼∗ + 𝐵(𝑡, 𝑇)𝜂 )𝑟]
𝜕𝑊

𝜕𝑟
+ 𝜌𝜎𝑣𝑆

𝜕 𝑊

𝜕𝑆𝜕𝑣
= 0 

(4) 

with the terminal condition 

𝑊(𝑡) =
1

𝑁 + 𝑀𝑘
(𝑘𝑆(𝑡) − 𝑁𝐺) . (5) 

The proof of (4) was adopted from [45,46] which derived (4) from (2) using Cholesky 
decomposition, change of measure techniques, as well as the Feynman Kac theorem on stochastic 
differential equations. 
Theorem 3.1. Let 𝑊(𝑡)  be the function of equity warrant price with the variables 
𝑆(𝑡), 𝑇, 𝑡, 𝐺, 𝜂, 𝑣, 𝑟, 𝑘, 𝑁 and 𝑀 at time 𝑡 ∈ [0, 𝑇] given by 
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𝑊(𝑡)(𝑆(𝑡), 𝑇, 𝑡, 𝐺, 𝜂, 𝑣, 𝑟, 𝑘, 𝑁, 𝑀) = 𝑘𝑆(𝑡)𝜙(𝑑 ) − 𝑁𝐺𝑒 ( )𝜙(𝑑 )                  (6) 

where 

𝑑 =
𝑙𝑛

𝑘𝑆
𝑁𝐺

− 𝑙𝑛 𝑃(𝑟, 𝑡, 𝑇) +
1
2

𝐿(𝑇 − 𝑡) +
1
2

𝑄

𝐿(𝑇 − 𝑡) + 𝑄 
, 

𝑄 = 𝜂 𝑟
2(𝑒 − 2𝑒 + 1)

2((𝑎∗) + 2𝜂 ) + (𝑒 − 1)(𝐶)
𝑑𝑠 , 

𝑅 =  (𝑇 − 𝑠) (𝑎∗) + 2𝜂 , 

 𝐶 = 𝑎∗ (𝑎∗) + 2𝜂 + (𝑎∗) + 3𝜂 + (𝑒 ) (𝑎∗) +  𝑎∗ (𝑎∗) + 2𝜂 + 𝜂 , 

𝑑 = 𝑑 − 𝐿(𝑇 − 𝑡) + 𝜂 𝑟 𝐵 (𝑠, 𝑇)𝑑𝑠 , 

and Φ(・) is the cumulative distribution function of Gaussian distribution. 

Apparently, (4) is a parabolic PDE with variable coefficients. In order to find its solution, (4) 
requires Cauchy transformation. By performing on the succeeding coordinate transforms of 𝑦 =

( , , )
, 𝑊(𝑦, 𝑡, 𝐿) =

( , , , )

( , , )
 and 𝐿 = 𝑣, we obtain the following expressions 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧

𝜕𝑊

𝜕𝑡
= 𝑊

𝜕𝑃

𝜕𝑡
+ 𝑃

𝜕𝑊

𝜕𝑡
+ 𝑃

𝜕𝑊

𝜕𝑦

𝜕𝑦

𝜕𝑡
=  𝑊

𝜕𝑃

𝜕𝑡
+ 𝑃

𝜕𝑊

𝜕𝑡
− 𝑦

𝜕𝑊

𝜕𝑦

𝜕𝑃

𝜕𝑡
,          

𝜕𝑊

𝜕𝑆
= 𝑃

𝜕𝑊

𝜕𝑦

𝜕𝑦

𝜕𝑆
=

𝜕𝑊

𝜕𝑦
,                                                                                      

𝜕 𝑊

𝜕𝑆
=

𝜕 𝑊

𝜕𝑦

𝜕𝑦

𝜕𝑆
=

𝜕 𝑊

𝜕𝑦

1

𝑃
,                                                                          

𝜕𝑊

𝜕𝑣
= 𝑃

𝜕𝑊

𝜕𝐿

𝜕𝐿

𝜕𝑣
= 𝑃

𝜕𝑊

𝜕𝐿
,                                                                                  

𝜕 𝑊

𝜕𝑣
= 𝑃

𝜕 𝑊

𝜕𝐿

𝜕𝐿

𝜕𝑣
= 𝑃

𝜕 𝑊

𝜕𝐿
,                                                                      

𝜕𝑊

𝜕𝑟
=  𝑊

𝜕𝑃

𝜕𝑟
+ 𝑃

𝜕𝑊

𝜕𝑦
−

𝑦

𝑃

𝜕𝑃

𝜕𝑟
=  𝑊

𝜕𝑃

𝜕𝑟
− 𝑦

𝜕𝑊

𝜕𝑦

𝜕𝑃

𝜕𝑟
 ,                       

𝜕 𝑊

𝜕𝑟
= 𝑊

𝜕 𝑃

𝜕𝑟
− 𝑦

𝜕𝑊

𝜕𝑦

𝜕 𝑃

𝜕𝑟
+

𝑦

𝑃

𝜕 𝑊

𝜕𝑦

𝜕𝑃

𝜕𝑟
,                                          

𝜕 𝑊

𝜕𝑆𝜕𝑣
=

𝜕 𝑊

𝜕𝑆𝜕𝐿
.                                                                                                    

 (7) 

Note that = −𝑃(𝑟, 𝑡, 𝑇)𝐵(𝑡, 𝑇) , = 𝑃(𝑟, 𝑡, 𝑇)𝐵 (𝑡, 𝑇)  and 𝑆 = 𝑦 𝑃 .  It is easy to 
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check that applying (7) into (4) brings us to the following expression 

+ 𝑦 𝐿 + 𝜎 𝐿 + 𝜂 𝑟 (𝑦𝐵(𝑡, 𝑇)) = 0. (8) 

Next, let 𝑥 = ln 𝑦. This transforms (8) into 

𝜕𝑊

𝜕𝑡
−

1

2
𝐿

𝜕𝑊

𝜕𝑥
+

1

2
𝐿

𝜕 𝑊

𝜕𝑥
+

1

2
𝜎 𝐿

𝜕 𝑊

𝜕𝐿
 

−
1

2
𝜂 𝑟𝐵 (𝑡, 𝑇)

𝜕𝑊

𝜕𝑥
+

1

2
𝜂 𝑟𝐵 (𝑡, 𝑇)

𝜕 𝑊

𝜕𝑥
= 0. 

(9) 

We now define the function 𝑊(𝑦, 𝑡, 𝐿) = 𝑢 �̂�, 𝜏, 𝜆   and �̂� = 𝑥 + 𝛼(𝑡),  where 𝛼(𝑇) =

 𝜔(𝑇) = 0 , 𝜏 = 𝜔(𝑡)  and 𝜆 = 𝐿 + ℎ(𝑡). In this case, we can derive 

𝜕𝑊

𝜕𝑡
=

𝜕𝑢

𝜕�̂�
𝛼 (𝑡) +

𝜕𝑢

𝜕𝜏
𝜔 (𝑡) +

𝜕𝑢

𝜕𝜆
ℎ (𝑡), 

𝜕𝑊

𝜕𝑥
=

𝜕𝑢

𝜕�̂�

𝜕�̂�

𝜕𝑥
=

𝜕𝑢

𝜕�̂�
, 

 
𝜕 𝑊

𝜕𝑥
=

𝜕 𝑢

𝜕�̂�
, 

𝜕𝑊

𝜕𝐿
=

𝜕𝑢

𝜕𝜆
, 

(10) 

and 

                                                                        
∂ W

∂L
=

∂ u

∂λ
. 

Based on (9) and (10), (9) can be simplified as 

𝜕𝑢

𝜕�̂�
𝛼 (𝑡) −

1

2
𝐿 −

1

2
𝜂 𝑟𝐵 (𝑡, 𝑇) +

𝜕 𝑢

𝜕�̂�

1

2
𝐿 +

1

2
𝜂 𝑟𝐵 (𝑡, 𝑇) +

𝜕𝑢

𝜕𝜏
𝜔 (𝑡) 

          +
𝜕𝑢

𝜕𝜆
ℎ (𝑡) +

1

2
𝜎 𝐿

𝜕 𝑢

𝜕𝜆
= 0. 

(11) 

Furthermore, (11) can be further deduced to be of the following form 

=  and = , (12) 

which subsequently gives 
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⎩
⎪
⎨

⎪
⎧𝛼 (𝑡) =

1

2
𝐿 +

1

2
𝜂 𝑟𝐵 (𝑡, 𝑇) ,    

𝜔 (𝑡) = −
1

2
𝐿 −

1

2
𝜂 𝑟𝐵 (𝑡, 𝑇),

ℎ (𝑡) = −
1

2
𝜎 𝐿.                            

 (13) 

Performing integration on (13) with respect to the variable s, we acquire the following results 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝛼(𝑡) =

1

2
𝐿 +

1

2
𝜂 𝑟𝐵 (𝑠, 𝑇) 𝑑𝑠,     

𝜔(𝑡) = −
1

2
𝐿 +

1

2
𝜂 𝑟𝐵 (𝑠, 𝑇)  𝑑𝑠

ℎ(𝑡) = −
1

2
𝜎 𝐿  𝑑𝑠.                          

, 
    

(14) 

It can be observed that (12) stands for an explicit solution of a one-dimensional heat equation 
presented as 

𝑊 = 𝑢 �̂�, 𝜏, 𝜆 =
1

2√𝜋𝜏

1

𝑁 + 𝑀𝑘
𝑘𝑒 − 𝑁𝐺 𝑒

( )

𝑑𝜉, 

                             =
𝑘

2√𝜋𝜏

𝑒 𝑒
( )

𝑁 + 𝑀𝑘
𝑑𝜉 −

𝑁𝐺

2√𝜋𝜏

𝑒
( )

𝑁 + 𝑀𝑘
𝑑𝜉, 

                             = 𝐼 − 𝐼 ,  

     

(15) 

with the final condition 𝑢 �̂�, 0, 𝜆 = (𝑘𝑒 − 𝑁𝐺) . 

Here, we first derive the formulation of 𝐼  by assuming 𝑧 =
√

. Then −√2𝜏𝑑𝑧 = 𝑑𝜉. We 

are able to obtain 

𝐼
𝑁𝐺

2√𝜋𝜏
  

𝑒
( )

𝑁 + 𝑀𝑘
𝑑𝜉, 

   =
𝑁𝐺

(𝑁 + 𝑀𝑘)

1

2√𝜋𝜏
  𝑒 (−√2𝜏)𝑑𝑧

√
, 

   =
𝑁𝐺

𝑁 + 𝑀𝑘

1

√2𝜋
  𝑒  𝑑𝑧

√
, 

   =
𝑁𝐺

𝑁 + 𝑀𝑘
𝜙(𝑑 ), 

(16) 

where 
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 𝑑 =
𝑙𝑛

𝑘𝑆
𝑁𝐺

− 𝑙𝑛 𝑃(𝑡, 𝑇) −
1
2

𝐿(𝑇 − 𝑡) −
1
2

𝑄

𝐿(𝑇 − 𝑡) + 𝑄 
, 

 𝑄 = 𝜂 𝑟
2(𝑒 − 2𝑒 + 1)

2((𝑎∗) + 2𝜂 ) + (𝑒 − 1)(𝐶)
𝑑𝑠 , 

 𝑅 =  (𝑇 − 𝑠) (𝑎∗) + 2𝜂  , 

and 

𝐶 = 𝑎∗ (𝑎∗) + 2𝜂 + (𝑎∗) + 3𝜂 + (𝑒 ) (𝑎∗) + 𝑎∗ (𝑎∗) + 2𝜂 + 𝜂 . 

Obtaining the above, we proceed with the derivations of 𝐼  . We let 𝑧 =
√

  and 

−√2𝜏𝑑𝑧 = 𝑑𝜉. Accordingly, we obtain the following expressions by using the same procedure as in 
𝐼 . 

𝐼 =
1

2√𝜋𝜏
  

𝑘𝑒

𝑁 + 𝑀𝑘
𝑒

( )

𝑑𝜉, 

                                 =
𝑘𝑒

(𝑁 + 𝑀𝑘)2√𝜋𝜏
  𝑒 −√2𝜏 𝑑𝑧

√
,  

                                       =
( )

( , , )
𝜙(𝑑 ), 

(17) 

where 

𝑑 =
( , ) ( )

( )  
, 

𝑄 = 𝜂 𝑟
2(𝑒 − 2𝑒 + 1)

2((𝑎∗) + 2𝜂 ) + (𝑒 − 1)(𝐶)
𝑑𝑠 , 

 𝑅 =  (𝑇 − 𝑠) (𝑎∗) + 2𝜂 , 

and 

𝐶 = 𝑎∗ (𝑎∗) + 2𝜂 + (𝑎∗) + 3𝜂 + (𝑒 ) (𝑎∗) + 𝑎∗ (𝑎∗) + 2𝜂 + 𝜂 . 

Finally, the required result as in Theorem 1 is obtained by the integration of (15)–(17), along with 
the relationship 𝑊(𝑆, 𝑣, 𝑟, 𝑡) = 𝑊(𝑦, 𝑡, 𝐿)𝑃(𝑟, 𝑡, 𝑇). 
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4. Parameter estimation technique 

In the previous section, we discussed about the model and formula for pricing hybrid equity 
warrants under stochastic volatility and stochastic interest rates. In light of this, certain parameters 
which are not available from the market data have to be estimated in order to implement our formula 
in a realistic context. Consequently, we present here the parameter estimation method for the pricing 
model in (6) to attain values for the required parameters. 

4.1. Data description 

Some of the data used in this study is obtained from www.bursamalaysia.com which is the website 
of Bursa Malaysia Berhad, whereas other inaccessible data are purchased from the company and 
external sources. From the data obtained, there exist 7974 data from 1329 companies in Bursa Malaysia 
from December 2015 to December 2019. However, we eliminate the companies with inadequate 
information, for example incomplete number of shares outstanding and mid-price values. Finally, 160 
warrants data are involved in this study following the time considered which is 5 years. Due to the data 
availability restriction made by Bursa Malaysia, we display in Table 1 below the example of the real 
data considered for year 2019. 

Table 1. List of selected equity warrants in year 2019. 

Number 
of 

Warrants 

Equity Warrants Warrants 
Outstanding 
(millions) 

Shares 
Outstanding 
(millions) 

Exercise 
Price 

Share Per 
Warrant 

Maturity 
Period 

1 APPASIA-WA 135690400 341748000 0.13 1 10 
2 AZRB-WA 116201952 596435000 0.63 1 10 
3 BIMB-WA 426715078 1764283000 4.72 1 10 
4 BTM-WB 26295146 141344000 0.2 1 10 
5 DIGISTA-WB 74024334 650966000 0.26 1 10 
6 DNONCE-WA 51920700 261296000 0.25 1 5 
7 DOMINAN-WA 45643879 165240000 1.3 1 5 
8 DPS-WB 194261746 587770000 0.1 1 10 
9 ECOWLD-WA 525392340 2944368000 2.08 1 7 
10 EG-WC 68963282 257423000 0.42 1 5 
11 GPA-WA 490243800 980488000 0.1 1 10 
12 GUNUNG-WB 62942500 236180000 0.4 1 10 
13 INIX-WA 104317125 298255000 0.1 1 5 
14 JIANKUN-WA 75586889 166845000 0.32 1 7 
15 KIMLUN-WA 58954600 339801000 1.68 1 10 
16 LBS-WB 99949262 1592579000 0.56 1 5 
17 LEWEKO-WB 100181356 321893000 0.2 1 5 
18 LUSTER-WB 216000000 2076035000 0.1 1 10 
19 MAGNA-WB 164422270 332626000 0.9 1 5 
20 MBL-WA 39913680 201941000 0.8 1 10 
     Continued on next page 



410 

AIMS Mathematics  Volume 7, Issue 1, 371–397. 

 

Number 
of 

Warrants 

Equity Warrants Warrants 
Outstanding 
(millions) 

Shares 
Outstanding 
(millions) 

Exercise 
Price 

Share Per 
Warrant 

Maturity 
Period 

21 MCLEAN-WB 23175996 178778000 0.25 1 5 
22 OCK-WA 264072954 958573000 0.71 1 5 
23 PENSONI-WB 64834000 129668000 0.6 1 10 
24 POHUAT-WB 36829532 229979000 1 1 5 
25 REACH-WA 1277822225 1096413000 0.75 1 8 
26 SERSOL-WA 96151000 215349000 0.18 1 10 
27 SOLID-WA 184227454 393272000 0.21 1 5 
28 SRIDGE-WA 48033250 140354000 0.18 1 10 
29 SYMLIFE-WB 149292368 600135000 0.79 1 7 
30 THRIVEN-WB 248621305 546943000 0.48 1 5 
31 WCT-WE 232484710 1424065000 2.08 1 5 
32 WZSATU-WA 131440908 511665000 0.38 1 10 

4.2. The method of parameter estimation 

In this section, we adopt the market information of equity warrants from Bursa Malaysia to 
estimate the unknown parameters in our pricing formula. The process of fitting our formula to market 
data which is also referred as model calibration is conducted here. Many efficient calibration methods 
are presented to analyze a variety of stochastic models. According to [47], the methods of optimization-
based calibration render more systematic and are essential to most financial models, such as the Heston 
model, Vasicek model and CIR model. Additionally, Zhang et al. [48] mentioned that these methods 
also benefit from minimal computational costs since they involve small samples. For example, the 
calibration of the Heston stochastic volatility model as a nonlinear least squares problem to estimate 
the model parameter values ensures that the model reproduces market prices as precisely as feasible [49]. 
Another technique for calibrating asset pricing models to market prices is the weighted Monte Carlo 
approach, which is based on more probability distortion schemes and more extensive kinds of utility, 
such as recursive utility [50]. Furthermore, to identify the optimal parameters, it is important to identify 
a measure to evaluate the distance between the model and market prices. We conduct a local 
optimization scheme to determine the parameter values that reduce the respective distance. The model 
calibration’s objective is to minimize the absolute value of mean square error (MSE) between the 
market and model prices. The MSE can be specified as 

MSE =
1

𝑛
𝑊 − 𝑊  

where n is the number of warrants, 𝑊  is the market prices and 𝑊  is the model prices with Ω needed 
for calibration. In particular, the parameters involved in the model calibration are represented by 

Ω = 𝜃∗, 𝜎, 𝛽∗, 𝜂, 𝑟(0), 𝑣(0), 𝜌,  𝑘∗, 𝛼∗, 

where 𝜃∗ is the long term mean for variance process and 𝜎 is its volatility, 𝛽∗ is the long-term mean 
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of the interest rate, 𝜂 observes the volatility of the interest rate, 𝑟(0) is the initial interest rate, 𝑣(0) 
is the initial volatility, 𝜌 is the correlation coefficient, 𝑘∗ is the mean-reversion speed parameter of 
instantaneous variance, and 𝛼∗  determines the speed of mean-reversion for instantaneous rate 
process. From this perspective, it is obvious that there are nine parameters involved in the Heston-CIR 
model with four parameters accompanying the volatility process consisting of 𝜃∗, 𝜎, 𝑘∗, 𝑣(0), four 
parameters accompanying the interest rate comprising of 𝛼∗, 𝛽∗, 𝜂, 𝑟(0), and the correlation 𝜌. 

The calibration procedure is performed using local optimization method, by applying the built-in 
function lsqnonlin in MATLAB to identify the optimal parameters of Ω. Remark that the lsqnonlin 
works for solutions that minimize the sum of the squared functions for all 𝑥 values. In this case, we 
first declare the lower bounds (lb)and upper bounds (ub)to perform the model calibration. Below, we 
present the overall algorithm to obtain the valuation of the equity warrants. 

Algorithm 1 

Input: Stock Market data, upper bound and lower bound of parameters 
Initiate parameter values 
Repeat 

Call Calibration Function 
Evaluate Cost Function using Least Square Method 

 Call Characteristic Function  

 Call Price Function  
 Update new cost function value 

Until optimized parameter estimation 

Print best solution 
Print equity warrant value and best parameter value 

Table 2 below displays the nine estimated parameter values for our pricing formula for the 
specified years. It can be observed that the long-term mean for variance process and its volatility, the 
long term-mean of the interest rate, the initial interest rate and volatility, the correlation coefficient and 
the mean-reversion speed of instantaneous variance converged to the same values over the years. The 
outputs shown in Table 2 will be employed in the following section to apply our pricing formula in the 
real context. 

Table 2. Parameters estimated for our pricing formula according to years. 

Parameters 2015 2016 2017 2018 2019 
𝜃∗ 0.5 0.5 0.5 0.5 0.5 
 𝜎 0.1 0.1 0.1 0.1 0.1 
𝛽∗ 1 1 1 1 1 
𝜂 1 1 1 1 0.7477 

𝑟(0) 1 1 1 1 1 
𝑣(0) 1 1 1 1 1 

𝜌 0.5 0.5 0.5 0.5 0.5 
𝑘∗ 4 4 4 4 4 
𝛼∗ 0.1489 0.1349 0.15 0.1949 0.2403 
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5. Empirical results and analysis 

5.1. Model comparison 

In this subsection, a brief description regarding two existing pricing models namely the Black 
Scholes model [39] and the Noreen Wolfson model [24] is given for comparison purposes with our 
pricing formula. 

5.1.1. The Black Scholes model 

The Black Scholes model is an evaluation model used to ascertain the prices for a call or put 
options formulated on five variables involving volatility, stock price, strike price, time to maturity and 
risk-free interest rate. It is commonly used to price European options. In this matter, the warrant value 
is comparable to the call option value, coupled with the same strike price and duration up to the expiry 
date. As pointed out by [1], the Black Scholes model can provide some degree of precision in 
estimating warrant price. The pricing formula given by Black Scholes model is as follows 

𝑃 = 𝑆(𝑡)Φ(𝑑 ) − 𝐺𝑒 ( )Φ(𝑑 ), (18) 

where 𝑑 =
( )

( )( )

√
, 𝑑 = 𝑑 − 𝜎 √𝑇 − 𝑡, Φ is the cumulative Gaussian distribution 

function, 𝑆(𝑡) is the stock price at time 𝑡, 𝐺 is the strike price, 𝑟 is the rate of interest, 𝜎   is the 
standard deviation of the log returns, and 𝑇 − 𝑡 is the time expiration. Additionally, this model does 
not take into account the effects of dilution in pricing warrant. Contrarily, the transaction of equity 
warrants grants the company to issue shares which leads to stock dilution. 

5.1.2. The Noreen Wolfson model 

According to [39], most papers dealing with warrants ignored the possible dilution effects on the 
firm's equity. The paper [24] generalized the Black Scholes model predicated on constant elasticity 
variance (CEV) model, adapted for the dilution factor related to the valuation of executive stock 
options. The Noreen Wolfson model utilizes the Black Scholes European call option model by 
providing the preceding modification to the predicted call price 

𝑃 =
𝑁

𝑁 + 𝑀𝑘
𝑆(𝑡)𝜙 (𝑑 ) − 𝐺𝑒 ( )𝜙 (𝑑 ) , (19) 

where 𝑑 =

( )
( )

√
, 𝑑 = 𝑑 − 𝜎 √𝑇 − 𝑡, 𝑁 is the amount of outstanding shares 

of common stock, 𝑀 is the amount of outstanding warrants, and 𝑘 is the conversion ratio. Here, the 
𝑑   and 𝑑   expressions are similar to the expressions of 𝑑   and 𝑑   in the Black Scholes 
model respectively. Further, the remaining symbols are the same as those in the Black Scholes model.  
Moreover, the Noreen Wolfson model involved eight parameters, where five of it could be procured 
using the same approaches as in the Black Scholes model. The remaining parameters comprising of 
the amount of shares outstanding, the amount of outstanding warrants and the conversion ratio could 
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also be extracted from the data. 

5.2. Results and analysis 

In this subsection, our pricing formula is numerically examined with the Black Scholes model 
and the Noreen Wolfson model in terms of how these models fit the observed market data, and whether 
these models led to the prediction improvements respectively. In the field of financial mathematics, 
once analytical pricing formulas are obtained for a particular model, the model’s performance will be 
tested for its accuracy and efficiency via numerical experiments. The objective of conducting such 
experiments is to test and validate which pricing model offers the best performance compared to 
existing models. 

5.2.1. Models’ performance and market fitting 

Here, we compute the equity warrant prices using our pricing formula and compare the acquired 
results with the existing models presented in Section 5.1. The graph plots of the three pricing models 
alongside the market prices are displayed in Figures 1–5, and the results attained according to yearly 
basis are shown in Tables 3–7. 

 

 

Figure 1. The comparison of three models and market price in year 2015. 

Our Pricing Formula Black Scholes Noreen Wolfson Market Price
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Figure 2. The comparison of three models and market price in year 2016. 

 

 

Figure 3. The comparison of three models and market price in year 2017. 

Our Pricing Formula Black Scholes Noreen Wolfson Market Price
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Figure 4. The comparison of three models and market price in year 2018. 

 

 

Figure 5. The comparison of three models and market price in year 2019. 

Figures 1–5 illustrate the comparison between the pricing models and market prices in the years 
2015 to 2019. Depicted in figures above, our pricing formula gives a good fit to the market prices for 
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the specified years. Besides that, prices calculated from the Black Scholes model are point-wisely close 
and match market prices for most of the warrants. We can see that the difference between the Black 
Scholes model and the market price is small, and still follows the pattern of the market price. Moreover, 
observe that the evaluated warrant prices in both our pricing formula and the Black Scholes model for 
certain warrants seem to have very small differences as the plot lines of the two warrant prices align 
together. In contrast, the Noreen Wolfson model obviously shows to be slightly distant from the market 
prices. This model acquired negative values in its estimated warrant prices which is inappropriate since 
warrant values should never be negative. 

As a whole, there is very minor difference between our pricing model and market prices, as shown 
in Figures 1–5. In addition, this implies that our pricing formula is accurate and can be safely applied 
in practice. The valuation of five selected warrants per year can be referred in Tables 3–7 below for 
further analysis. 

From Tables 3–7, the results indicate that our pricing formula outperforms the other two models. 
It is observed that the two existing valuation models tend to overprice and underprice the warrants, 
while most of the pricing results calculated by our pricing formula are consistent with market prices. 
Specifically, our pricing formula works well throughout the 5 years since the warrants’ predicted prices 
are closely similar with the warrants’ market prices. For example, in Table 3, we obtained the predicted 
prices of 0.2830, 0.0730, 0.3430 and 0.1130 respectively for DOMINAN-WA, LEWEKO-WB, 
MAGNA-WB and THRIVEN-WB, which are exactly equal to the market prices in the same year. 
There is no doubt that our pricing formula easily defeated other two models in this case. Apart from 
that, observe that the Black Scholes model tend to underestimate and overestimate equity warrants 
prices. Tables 5 and 6 reveals that DNONCE-WB, INIX-WA, MCLEAN-WB and REACH-WA 
overestimated the market prices by 0.000960829943652985, 0.000392526154014999, 
0.00115399424313 and 0.000099196562548989 respectively. These findings verify that the 
assumptions of constant volatility and constant interest rate in the Black Scholes model contradict to 
the financial phenomenon. Otherwise stated, ignoring these two assumptions may lead to significant 
underestimation or overestimation of the warrant prices. Nevertheless, the Black Scholes model 
performed better than the Noreen Wolfson model. The Noreen Wolfson model performed very poorly 
from 2015 to 2017. In contrast, for the years 2018 and 2019, this model improved significantly as the 
predicted prices obtained are similar and closer to market prices for certain warrants. For instance in 
Table 7, only the price of equity warrant JIANKUN-WA was underestimated by the Noreen Wolfson 
model. 

Table 3. Warrant prices for three models and the market price in year 2015. 

Warrants  Our pricing formula Black Scholes Noreen Wolfson Market price 

APPASIA-WA 0.080000000574791 0.080003664824940 0.061549782101358 0.0800 

DOMINAN-WA 0.283000000000000 0.288717639718196 0.138933493031117 0.2830 

LEWEKO-WB 0.073000000000000 0.288717639718196 0.138933493031117 0.0730 

MAGNA-WB 0.343000000000000 0.346434767708419 0.222849636704769 0.3430 

THRIVEN-WB 0.113000000000000 0.115626296918640 0.082471369943301 0.1130 
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Table 4. Warrant prices for three models and the market price in year 2016. 

Warrants  Our pricing formula Black Scholes Noreen Wolfson Market price 

DIGISTA-WB 0.065000000471245 0.065004672265969 0.022636426429228 0.0650 

EG-WC 0.533000000000000 0.535248899020325 0.473592435261704 0.5330 

LUSTER-WB 0.028000000015157 0.028003262019334 0.024650390874453 0.0280 

OCK-WA 0.208000000000000 0.211117377728254 0.126691199602151 0.2080 

SRIDGE-WA 0.053000001185461 0.053005118963523 0.044698129225113 0.0530 

Table 5. Warrant prices for three models and the market price in year 2017. 

Warrants Our pricing formula Black Scholes Noreen Wolfson Market price 

AZRB-WA 0.510000001959723 0.510025354703685 0.361592796601072 0.5100 

DNONCE-WA 0.193000000000000 0.193960829943653 0.166235417342544 0.1930 

GUNUNG-WB 0.128000002816721 0.128013335565788 0.069760151685293 0.1280 

INIX-WA 0.098000000000000 0.098392526154015 0.092394185898286 0.0980 

WZATU-WA 0.543000002306095 0.543017646593045 0.402166492759913 0.5430 

Table 6. Warrant prices for three models and the market price in year 2018. 

Warrants  Our pricing formula Black Scholes Noreen Wolfson Market price 

DPS-WB 0.023000000267042 0.023003109631697 0.022999916591967 0.0230 

GPA-WA 0.018000000196653 0.018002810962309 0.015346085719489 0.0180 

MBL-WA 0.323000019842525 0.323028117261753 0.136465949783279 0.3230 

MCLEAN-WB 0.028000000000000 0.029153994724313 0.028000000000610 0.0280 

REACH-WA 0.068000000001872 0.068099196562549 0.068000000000000 0.0680 

Table 7. Warrant prices for three models and the market price in year 2019. 

Warrants  Our pricing formula Black Scholes Noreen Wolfson Market price 

BTM-WB 0.118000000811604 0.118007073166777 0.118000000265438 0.1180 

JIANKUN-WA 0.068000000001654 0.068180165926507 0.063899230814451 0.0680 

LBS-WB 0.053000000000000 0.056001902808156 0.052996951364994 0.0530 

PENSONI-WB 0.060000001570295 0.060016564798600 0.059999987905250 0.0600 

SERSOL-WA 0.040000000003767 0.040005117238332 0.039999995411248 0.0400 

In general, our pricing formula offers outstanding results compared to the Black Scholes model 
and the Noreen Wolfson model. Undoubtedly, as illustrated previously in from Figures 1–5, the prices 
calculated by our pricing formula matches the warrants market prices. Additionally, to further illustrate 
the accuracy of our model, we compare the pricing errors and measure the warrants’ moneyness of the 
proposed model with those calculated from the Black Scholes model and Noreen Wolfson model. The 
details for each scenario will be discussed in the next subsection. 

5.2.2. Pricing errors 

Statistical error measurement is used as the comparison criterion for the accuracy and 
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performance of the models involved in this study. The error measurements used consist of the mean 
absolute error (MAE), the mean absolute percentage error (MAPE), and the root mean squared error 
(RMSE), and are computed using the following 

MAE =
1

sample size
|Market price − Model price|, 

MAPE =
1

sample size

Market price − Model price

Market price
, 

RMSE =
1

sample size
(|Market price − Model price|) . 

The accuracy analysis for our pricing formula, the Black Scholes model and the Noreen Wolfson 
model are exhibited in Tables 8–12. Observe from Tables 8–12 that the pricing errors of the Black 
Scholes model and the Noreen Wolfson model appear a bit higher compared to our pricing formula. 
Also, our pricing fomula obtain very small values for MAE, MAPE and RMSE among these 
comparative models, suggesting that it gives the most accurate results. Besides, the pricing errors of 
the Noreen Wolfson model might seem a bit higher compared to our pricing formula and the Black 
Scholes model. Further examination of the performance of these two pricing models revealed that the 
Black Scholes model performed better compared to the Noreen Wolfson model. Specifically, the 
Noreen Wolfson model gives the worst performance on MAE, MAPE and RMSE among the three 
models. By referring to Table 8, this model produces the highest MAPE of 54.69%, in contrast to our pricing 
model and the Black Scholes model. In addition to this, the MAPE for Noreen Wolfson model in 2015 is the 
highest among all models over all involved years. The same trend of the Noreen Wolfson model inducing a 
higher MAPE compared to the Black Scholes model was also justified in Xiao et al. [3] who tested their 
proposed model against the Black Scholes model, the Noreen Wolfson model, the Lauterbach Schultz 
model, and the Ukhov model. Their empirical findings revealed that the Black Scholes model and the 
Noreen Wolfson model generated MAPE of 35.26% and 37.67% respectively. 

Table 8. The pricing errors for three models in year 2015. 

Errors Our pricing formula Black Scholes Noreen Wolfson 

MAE 1.35319E-09 0.00144800973934 0.12492262037343 

MAPE 7.22701E-09 0.00682421027709 0.54688518050022 

RMSE 2.79527E-09 0.00272513337126 0.21131903099817 

Table 9. The pricing errors for three models in year 2016. 

Errors Our pricing formula Black Scholes Noreen Wolfson 

MAE 1.13043E-09 0.00146016727456 0.10759001778087 

MAPE 4.77358E-09 0.00778280021382 0.41975189114179 

RMSE 2.48916E-09 0.00277225510439 0.20121088479459 
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Table 10. The pricing errors for three models in year 2017. 

Errors Our pricing formula Black Scholes Noreen Wolfson 

MAE 1.52831E-09 0.00142362754452 0.11950887047077 

MAPE 6.17151E-09 0.00636789327638 0.40481695329482 

RMSE 3.41041E-09 0.00276940210685 0.22872894531028 

Table 11. The pricing errors for three models in year 2018. 

Errors Our pricing formula Black Scholes Noreen Wolfson 

MAE 2.19473E-09 0.00122434688289 0.02818232309285 

MAPE 1.92459E-08 0.01562445449550 0.21117442460036 

RMSE 5.0946E-09 0.00235187076420 0.06726636305672 

Table 12. The pricing errors for three models in year 2019. 

Errors Our pricing formula Black Scholes Noreen Wolfson 

MAE 4.99892E-10 0.00125707060739 0.02464038076790 

MAPE 3.12E-09 0.02534732795222 0.13907183879248 

RMSE 1.14338E-09 0.00242815410303 0.07398294871201 

It is also important to note that the authors of [51] mentioned that warrants generally have 
maturities ranging from 3 months to 15 years. In this research, as presented in Table 1, we have 
considered the warrants data with maturity from 5 to 10 years. Predicated on these available sample 
data as well as employing our derived analytic pricing formula, our approach is fundamentally 
appropriate to value warrants since our data covers the first 10 years of the warrants’ lifespan.  

Based on the results displayed in this section, it is evident that our model which consists of the 
hybridization of stochastic volatility and stochastic interest rate performs magnificently compared to 
existing pricing models. This is intuitive since both the Black Scholes model and the Noreen Wolfson 
model do not incorporate either the stochastic volatility or the stochastic interest rate elements which 
is against the real market phenomena. Moreover, our empirical study demonstrated that the prices 
calculated by our pricing formula are persistent with the market prices, despite other existing pricing 
models which appeared to underprice or overprice equity warrants. Our results support many empirical 
evidences in the literature which suggested that a hybridization of the Heston-CIR model may provide 
to improvement of model performance. 

6. Moneyness 

In essence, moneyness is the term used to specify the profitability of a warrant. It is the strike 
price’s position in relation to the warrant value, either the warrant is a call warrant or a put warrant. 
Aziz et al. [7] reported that there are 3 categories driven by moneyness, namely at-the-money (ATM), 
in-the-money (ITM) and out-of-the-money (OTM). The applicability of these categories differs 
according to the nature of the warrant itself as a call or put warrant. 

In relation to call warrants, ATM is a situation where the strike price is equal to the stock price of 
the underlying asset. Next is the ITM that have both positive intrinsic values and time values, with the 
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strike price below the stock price. Meanwhile, OTM occurs if the strike price is above the stock price. 
The anticipated output is that if the warrants is ATM, the investors is break even, if the warrant is ITM, 
the investors will make money, while OTM means that the warrant shall expire or leave without value. 
However, for the case of put warrants, it should be emphasized that the definitions of ITM and OTM 
are conversely to the definition of call warrants. Note that the moneyness factor has been calculated in 
several ways in literature, but in this study we determined moneyness by comparing the strike price 
and stock price of warrants. Using the definition of call warrants stated above, we exhibit the results 
of warrant prices calculated from our pricing formula and define the warrants’ moneyness for 32 equity 
warrants of year 2019 in Table 13. 

According to Table 13, we perceive that out of the 32 equity warrants, none of them are ATM 
warrants. Apart from that, there is only one warrant in 2019 that grasp the moneyness status of OTM 
which is APPASIA-WA. The warrant that holds status OTM are no longer profitable for the investors. 
In fact, the warrant is the right to purchase stocks which represent the expectation of investors of their 
underlying stock. Hence, from this perspective, we claim that the stock price fails to meet the investors’ 
expectation of the future values of stock. In contrast, most of the warrants in Table 13 are ITM. These 
warrants are profitable by ensuring that the warrants are beneficial to the investors and exercising the 
warrants will make profit. Therefore, it is very crucial for the warrant holders concerned in purchasing 
warrant from a particular company to elect the best warrant with the most profitable and more benefits 
at a future date. On average, 3.125% of the warrants in year 2019 are OTM and 96.875% of them are 
ITM. Thus, we conclude that 96.875% of warrants illustrated in Table 13 give positive returns to the 
investors. 

Table 13. Warrants moneyness for 32 equity warrants in 2019. 

Warrants Stock price Strike price Moneyness status 

APPASIA-WA 0.0847 0.088000000148371 OTM 

AZRB-WA 0.3052 0.185000000252882 ITM 

BIMB-WA 4.1956 0.228000000898383 ITM 

BTM-WB 0.1250 0.118000000811604 ITM 

DIGISTA-WB 0.0371 0.018000000015144 ITM 

DNONCE-WA 0.2533 0.143000000000000 ITM 

DOMINAN-WA 1.2082 0.035000000000000 ITM 

DPS-WB 0.0571 0.038000000046692 ITM 

ECOWLD-WA 0.6694 0.238000000000001 ITM 

EG-WC 0.3351 0.073000000000000 ITM 

GPA-WA 0.0704 0.038000000026699 ITM 

GUNUNG-WB 0.3924 0.128000001404027 ITM 

INIX-WA 0.0455 0.008000000000000 ITM 

JIANKUN-WA 0.2749 0.068000000001654 ITM 

KIMLUN-WA 1.0579 0.268000002196129 ITM 

LBS-WB 0.4471 0.053000000000000 ITM 

LEWEKO-WB 0.1826 0.038000000000000 ITM 

LUSTER-WB 0.0643 0.033000000010146 ITM 

MAGNA-WB 0.7083 0.148000000000000 ITM 

   Continued on next page
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Warrants Stock price Strike price Moneyness status 

MBL-WA 0.8000 0.575000003707543 ITM 

MCLEAN-WB 0.1292 0.055000000000000 ITM 

OCK-WA 0.5224 0.083000000000000 ITM 

PENSONI-WB 0.2932 0.060000001570295 ITM 

POHUAT-WB 1.0134 0.503000004130376 ITM 

REACH-WA 0.1576 0.038000000000000 ITM 

SERSOL-WA 0.0777 0.040000000003767 ITM 

SOLID-WA 0.1953 0.073000000304881 ITM 

SRIDGE-WA 0.1832 0.108000000000000 ITM 

SYMLIFE-WB 0.3876 0.018000000306296 ITM 

THRIVEN-WB 0.1776 0.018000000000017 ITM 

WCT-WE 0.8536 0.038000000000000 ITM 

WZSATU-WA 0.1702 0.103000000161639 ITM 

7. Conclusions 

In this paper, we study the evaluation of equity warrants using the Heston-CIR hybrid model both 
in the analytical and empirical contexts, by assimilating the element of stochastic volatility with 
stochastic interest rates. We apply the techniques of partial differential equation to solve Cauchy 
problems which results in analytical formulas for pricing equity warrants. Using the data of Malaysia 
warrant market, we compare the pricing performances of our pricing model with the Black Scholes 
model and the Noreen Wolfson model, and validate the models’ accuracy using statistical error 
measurements. Moreover, we also examine the warrants’ moneyness and observe that 96.875% of the 
warrants give positive returns to investors. Our findings indicate that the hybrid model of stochastic 
volatility and stochastic interest rate plays an important role in assessing equity warrants prices, since 
our pricing model performed magnificently compared to existing pricing models. Among the three 
models studied, the Noreen Wolfson model has the worst performance and should not be considered 
for pricing warrants in Malaysia. It can be affirmed that the rationale for the pricing accuracy of our 
pricing formula is due to the hybridization of the stochastic volatility and stochastic interest rate which 
establishes a new model for equity warrants and captures the real market phenomena. Besides that, our 
pricing formula also gives the smallest MAE, MAPE and RMSE among the three models in all 
considered years. These results render a great deal of support for the conclusion that our pricing 
formula can be considered as a benchmark pricing tools for equity warrants. Thus, we can infer that 
the prices calculated by our pricing formula are persistent with the market prices, despite other existing 
pricing models which appear to underprice or overprice equity warrants. For future research, it is 
suggested to include jumps in the pricing model’s structure to illustrate occurrence of fluctuations in 
the financial market, as well as to consider longer data periods for investigating the specific effect of 
variables. 
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