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1. Introduction

The properties of orthogonal polynomials and recursive sequences are popular in number theory.
They are important in theoretical research and application. The famous Chebyshev polynomials
and Fibonacci polynomials are widely used in the field of function, approximation theory and
difference equation. They also promote the development of both the branch of mathematics such
as cryptography, combinatorics and application of discipline such as intelligent sensing, satellite
positioning. Furthermore, they are close to the Fibonacci numbers and Lucas numbers. Therefore,
a large number of scholars have investigated them and get many properties and identities.

In the aspect of sums of reciprocals, Millin [1] originally studied the infinite sums of reciprocal
Fibonacci series where the subscript is 2n. Based on the initial achievement, Good [2] further studied
this issue and proved

∞∑
n=0

1
F2n

=
7 −
√

5
2

.
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Afterwards, Ohtsuka and Nakamura [3] deduced the infinite sum of reciprocal Fibonacci series
 ∞∑

k=n

1
Fk

−1 =

{
Fn − Fn−1, if n is even and n ≥ 2 ,
Fn − Fn−1 − 1, if n is odd and n ≥ 1;

and the infinite sum of reciprocal square Fibonacci series
 ∞∑

k=n

1
F2

k

−1 =

{
FnFn−1 − 1, if n is even and n ≥ 2 ,
FnFn−1, if n is odd and n ≥ 1;

Similar properties were investigated in several different ways, see reference [4, 5]. Falcón and Plaza
[6–8] used Fibonacci polynomials to study Fibonacci numbers and get a lot of identities. For example,

n−1∑
k=1

Fk(x)Fn−k(x) =
(n − 1)xFn(x) + 2nFn−1(x)

x2 + 4
,

n∑
k=1

Fk(x) =
Fn+1(x) + Fn(x) − 1

x

where n and k are positive integers. This fact allows them to invest some integer sequences in a new
and direct way. With these fundamental achievements, Wu and Zhang [9] proceeded generation and
deduced the the infinite sum of reciprocal Fibonacci polynomials

 ∞∑
k=n

1
Fk(x)

−1 =

{
Fn(x) − Fn−1(x), if n is even and n ≥ 2 ,
Fn(x) − Fn−1(x) − 1, if n is odd and n ≥ 1;

and the the infinite sum of reciprocal square Fibonacci polynomials
 ∞∑

k=n

1
F2

k (x)

−1 =

{
xFn(x)Fn−1(x) − 1, if n is even and n ≥ 2 ,
xFn(x)Fn−1(x), if n is odd and n ≥ 1;

where x is any positive integer. besides, Panda et al. [10] did some research about bounds for reciprocal
sums in terms of balancing and Lucas-balancing sequences. Also, Dutta and Ray [11] found some
identities about finite reciprocal sums of Fibonacci and Lucas polynomials.

As we know, the first and the second kind of Chebyshev polynomials are usually defined as follows:
Tn+2(x) = 2xTn+1(x)− Tn(x), n ≥ 0, with the initial values T0(x) = 1, T1(x) = x; Un+2(x) = 2xUn+1(x)−
Un(x), n ≥ 0, with the initial values U0(x) = 1, U1(x) = 2x; Then from the second-order linear
recurrence sequences we have

Tn(x) =
1
2

[(x +
√

x2 − 1)n + (x −
√

x2 − 1)n],

Un(x) =
1

2
√

x2 − 1
[(x +

√
x2 − 1)n+1 − (x −

√
x2 − 1)n+1].

Based on these sequences,many scholars used these polynomials to study the Fibonacci sequences
and the Lucas sequences and have investigated them and got many properties of Fn and Ln.
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For example, Zhang [12] used the Chebyshev polynomials and has obtain the general formulas
involving Fn and Ln ∑

a1+a2+···+ak+1=n

Fm(a1+1) · Fm(a2+1) · · · Fm(ak+1+1) = (−i)mn Fk+1
m

2k · k!
U (k)

n+k

(
imLm

2

)
.

∑
a1+a2+...+ak+1=n+k+1

Lm(a1+1) · Lm(a2+1) · · · Lm(ak+1+1)

= (−i)m(n+k+1) 2
k!

k+1∑
h=0

(
im+2Lm

2

)h (k + 1)!
h!(k + 1 − h)!

U (k)
n+2k+1−h

(
imLm

2

)
,

where k, m are any positive integers, a1, a2, · · · ak+1 are nonnegative integers and i is the square root
of −1. Wu and Yang [13] also studied Chebyshev polynomials and got a lot of properties. Besides,
Dilcher and Stolarsky [14] established several related results involving resultants and discriminants
about Chebyshev polynomials. Furthermore, bounds about the discriminant of the Chebyshev
polynomials were given by Filipovski [15].

A variety of sums about Chebyshev polynomials are hot issues in the number theory all the time.
For example, Cesarano [16] gained several conclusions about the generating function of Chebyshev
polynomials

∞∑
n=0

ξnTn+l(x) =
(1 − ξx)Tl(x) − ξ(1 − x2)Ul−1

1 − 2ξx + ξ2

and the identical equation
∞∑

n=0

ξnUn−1+l(x) =
ξTl(x) − (1 − ξx)Ul−1

1 − 2ξx + ξ2

In this, ξ is a real number and −1 < ξ < 1. Furthermore, Knopfmacher et al. [17] did some research
and got the result as follows:

1
Um(x)

=
1

m + 1

m∑
j=1

(−1) j+1 sin2 θ j

x − cos θ j

and the identical equation

1 + Um−1(x)
Um(x)

=
1

m + 1

m∑
j=1

[1 + (−1) j+1] sin2 θ j

x − cos θ j
,

where θ j =
jπ

m+1 , m is a positive integer.
In this paper, we combine Ohtsuka and Falcón’s ideas. Then we consider the subseries of infinite

sums derived from the reciprocals of the Chebyshev polynomials and prove the following:
Theorem 1. For any positive integer n, m and x, we have the following formula

 ∞∑
k=n

1
Tmk(x)

−1 = Tmn(x) − Tmn−m(x)
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Theorem 2. For any positive integer n, and x, we have the following formula
 ∞∑

k=n

1
Uk(x)

−1 = Un(x) − Un−1(x) − 1.

Theorem 3. For any positive integer n, and x, we have the following formula
 ∞∑

k=n

1
U2

k (x)

−1 = U2
n(x) − U2

n−1(x) − 1.

With Falcón’s enlightening, we can apply similar method into deduction of partial sums of
Chebyshev polynomials. For convenient expression, we firstly set

Gn(x) = Un−1(x)Un(x) + Un−1(x)Un+1(x)

Mn(x) = Un−2(x)Un(x) + Un−1(x)Un(x)

and obtain:
Theorem 4. For any positive integer n,

2n+1∑
k=0

k2Uk(x) =
1
2

(2n + 1)U′2n+1(x) −G′n(x) + 1

+(n + 1)U′2n+2(x) + Mn(x).

Theorem 5. For any positive integer n,

2n∑
k=0

k2Tk(x) =
1
2

(2n + 1)2U2n−1(x) − U′2n(x)

+2(n + 1)2U2n+2(x) − U′2n+1(x).

Theorem 6. For any positive integer n,

2n∑
k=0

k3Tk(x) = 4(n + 1)3U2n+2(x) +
1
2

(2n + 1)3U2n+1(x) −Gn(x)

−(3n +
3
2

)U′2n−1(x) − 3nU′2n(x) + 3M′
n(x) − 1.

2. Some lemmas

In order to prove the results of the infinite sums of reciprocal Chebyshev polynomials, several
lemmas are needed.

Let α = x +
√

x2 − 1 and β = x −
√

x2 − 1, then we have the following lemmas.
Lemma 1. For any positive integer n, we have

U2
n(x) = 1 + Un−1(x)Un+1(x),
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U2
n(x) = 4x2 + Un−2(x)Un+2(x).

Proof. From the definition of Chebyshev polynomials, we have

U2
n(x) − Un−1(x)Un+1(x) =

(αn+1 − βn+1)2 − (αn − βn)(αn+2 − βn+2)
(α − β)2

=
α2n+2 + β2n+2 + α2 + β2 − 2 − α2n+2 − β2n+2

(α − β)2 = 1.

U2
n(x) − Un−2(x)Un+2(x) =

(αn+1 − βn+1)2 − (αn−1 − βn−1)(αn+3 − βn+3)
(α − β)2

=
α2n+2 + β2n+2 + α4 + β4 − 2 − α2n+2 − β2n+2

(α − β)2

= (α + β)2 = 4x2.

Lemma 2. For any positive integer n, we have

T 2
n (x) = Tn−1(x)Tn+1(x) + 1 − x2,

T 2
n (x) = Tn−2(x)Tn+2(x) + 4x2(1 − x2).

Proof. From the definition of Chebyshev polynomials, we have

T 2
n (x) − Tn−1(x)Tn+1(x) =

1
4

[(αn + βn)2 − (αn−1 + βn−1)(αn+1 + βn+1)]

= −
1
4

[α2 + β2 − 2] = −
1
4

(α − β)2 = 1 − x2.

T 2
n (x) − Tn−2(x)Tn+2(x) =

1
4

[(αn + βn)2 − (αn−2 + βn−2)(αn+2 + βn+2)]

=
1
4

[α2n + β2n − α4 − β4 + 2 − α2n − β2n]

= −
1
4

(α + β)2(α − β)2 = 4x2(1 − x2).

Lemma 3. For any positive integer n and m, we have

Tn(Tm(x)) = Tnm(x),

Un(Tm(x)) =
Um(n+1)−1(x)

Um−1(x)
.

Proof. See Reference [12].
Lemma 4. For any positive integer n and x, we have

1
Tn(x)

+
1

Tn+1(x)
<

1
Tn(x) − Tn−1(x)

−
1

Tn+2(x) − Tn+1(x)
,
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1
Tn(x)

+
1

Tn+1(x)
>

1
Tn(x) − Tn−1(x) + 1

−
1

Tn+2(x) − Tn+1(x) + 1
.

Proof. The first inequality equivalent to

Tn(x) + Tn+1(x)
Tn(x)Tn+1(x)

<
Tn+2(x) − Tn+1(x) − Tn(x) + Tn−1(x)
(Tn(x) − Tn−1(x))(Tn+2(x) − Tn+1(x))

, (2.1)

or

[Tn(x) + Tn+1(x)](Tn(x) − Tn−1(x) + 1)(Tn+2(x) − Tn+1(x) + 1) <
Tn(x)Tn+1(x)[Tn+2(x) − Tn+1(x) − Tn(x) + Tn−1(x)],

Then we have

T 2
n (x)Tn+2(x) + T 2

n+1(x)Tn−1(x) <
Tn−1(x)Tn+2(x)Tn(x) + Tn−1(x)Tn+2(x)Tn+1(x),

applying Lemma 2, inequality (2.1) is equivalent to

(1 − x2)[Tn−1(x) + Tn+2(x)] < 0. (2.2)

For any positive x and n ≥ 1, 1 − x2 < 0 and Tn−1(x) + Tn+2(x) > 0. Thus it is very easy to check
inequality (2.2) is true. Similarly, we can consider the second inequality of Lemma 4. The second
inequality is equivalent to

Tn(x) + Tn+1(x)
Tn(x)Tn+1(x)

>
Tn+2(x) − Tn+1(x) − Tn(x) + Tn−1(x)

(Tn(x) − Tn−1(x) + 1)(Tn+2(x) − Tn+1(x) + 1)
, (2.3)

or

T 2
n (x)Tn+2(x) − Tn−1(x)Tn(x)Tn+2(x) − Tn−1(x)Tn+1(x)Tn+2(x) + Tn(x)Tn+2(x)

+Tn+1(x)Tn+2(x) + T 2
n+1(x)Tn−1(x) − T 2

n+1(x) + T 2
n (x) − Tn(x)Tn−1(x)

−Tn+1(x)Tn−1(x) + Tn(x) + Tn+1(x) > 0,

applying Lemma 2, inequality (2.3) is equivalent to

(Tn+1(x) − (x2 − 1))Tn+2(x) − (Tn(x) + (x2 − 1))Tn−1(x) + Tn(x) + Tn+1(x) > 0. (2.4)

For any positive x and n ≥ 1,

(Tn+1(x) − (x2 − 1))Tn+2(x) − (Tn(x) + (x2 − 1))Tn−1(x) > 0

Thus it is very easy to check inequality (2.4) is true.
Lemma 5. For any positive integer n and x,

1
Un(x)

+
1

Un+1(x)
>

1
Un(x) − Un−1(x)

−
1

Un+2(x) − Un+1(x)
,
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1
Un(x)

+
1

Un+1(x)
<

1
Un(x) − Un−1(x) − 1

−
1

Un+2(x) − Un+1(x) − 1
.

Prove. The first inequality is equivalent to

Un+1(x) + Un(x)
Un+1(x)Un(x)

>
Un+2(x) − Un+1(x) − Un(x) + Un−1(x)
(Un(x) − Un−1(x))(Un+2(x) − Un+1(x))

, (2.5)

or

[Un+1(x) + Un(x)](Un(x) − Un−1(x))(Un+2(x) − Un+1(x)) >
Un+1(x)Un(x)[Un+2(x) − Un+1(x) − Un(x) + Un−1(x)],

Then we have

U2
n(x)Un+2(x) + U2

n+1(x)Un−1(x) >
Un(x)Un+2(x)Un−1(x) + Un−1(x)Un+1(x)Un+2(x),

applying Lemma 1, inequality (2.5) is equivalent to

Un+2(x) + Un−1(x) > 0. (2.6)

For any positive x and n ≥ 1, it is very easy to check inequality (2.6) is true. Similarly, we can consider
the second inequality of Lemma 5.

Un+1(x) + Un(x)
Un+1(x)Un(x)

<
Un+2(x) − Un+1(x) − Un(x) + Un−1(x)

(Un(x) − Un−1(x) − 1)(Un+2(x) − Un+1(x) − 1)
, (2.7)

or

U2
n(x)Un+2(x) − Un−1(x)Un(x)Un+2(x) − Un−1(x)Un+1(x)Un+2(x) − Un(x)Un+2(x)
−Un+1(x)Un+2(x) + U2

n+1(x)Un−1(x) + U2
n+1(x) − U2

n(x) + Un(x)Un−1(x)
+Un+1(x)Un−1(x) + Un(x) + Un+1(x) < 0,

applying Lemma 1, inequality (2.7) equivalent to

Un+2(x) + Un−1(x) + Un(x)Un−1(x) + Un(x) + Un+1(x) < Un+1(x)Un+2(x). (2.8)

For any positive x and n ≥ 1, it is very easy to check inequality (2.8) is true.
Lemma 6. For any positive integers n and x, we have

1
U2

n(x)
+

1
U2

n+1(x)
>

1
U2

n(x) − U2
n−1(x)

−
1

U2
n+2(x) − U2

n+1(x)
,

1
U2

n(x)
+

1
U2

n+1(x)
<

1
U2

n(x) − U2
n−1(x) − 1

−
1

U2
n+2(x) − U2

n+1(x) − 1
.

Proof. The first inequality is equivalent to

U2
n(x) + U2

n+1(x)
U2

n(x)U2
n+1(x)

>
U2

n+2(x) − U2
n+1(x) − U2

n(x) + U2
n−1(x)

(U2
n+2(x) − U2

n+1(x))(U2
n(x) − U2

n−1(x))
, (2.9)
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or

[U2
n(x) + U2

n+1(x)](U2
n+2(x) − U2

n+1(x))(U2
n(x) − U2

n−1(x)) >
U2

n(x)U2
n+1(x)[U2

n+2(x) − U2
n+1(x) − U2

n(x) + U2
n−1(x)],

Then we have

U4
n(x)U2

n+2(x) − U2
n(x)U2

n+2(x)U2
n−1(x) − U2

n+1(x)U2
n+2(x)U2

n−1(x)
+U4

n+1(x)U2
n−1(x) > 0,

applying Lemma 1, inequality (2.9) is equivalent to

U2
n+2(x) + 2Un−1(x)Un+1(x)U2

n+2(x) + U2
n−1(x) + 2Un(x)Un+2(x)U2

n−1(x) > 0. (2.10)

For any positive x and n ≥ 1, it is very easy to check inequality (2.10) is true. Similarly, we can
consider the second inequality of Lemma 6. The second inequality is equivalent to

U2
n(x) + U2

n+1(x)
U2

n(x)U2
n+1(x)

<
U2

n+2(x) − U2
n+1(x) − U2

n(x) + U2
n−1(x)

(U2
n+2(x) − U2

n+1(x) − 1)(U2
n(x) − U2

n−1(x) − 1)
, (2.11)

or

U4
n(x)U2

n+2(x) − U4
n(x) − U2

n(x)U2
n+2(x)U2

n−1(x) − U2
n+1(x)U2

n+2(x)U2
n−1(x)

+U4
n+1(x)U2

n−1(x) + U2
n(x)U2

n−1(x) + U2
n+1(x)U2

n−1(x) − U2
n(x)U2

n+2(x)
−U2

n+1(x)U2
n+2(x) + U4

n+1(x) + U2
n(x) + U2

n+1(x) < 0,

applying Lemma 1, inequality (2.11) is equivalent to

U2
n(x)U2

n−1(x) + U2
n(x) + U2

n+1(x) + U2
n+2(x) + 2Un−1(x)Un+1(x)U2

n+2(x) + U2
n−1(x)

2Un(x)Un+2(x)U2
n−1(x) + 2Un(x)Un+2(x) < U2

n+1(x)U2
n+2(x) + 2Un−1(x)Un+1(x). (2.12)

For any positive x and n ≥ 1, it is very easy to check inequality (2.12) is true.
Aiming to prove the results of the partial sums of Chebyshev polynomials, the lemmas below are

necessary.
Lemma 7. For any positive integer n ≥ 2

Tn(x) =
1
2

Un(x) −
1
2

Un−2(x)
n∑

k=1

Tk(x) =
1
2

Un(x) +
1
2

Un−1(x) −
1
2

Prove. The general term formula of Chebyshev polynomials is as follows

Tn(x) =
1
2

[(x +
√

x2 − 1)n + (x −
√

x2 − 1)n]
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Un(x) =
1

2
√

x2 − 1
[(x +

√
x2 − 1)n+1 − (x −

√
x2 − 1)n+1]

For convenient proving, we set α = x +
√

x2 − 1, β = x −
√

x2 − 1, and easily verify α + β = 2x,
αβ = 1. Thus, according to the definition we get

1
2

Un(x) −
1
2

Un−2(x) =
1
2

(
αn+1 − βn+1

α − β
−
αn−1 − βn−1

α − β
)

=
1

2(α − β)
[αn−1(α2 − 1) − βn−1(β2 − 1)]

=
1

2(α − β)
[αn−1(α2 − αβ) − βn−1(β2 − αβ)]

=
1

2(α − β)
[αn(α − β) + βn(α − β)]

=
1
2

(αn + βn).

This proves the first equation. And next we prove the second equation

n∑
k=1

Tk(x) =
1
2

n∑
k=2

Uk(x) −
1
2

n∑
k=2

Uk−2(x) + T1(x)

=
1
2

n∑
k=2

Uk(x) −
1
2

n−2∑
k=0

Uk(x) + T1(x)

=
1
2

Un(x) +
1
2

Un−1(x) − T1(x) −
1
2

+ T1(x)

=
1
2

Un(x) +
1
2

Un−1(x) −
1
2
.

This proves Lemma 7.
Lemma 8. For any positive integer n

2n∑
k=1

Uk(x) = Un−1(x)Un(x) + Un−1(x)Un+1(x), (2.13)

2n−1∑
k=1

Uk(x) = Un−2(x)Un(x) + Un−1(x)Un(x). (2.14)

Prove. In accordance of the general term formula of Chebyshev polynomials, it is not hard to get

U2n+1(x) = Un(x)Un+1(x) − Un(x)Un−1(x),
U2n+2(x) = U2

n+1(x) − Un+1(x)Un−1(x) − 1,
U2

n+1(x) = Un+2(x)Un(x) + 1.
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Easily test that when n = 1, identical Eq (2.13) is right. Supposing that n = m, Eq (2.13) is right. Then
when n = m + 1,

2m+2∑
k=1

Uk(x) = Um−1(x)Um+1(x) + Um−1(x)Um(x) + U2m+1(x) + U2m+2(x)

= Um+1(x)Um(x) + U2
m+1 − 1

= Um(x)Um+2(x) + Um+1(x)Um(x).

Applying mathematical induction, it is not hard to prove identical Eq (2.14). This proves Lemma 8.
Lemma 9. For any positive integers n,

2n∑
k=0

kTk(x) =
1
2

(2n + 1)U2n−1(x) + (n + 1)U2n(x) −Gn(x)

2n∑
k=0

kUk(x) =
1
2

U′n+1(x) +
1
2

U′n(x) −Gn(x)

Prove. According to Lemma 7, we have

n+1∑
k=0

Tk(x) =
Un+1(x) + Un(x) + 1

2
.

Through derivation on the left and right sides,we get

n∑
k=0

(k + 1)Uk(x) =
U
′

n+1(x) + U
′

n(x)
2

.

Applying Lemma 7 and Lemma 8, we obtain

2n∑
k=1

kUk(x) =
1
2

U
′

2n+1(x) +
1
2

U
′

2n(x) −
2n∑

k=1

Uk(x)

=
1
2

U′2n+1(x) +
1
2

U′2n(x) −Gn(x)

2n∑
k=1

kTk(x) = x +
1
2

2n∑
k=2

kUk(x) −
1
2

2n∑
k=2

kUk−2(x)

= x +
1
2

2n∑
k=2

kUk(x) −
1
2

2n−2∑
k=0

(k + 2)Uk(x)

= (n +
1
2

)U2n−1(x) + (n + 1)U2n(x) −
2n∑

k=1

Uk(x)

= (n +
1
2

)U2n−1(x) + (n + 1)U2n(x) −Gn(x).

This proves Lemma 9.
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3. Proof of the theorems

In this section, we will prove our theorems. For the infinite sums of reciprocal Chebyshev
polynomials, firstly we prove Theorem 1. For any positive integer n and x, using Lemma 4, we have

∞∑
k=n

1
Tk(x)

=

∞∑
k=s

(
1

T2k−1(x)
+

1
T2k(x)

)
<

∞∑
k=s

(
1

T2k−1(x) − T2k−2(x)
−

1
T2k+1(x) − T2k(x)

)
=

1
Tn(x) − Tn−1(x)

In the similar way, we have

∞∑
k=n

1
Tk(x)

=

∞∑
k=s

(
1

T2k−1(x)
+

1
T2k(x)

)
>

∞∑
k=s

(
1

T2k−1(x) − T2k−2(x) + 1
−

1
T2k+1(x) − T2k(x) + 1

)
=

1
Tn(x) − Tn−1(x) + 1

.

And then we have 
 ∞∑

k=n

1
Tk(x)

−1 = Tn(x) − Tn−1(x)

and then let x = Tm(x), according to Lemma 3, we can get
 ∞∑

k=n

1
Tmk(x)

−1 = Tmn(x) − Tmn−m(x)

This proved Theorem 1.
Next, Theorem 2 will be proved. For any positive integer n and x, using Lemma 5, we have

∞∑
k=n

1
Uk(x)

=

∞∑
k=s

(
1

U2k−1(x)
+

1
U2k(x)

)
<

∞∑
k=s

(
1

U2k−1(x) − U2k−2(x) − 1
−

1
U2k+1(x) − U2k(x) − 1

)
=

1
Un(x) − Un−1(x) − 1

.

In the similar way, we have

∞∑
k=n

1
Uk(x)

=

∞∑
k=s

(
1

U2k−1(x)
+

1
U2k(x)

)
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>

∞∑
k=s

(
1

U2k−1(x) − U2k−2(x)
−

1
U2k+1(x) − U2k(x)

)
=

1
Un(x) − Un−1(x)

.

And then we have

Un(x) − Un−1(x) − 1 <

 ∞∑
k=n

1
Uk(x)

−1

< Un(x) − Un−1(x).

that is 
 ∞∑

k=n

1
Uk(x)

−1 = Un(x) − Un−1(x) − 1.

This proved Theorem 2.
Then we shall prove Theorem 3. Using Lemma 6, we can get

∞∑
k=n

1
U2

k (x)
=

∞∑
k=s

(
1

U2
2k−1(x)

+
1

U2
2k(x)

)
<

∞∑
k=s

(
1

U2
2k−1(x) − U2

2k−2(x) − 1
−

1
U2

2k+1(x) − U2
2k(x) − 1

)
=

1
U2

n(x) − U2
n−1(x) − 1

.

In the similar way, we have

∞∑
k=n

1
U2

k (x)
=

∞∑
k=s

(
1

U2
2k−1(x)

+
1

U2
2k(x)

)
>

∞∑
k=s

(
1

U2
2k−1(x) − U2

2k−2(x)
−

1
U2

2k+1(x) − U2
2k(x)

)
=

1
U2

n(x) − U2
n−1(x)

and then we can get 
 ∞∑

k=n

1
U2

k (x)

−1 = U2
n(x) − U2

n−1(x) − 1.

This proved Theorem 3.
For the partial sums of Chebyshev polynomials, firstly we shall prove Theorem 4. According to

Lemma 9, we have

2n+2∑
k=0

kTk(x) =
1
2

(2n + 3)U2n+1(x) + (n + 2)U2n+2(x) −Gn+1(x)
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Through simultaneous derivation on the left and right sides, we deduce

2n+1∑
k=1

k2Uk−1(x) =
1
2

(2n + 3)U′2n+1(x) + (n + 2)U′2n+2(x) −G′n(x).

According to Lemma 8 and Lemma 9 we get

2n+1∑
k=0

k2Uk(x) =

2n+2∑
k=1

k2Uk−1(x) − 2
2n+1∑
k=1

kUk(x) −
2n+1∑
k=0

Uk(x)

=

2n+2∑
k=1

k2Uk−1(x) − 2
2n+1∑
k=1

(k + 1)Uk(x) +

2n+1∑
k=0

Uk(x)

= (n +
1
2

)U′2n+1(x) + (n + 1)U′2n+2(x) −G′n(x) + Mn(x) + 1.

Applying Lemma 7 and Lemma 8, we get

2n∑
k=0

k2Tk(x) = x +
1
2

2n∑
k=2

k2Uk(x) −
1
2

2n∑
k=2

k2Uk−2(x)

= x +
1
2

2n∑
k=2

k2Uk(x) −
1
2

2n−2∑
k=0

(k + 2)2Uk(x).

Simplify the above, we have

2n∑
k=0

k2Tk(x) =
1
2

(2n + 1)2U2n−1(x) + 2(n + 1)2U2n+2(x) − U′2n+1(x) − U′2n(x)

This proved Theorem 4 and Theorem 5.
Theorem 6 shall be proved below. According to Lemma 7 and Lemma 8, we have

2n∑
k=0

k3Tk(x) = x +
1
2

2n∑
k=2

k3Uk(x) −
1
2

2n∑
k=2

k3Uk−2(x)

= x +
1
2

2n∑
k=2

k3Uk(x) −
1
2

2n−2∑
k=0

(k + 2)3Uk(x)

= −

2n−2∑
k=2

(3k2 + 6k + 4)Uk(x) +
1
2

(2n + 1)3Un(x)

+4(n + 1)3U2n+2(x) − 26x − 4

= 4(n + 1)3U2n+2(x) +
1
2

(2n + 1)3U2n+1(x) −Gn(x)

−(3n +
3
2

)U′2n−1(x) − 3nU′2n(x) + 3M′
n(x) − 1.

This proved Theorem 6.
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4. Conclusions

In this paper, the infinite sums of reciprocals and the partial sums derived from Chebyshev
polynomials are studied. For the infinite sums of reciprocals, we apply the floor function to the
reciprocals of these sums to obtain Theorem 1, Theorem 2 and Theorem 3 involving the Chebyshev
polynomials. Simultaneously, we get Theorem 4, Theorem 5 and Theorem 6 about the partial sums
of Chebyshev polynomials by the relation of two types of Chebyshev polynomials. Our results can
enrich the related research domain with respect to orthogonal polynomials and recursive sequences.
Besides, the results are hoped to be applied into other branches of mathematics or other disciplines out
of mathematics.
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