Mathematics
http://www.aimspress.com/journal/Math

Research article

Minimal translation graphs in semi-Euclidean space

Derya Sağlam*

Department of Mathematics, Faculty of Arts and Sciences, University of Kırıkkale, Kırıkkale 71450, Turkey

* Correspondence: Email: deryasaglam@kku.edu.tr.

Abstract

In this paper we study a characterization of minimal translation graphs which are generalization of minimal translation hypersurfaces in semi-Euclidean space.

Keywords: translation hypersufaces; minimality; semi-Euclidean geometry
Mathematics Subject Classification: 53B25, 53B30

1. Introduction

As is wellknown the first non-trivial examples of minimal surfaces in 3-dimensional Euclidean space E^{3} are the catenoids, the helicoids and the minimal translation surfaces. A surface is called a translation surface if it is given by an immersion

$$
X: U \subset E^{2} \rightarrow E^{3},(x, y) \rightarrow(x, y, z)
$$

where $z=f(x)+g(y)$. Scherk proved in 1835 that the only minimal translation surfaces (besides the planes) are the surfaces given by

$$
z=\frac{1}{a} \log \left|\frac{\cos (a x)}{\cos (a y)}\right|,
$$

where a is a non-zero constant [1].
In [2], it has been shown that the minimal translation surfaces are generalized to minimal translation hypersurfaces as follows:

Let $M^{n}(n \geq 2)$ be a translation hypersurface in E^{n+1} i.e. M^{n} is the graph of a function

$$
F: \mathbb{R}^{n} \rightarrow \mathbb{R}:\left(x_{1}, \ldots, x_{n}\right) \rightarrow F\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right)+\cdots+f_{n}\left(x_{n}\right),
$$

where f_{i} is a smooth function of one real variable for $i=1, \ldots, n$. Then M^{n} is minimal if and only if either M^{n} is a hyperplane or a product submanifold $M^{n}=M^{2} \times E^{n-2}$, where M^{2} is a minimal translation surface of Scherk in E^{3}.

In [3], Woestyne parameterized minimal translation surfaces in the 3-dimensional Minkowski space \mathbb{R}_{1}^{3} with metric $g=d x_{1}^{2}+d x_{2}^{2}-d x_{3}^{2}$, in the following theorems:
Theorem 1. Every minimal, spacelike surface of translation in \mathbb{R}_{1}^{3}, is congruent to a part of one of the following surfaces:

1. A spacelike plane,
2. The surface of Scherk of the first kind, a parametrization of the surface is $F(x, y)=\left(x, y, a^{-1} \log (\cosh (a y) / \cosh (a x))\right)$, with $\tanh ^{2}(a x)+\tanh ^{2}(a y)<1[3]$.

Theorem 2. Every minimal, timelike surface of translation in \mathbb{R}_{1}^{3}, is congruent to a part of one of the following surfaces:

1. A timelike plane,
2. The surface of Scherk of the first kind, a parametrization of the surface is

$$
F(x, y)=\left(x, y, a^{-1} \log (\cosh (a y) / \cosh (-a x))\right) \text { with } \tan h^{2}(-a x)+\tan h^{2}(a y)>1 .
$$

3. The surface of Scherk of the second kind, a parametrization of the surface is

$$
F(x, y)=\left(x, y, a^{-1} \log (\cosh (a y) / \sinh (-a x))\right) .
$$

4. The surface of Scherk of the third kind, a parametrization of the surface is

$$
F(x, y)=\left(x, y, a^{-1} \log (\sinh (a y) / \sinh (-a x))\right) .
$$

5. A flat B -scroll over a null curve, a parametrization of the surface is $F(x, y)=(x, y, \pm x+g(y))$ with $g(y)$ an arbitrary function [3].

Seo, gave a classification of the translation hypersurfaces with constant mean curvature or constant GaussKronecker curvature in Euclidean space or Lorentz Minkowski space in [4]. Also they characterized the minimal translation hypersurfaces in the upper half-space model of hyperbolic space. In particular, they proved the following theorem:

Theorem 3. Let M be a translation hypersurface with constant mean curvature H in \mathbb{R}^{n+1}. Then M is congruent to a cylinder $\Sigma \times \mathbb{R}^{n-2}$, where Σ is a constant mean curvature surface in \mathbb{R}^{3}. In particular, if $H=0$, then M is either a hyperplane or $M=\Sigma \times \mathbb{R}^{n-2}$, where Σ is a Scherks minimal translation surface in $\mathbb{R}^{3}[4]$.

And they can obtained a similar result in the LorentzMinkowski space as follows:
Theorem 4. Let M be a spacelike translation hypersurface with constant mean curvature H in L^{n+1}. Then M is congruent to a cylinder $\Sigma \times \mathbb{R}^{n-2}$, where Σ is a constant mean curvature surface in L^{3}. In particular, if $H=0$, then M is either a hyperplane or $M=\Sigma \times \mathbb{R}^{n-2}$, where Σ is a Scherks maximal spacelike translation surface in L^{3} [4].

In [5], Hasanis and Lopez classified and described the construction of all minimal translation surfaces in \mathbb{R}^{3}. In 2019, Aydn and Ogrenmis investigated translation hypersurfaces generated by translating planar curves and classified these translation hypersurfaces with constant Gauss-Kronecker and mean curvature [6]. Recently, many authors have studied the geometry of minimal translational hypersurface [7-12].

In [12], Yang, Zhang and Fu gave a characterization of a class of minimal translation graphs which are generalization of minimal translation hypersurfaces in Euclidean space. In this paper we study a characterization of minimal translation graphs in semi-Euclidean space.

2. Characterization of minimal translation graphs in semi-Euclidean space

By the ($n+1$)-dimensional semi-Euclidean space with index v, denoted by \mathbb{R}_{v}^{n+1}, mean \mathbb{R}^{n+1} equipped with the semi-Euclidean metric

$$
\begin{equation*}
g=\varepsilon_{1} d x_{1}^{2}+\varepsilon_{2} d x_{2}^{2}+\cdots+\varepsilon_{n+1} d x_{n+1}^{2} \tag{2.1}
\end{equation*}
$$

for which $\varepsilon_{i},(i=1,2, \ldots, n+1)$ is either -1 or 1 . We assume $n \geq 2$. The number of minus signs is equal to the index v and is given by

$$
v=\frac{1}{2}\left(n+1-\sum_{j=1}^{n+1} \varepsilon_{j}\right) .
$$

Let M^{n} be a hypersurface of \mathbb{R}_{v}^{n+1} for which the induced metric is non-degenerate. Then M^{n} can locally always be seen as the graph of a function $F: \mathbb{R}^{n} \rightarrow \mathbb{R}$. In what follows, we will assume that f is a function of the coordinates x_{1}, \ldots, x_{n}. This can easily be achieved possibly by rearranging the coordinates of \mathbb{R}_{v}^{n+1}. So M^{n} is locally given by

$$
\begin{equation*}
x_{n+1}=F\left(x_{1}, \ldots x_{n}\right) \tag{2.2}
\end{equation*}
$$

Assume that M^{n} is minimal. This means that the mean curvature vector vanishes at every point. The graph M^{n} in the semi-Euclidean space \mathbb{R}_{v}^{n} is minimal if and only if

$$
\begin{equation*}
\sum_{j=1}^{n} \varepsilon_{j}\left[\frac{\partial^{2} F}{\partial x_{j}^{2}}\left(\sum_{i=1}^{n} \varepsilon_{i}\left(\frac{\partial F}{\partial x_{i}}\right)^{2}+\varepsilon_{n+1}\right)-\frac{\partial F}{\partial x_{j}} \sum_{i=1}^{n} \varepsilon_{i} \frac{\partial F}{\partial x_{i}} \frac{\partial^{2} F}{\partial x_{i} \partial x_{j}}\right]=0 . \tag{2.3}
\end{equation*}
$$

One easily calculates that minimality condition above [13].
A hypersurface M^{n} in the semi-Euclidean space \mathbb{R}_{v}^{n+1} is called translation graph if it is the graph of the function given by

$$
F\left(x_{1}, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right)+\cdots+f_{n-1}\left(x_{n-1}\right)+f_{n}(u),
$$

where $u=\sum_{i=1}^{n} c_{i} x_{i}, c_{i}$ are constants, $c_{n} \neq 0$ and each f_{i} is a smooth function of one real variable for $i=1,2, \ldots, n$. Additionally in this paper, we assume that the following condition are provided:

$$
\begin{equation*}
\sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2} \neq 0 \text { and } \sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2} \neq 0, \text { for all } i=1, \ldots, n-1 \tag{2.4}
\end{equation*}
$$

f_{i} vanishes nowhere for $i=1,2, \ldots, n$, otherwise M^{n} is a non-degenerate hyperplane.
The minimality condition (2.3) can be rewritten as

$$
\begin{equation*}
\varepsilon_{n+1} \sum_{j=1}^{n} \varepsilon_{j} F_{j j}+\sum_{i \neq j}^{n} \varepsilon_{i} \varepsilon_{j}\left(F_{i}^{2} F_{j j}-F_{i} F_{j} F_{i j}\right)=0 \tag{2.5}
\end{equation*}
$$

Then we calculate the partial derivatives in the Eq (2.5) for the translation graph,

$$
\begin{equation*}
F_{i}=f_{i}^{\prime}+c_{i} f_{n}^{\prime}, \quad F_{n}=c_{n} f_{n}^{\prime} \tag{2.6}
\end{equation*}
$$

$$
\begin{gather*}
F_{i i}=f_{i i}^{\prime}+c_{i}^{2} f_{n}^{\prime \prime}, \quad F_{n n}=c_{n}^{2} f_{n}^{\prime \prime} \tag{2.7}\\
F_{i j}=c_{i} c_{j} f_{n}^{\prime \prime}, \quad F_{i n}=c_{i} c_{n} f_{n}^{\prime \prime} \tag{2.8}
\end{gather*}
$$

for $1 \leq i \leq n-1$. Since M^{n} is minimal, we substitute (2.6)-(2.8) into (2.5) and we obtain

$$
\begin{gather*}
\varepsilon_{n+1} \sum_{i=1}^{n-1} \varepsilon_{i} f_{i}^{\prime \prime}+\left(\varepsilon_{n+1} \sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2}+\varepsilon_{n} c_{n}^{2} \sum_{i=1}^{n-1} \varepsilon_{i} f_{i}^{\prime^{2}}\right) f_{n}^{\prime \prime}+\varepsilon_{n} c_{n}^{2}\left(\sum_{i=1}^{n-1} \varepsilon_{i} f_{i}^{\prime \prime}\right) f_{n}^{\prime^{2}} \\
\quad+\sum_{\substack{i, j=1 \\
i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j}\left(f_{i}^{\prime}+c_{i} f_{n}^{\prime}\right)^{2} f_{j}^{\prime \prime}+\frac{1}{2} \sum_{\substack{i, j=1 \\
i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j}\left(c_{i} f_{j}^{\prime}-c_{j} f_{i}^{\prime}\right)^{2} f_{n}^{\prime \prime}=0 . \tag{2.9}
\end{gather*}
$$

Since $c_{n} \neq 0$, we take the derivative of the $\mathrm{Eq}(2.9)$ with respect to x_{n}, we have

$$
\begin{align*}
& {\left[\varepsilon_{n+1} \sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2}+\varepsilon_{n} c_{n}^{2} \sum_{i=1}^{n-1} \varepsilon_{i} f_{i}^{\prime 2}+\frac{1}{2} \sum_{\substack{i, j=1 \\
i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j}\left(c_{i} f_{j}^{\prime}-c_{j} f_{i}^{\prime}\right)^{2}\right] f_{n}^{\prime \prime \prime}} \tag{2.10}\\
& \quad+2\left[\sum_{i, j=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\
j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) f_{i}^{\prime \prime}\right] f_{n}^{\prime} f_{n}^{\prime \prime}+2 \sum_{\substack{i, j=1 \\
i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j} c_{i} f_{i}^{\prime} f_{j}^{\prime \prime} f_{n}^{\prime \prime}=0
\end{align*}
$$

According to the Eq (2.10), we get following cases:
Case 1. $f_{n}^{\prime \prime \prime}=0$.
With proper translation, $f_{n}=m u^{2}$ for a constant $m \neq 0$ such that $f_{n}=m u^{2}$. If $m=0$, then M^{n} would not be a translation graph. According to this, we rewrite (2.10)

$$
\begin{equation*}
2 m^{2} u \sum_{i=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) f_{i}^{\prime \prime}+m \sum_{\substack{i, j=1 \\ i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j} c_{i} f_{i}^{\prime} f_{j}^{\prime \prime}=0 \tag{2.11}
\end{equation*}
$$

Since $m \neq 0$, we get

$$
\begin{equation*}
\sum_{i=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) f_{i}^{\prime \prime}=0, \sum_{\substack{i, j=1 \\ i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j} c_{i} f_{i}^{\prime} f_{j}^{\prime \prime}=0 \tag{2.12}
\end{equation*}
$$

In the first equation of (2.12), each $f_{i}^{\prime \prime}$ depends on a different variable, then $f_{i}^{\prime \prime}$ has to be a constant for $i=1, \ldots, n-1$. Also, let be $f_{i}\left(x_{i}\right)=a_{i} x_{i}^{2}$, where a_{i} is constant. Then from (2.12) we obtain following equations

$$
\begin{equation*}
\sum_{i=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) a_{i}=0, \quad a_{i} c_{i} \sum_{\substack{j=1 \\ j \neq i}}^{n-1} \varepsilon_{j} a_{j}=0, \text { where } i=1, \ldots, n-1 \tag{2.13}
\end{equation*}
$$

Now we substitute $f_{n}=m u^{2}$ and $f_{i}\left(x_{i}\right)=a_{i} x_{i}^{2}$ for $i=1, \ldots, n-1$ in the Eq (2.9), we find

$$
\begin{align*}
& 4 m^{2}\left[\sum_{i=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\
j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) a_{i}\right] u^{2}+8 m\left(\sum_{\substack{i, j=1 \\
i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j} a_{i} c_{i} a_{j} x_{i}\right) u-4 m \sum_{\substack{i, j=1 \\
i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j} a_{i} a_{j} c_{i} c_{j} x_{i} x_{j} \tag{2.14}\\
& \quad+4 \sum_{i=1}^{n-1} \varepsilon_{i} a_{i}^{2}\left(m \sum_{\substack{j=1 \\
j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}+\sum_{\substack{j=1 \\
j \neq i}}^{n-1} \varepsilon_{j} a_{j}\right) x_{i}^{2}+\varepsilon_{n+1} \sum_{i=1}^{n-1} \varepsilon_{i} a_{i}+\varepsilon_{n+1} m \sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2}=0 .
\end{align*}
$$

According to (2.13) and (2.14), we obtain

$$
\begin{equation*}
4 m \sum_{\substack{i, j=1 \\ i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j} a_{i} a_{j} c_{i} c_{j} x_{i} x_{j}=4 \sum_{i=1}^{n-1} \varepsilon_{i} a_{i}^{2}\left(m \sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}+\sum_{\substack{j=1 \\ j \neq i}}^{n-1} \varepsilon_{j} a_{j}\right) x_{i}^{2}+\varepsilon_{n+1} \sum_{i=1}^{n-1} \varepsilon_{i} a_{i}+\varepsilon_{n+1} m \sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2} \tag{2.15}
\end{equation*}
$$

Since the above equation is a quadratic polynomial with x_{1}, \ldots, x_{n-1}, by the arbitrariness of x_{i}, we get

$$
\begin{gather*}
a_{i}^{2}\left(m \sum_{\substack{j=1 \\
j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}+\sum_{\substack{j=1 \\
j \neq i}}^{n-1} \varepsilon_{j} a_{j}\right)=0, \text { for } i=1, \ldots, n-1, \tag{2.16}\\
\sum_{i=1}^{n-1} \varepsilon_{i} a_{i}+m \sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2}=0 \tag{2.17}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{i} a_{j} c_{i} c_{j}=0, \text { for } i, j=1, \ldots, n-1, \quad i \neq j . \tag{2.18}
\end{equation*}
$$

According to (2.16) and (2.17), we find

$$
\begin{equation*}
a_{i}^{3}=-m\left(c_{i} a_{i}\right)^{2}, \text { for } i=1, \ldots, n-1 \tag{2.19}
\end{equation*}
$$

From (2.18), we can see that at most one $a_{k} c_{k} \neq 0$. Without loss of generality, we assume $a_{k_{0}} c_{k_{0}} \neq 0$ and every $a_{k} c_{k}=0$ for $k \neq k_{0}$. From (2.19), we get $a_{k_{0}} \neq 0$ and $a_{k}=0$ for $k \neq k_{0}$. According to this, with the first equation of (2.13) and the assumption (2.4), we have a contradiction. Therefore, we obtain that every $a_{k}=0$ for $k=1, \ldots, n-1$ and $f_{i}^{\prime \prime}\left(x_{i}\right)=0$. By substituting this equalities in (2.9) we obtain $m \sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2}=0$, which is a contradiction with the assumption (2.4).
Case 2. $f_{n}^{\prime \prime \prime} \neq 0$.
If we divide by $f_{n}^{\prime \prime \prime}$ on both sides of the Eq (2.10), we obtain

$$
\begin{align*}
& {\left[\varepsilon_{n+1} \sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2}+\varepsilon_{n} c_{n}^{2} \sum_{i=1}^{n-1} \varepsilon_{i} f_{i}^{\prime^{2}}+\frac{1}{2} \sum_{\substack{i, j=1 \\
i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j}\left(c_{i} f_{j}^{\prime}-c_{j} f_{i}^{\prime}\right)^{2}\right]} \tag{2.20}\\
& \quad+2\left[\sum_{i=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\
j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) f_{i}^{\prime \prime}\right] \frac{f_{n}^{\prime} f_{n}^{\prime \prime}}{f_{n}^{\prime \prime \prime}}+2\left[\sum_{\substack{i, j=1 \\
i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j} c_{i} f_{i}^{\prime} f_{j}^{\prime \prime}\right] \frac{f_{n}^{\prime \prime}}{f_{n}^{\prime \prime \prime}}=0
\end{align*}
$$

Differentiating (2.20) with respect to u, we get

$$
\begin{equation*}
\left[\sum_{i=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) f_{i}^{\prime \prime}\right]\left(\frac{f_{n}^{\prime} f_{n}^{\prime \prime}}{f_{n}^{\prime \prime \prime}}\right)_{u}+\left[\sum_{\substack{i, j=1 \\ i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j} c_{i} f_{i}^{\prime} f_{j}^{\prime \prime}\right]\left(\frac{f_{n}^{\prime \prime}}{f_{n}^{\prime \prime \prime}}\right)_{u}=0 \tag{2.21}
\end{equation*}
$$

We have 3 possibilities.
Case 2a. $\left(\frac{f_{n}^{\prime \prime}}{f_{n}^{\prime \prime \prime}}\right)_{u} \neq 0$.
In this case,

$$
\begin{equation*}
f_{n}=a f_{n}^{\prime}+b u, \tag{2.22}
\end{equation*}
$$

where a, b are constants. Since $f_{n}^{\prime \prime \prime} \neq 0$, then $a \neq 0$. By solving this equation we obtain

$$
f_{n}(u)=k e^{\frac{u}{a}}+b u+a b,
$$

where k is a nonzero constant. According to this equation, we get

$$
\left(\frac{f_{n}^{\prime} f_{n}^{\prime \prime}}{f_{n}^{\prime \prime \prime}}\right)_{u}=\frac{k}{a} e^{\frac{u}{a}} \neq 0 .
$$

Thus, according to (2.21), we obtain

$$
\begin{equation*}
\sum_{i=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) f_{i}^{\prime \prime}=0 \tag{2.23}
\end{equation*}
$$

Since each $f_{i}^{\prime \prime}$ depends on a different variable, then $f_{i}^{\prime \prime}$ has to be a constant for $i=1, \ldots, n-1$. Let be $f_{i}\left(x_{i}\right)=a_{i} x_{i}^{2}$, where a_{i} is constant. From (2.23) we obtain

$$
\sum_{i=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) a_{i}=0
$$

Hence, from (2.20) we have

$$
\varepsilon_{n+1} \sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2}+\varepsilon_{n} c_{n}^{2} \sum_{i=1}^{n-1} \varepsilon_{i}\left(2 a_{i} x_{i}\right)^{2}+\frac{1}{2} \sum_{\substack{i, j=1 \\ i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j}\left(2 c_{i} a_{j} x_{j}-2 c_{j} a_{i} x_{i}\right)^{2}+8 a \sum_{\substack{i, j=1 \\ i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j} c_{i} a_{i} a_{j} x_{i}=0 .
$$

This is a contradiction.
Case 2b. $\sum_{i=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) f_{i}^{\prime \prime} \neq 0$.

Let be $\sum_{i=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) f_{i}^{\prime \prime}=0$. Then each $f_{i}^{\prime \prime}$ is constant for $i=1, \ldots, n-1$. Also we can write $f_{i}\left(x_{i}\right)=a_{i} x_{i}^{2}$, where a_{i} is constant. From the assumption, we have

$$
\sum_{i=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) a_{i}=0
$$

According to (2.21), we get

$$
\sum_{\substack{i, j=1 \\ i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j} c_{i} f_{i}^{\prime} f_{j}^{\prime \prime}=0
$$

From (2.20), we obtain

$$
\varepsilon_{n+1} \sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2}+\varepsilon_{n} c_{n}^{2} \sum_{i=1}^{n-1} \varepsilon_{i}\left(2 a_{i} x_{i}\right)^{2}+\frac{1}{2} \sum_{\substack{i, j=1 \\ i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j}\left(2 c_{i} a_{j} x_{j}-2 c_{j} a_{i} x_{i}\right)^{2}=0,
$$

which is a contradiction. Also it must be $\sum_{i=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) f_{i}^{\prime \prime} \neq 0$. According to Cases 2 a and 2 b , we can rewrite (2.21)

$$
\begin{equation*}
\frac{\sum_{\substack{i, j=1 \\ i=j}}^{n-1} \varepsilon_{i} \varepsilon_{j} c_{i} f_{i}^{\prime} f_{j}^{\prime \prime}}{\sum_{\substack{i=1}}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) f_{i}^{\prime \prime}}=-\frac{\left(\frac{f_{n}^{\prime} f_{n}^{\prime \prime}}{f_{f^{\prime \prime}}^{\prime \prime}}\right)_{u}}{\left(\frac{f_{n}^{\prime \prime}}{f_{n}^{\prime \prime}}\right)_{u}}=m, \tag{2.24}
\end{equation*}
$$

where m is constant. Thus we have

$$
\left(\frac{f_{n}^{\prime} f_{n}^{\prime \prime}}{f_{n}^{\prime \prime \prime}}\right)_{u}=-m\left(\frac{f_{n}^{\prime \prime \prime}}{f_{n}^{\prime \prime \prime}}\right)_{u} .
$$

By integration of this equation, we get

$$
\begin{equation*}
\frac{f_{n}^{\prime} f_{n}^{\prime \prime}}{f_{n}^{\prime \prime \prime}}=-m \frac{f_{n}^{\prime \prime}}{f_{n}^{\prime \prime \prime}}+c \tag{2.25}
\end{equation*}
$$

where c is a constant. Thus we have $f_{n}^{\prime} f_{n}^{\prime \prime}=-m f_{n}^{\prime \prime}+c f_{n}^{\prime \prime \prime}$. By integration of this equation, we obtain

$$
\begin{equation*}
f_{n}^{\prime 2}+2 m f_{n}^{\prime}=2 c f_{n}^{\prime \prime}+c_{0} \tag{2.26}
\end{equation*}
$$

where c_{0} is a constant. By solving this ODE, after a translation, we find

$$
f_{n}= \begin{cases}-m u-2 c \ln \cos \left(\frac{\sqrt{-\left(m^{2}+c_{0}\right)}}{2 c} u\right), & \text { if } m^{2}+c_{0}<0 \\ -m u-2 c \ln \cosh \left(\frac{\sqrt{m^{2}+c_{0}}}{2 c} u\right), & \text { if } m^{2}+c_{0}>0 \text { and }\left|\frac{f_{n}^{\prime}+m}{\sqrt{m^{2}+c_{0}}}\right|<1 \\ -m u-2 c \ln \sinh \left(\frac{\sqrt{m^{2}+c_{0}}}{2 c} u\right), & \text { if } m^{2}+c_{0}>0 \text { and }\left|\frac{f_{n}^{\prime}+m}{\sqrt{m^{2}+c_{0}}}\right|>1 \\ -m u-2 c \ln |u|, & \text { if } m^{2}+c_{0}=0 .\end{cases}
$$

Moreover, from (2.24), we get

$$
\begin{equation*}
\sum_{\substack{i, j=1 \\ i \neq j}}^{n-1} \varepsilon_{i} \varepsilon_{j} c_{i} f_{i}^{\prime} f_{j}^{\prime \prime}=m \sum_{i=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) f_{i}^{\prime \prime} \tag{2.27}
\end{equation*}
$$

Since

$$
\sum_{i=1}^{n-1} \varepsilon_{i}\left(\sum_{\substack{j=1 \\ j \neq i}}^{n} \varepsilon_{j} c_{j}^{2}\right) f_{i}^{\prime \prime} \neq 0
$$

all $f_{i}^{\prime \prime}$ functions dont vanish for $i=1, \ldots, n-1$. Let be $f_{i_{0}}^{\prime \prime} \neq 0$. By differentiating the $\mathrm{Eq}(2.27)$ with respect to $x_{i 0}$, we obtain

$$
\begin{equation*}
\left(m \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}-\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} f_{i}^{\prime}\right) \frac{f_{i_{0}}^{\prime \prime \prime}}{f_{i_{0}}^{\prime \prime}}=c_{i_{0}} \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} f_{i}^{\prime \prime} \tag{2.28}
\end{equation*}
$$

Thus we get the following case.
Case 2c. $m \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}-\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} f_{i}^{\prime}=0$.
Let be $m \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}-\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} f_{i}^{\prime} \neq 0$. From (2.28), we get

$$
\begin{equation*}
\frac{f_{i_{0}}^{\prime \prime \prime}}{c_{i_{0}} f_{i_{0}}^{\prime \prime}}=\frac{\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} f_{i}^{\prime \prime}}{m \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}-\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} f_{i}^{\prime}}=a \tag{2.29}
\end{equation*}
$$

where a is a constant. From (2.29), we obtain

$$
\begin{equation*}
f_{i_{0}}=b_{i_{0}} e^{a c_{i_{0}} x_{i_{0}}}-\frac{d_{i_{0}}}{a c_{i_{0}}} x_{i_{0}}, \tag{2.30}
\end{equation*}
$$

where $b_{i_{0}}$ and $d_{i_{0}}$ are constants. According to (2.29), we get

$$
\varepsilon_{i}\left(f_{i}^{\prime \prime}+a c_{i} f_{i}^{\prime}\right)=m a \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2},
$$

for each $i=1, \ldots, i_{0}-1, i_{0}+1, \ldots, n-1$. By solving the equation, we obtain

$$
\begin{equation*}
f_{i}=b_{i} e^{-a c_{i} x_{i}}+\frac{m \sum_{\substack{i=1 \\ i \neq i_{i}}}^{n} \varepsilon_{i} c_{i}^{2}}{\varepsilon_{i} c_{i}} x_{i}, \tag{2.31}
\end{equation*}
$$

where b_{i} are constants for $i=1, \ldots, i_{0}-1, i_{0}+1, \ldots, n-1$. By differentiating (2.27) with respect to x_{k} for $k=1, \ldots, i_{0}-1, i_{0}+1, \ldots, n-1$, we get

$$
\begin{equation*}
f_{k}^{\prime \prime \prime}\left(\sum_{\substack{i=1 \\ i \neq k}}^{n-1} \varepsilon_{i} c_{i} f_{i}^{\prime}-m \sum_{\substack{i=1 \\ i \neq k}}^{n} \varepsilon_{i} c_{i}^{2}\right)+c_{k} f_{k}^{\prime \prime} \sum_{\substack{i=1 \\ i \neq k}}^{n-1} \varepsilon_{i} f_{i}^{\prime \prime}=0 . \tag{2.32}
\end{equation*}
$$

We substitute (2.30) and (2.31) in (2.32) and we obtain

$$
\begin{equation*}
2 a c_{k}^{3} b_{k} \sum_{\substack{i=1 \\ i \neq k, i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2} b_{i} e^{-a\left(c_{i} x_{i}+c_{k} x_{k}\right)}=c_{k}^{3} b_{k} B_{k} e^{-a c_{k} x_{k}}, \tag{2.33}
\end{equation*}
$$

where

$$
B_{k}=(n-3) m \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}-m \sum_{\substack{i=1 \\ i \neq k}}^{n} \varepsilon_{i} c_{i}^{2}-\varepsilon_{i_{0}} \frac{d_{i_{0}}}{a}
$$

for $k=1, \ldots, i_{0}-1, i_{0}+1, \ldots, n-1$. Since x_{k} is arbitrary and from (2.31), we get $c_{k}^{3} b_{k} c_{i}^{2} b_{i}=0$. Hence $c_{k} b_{k} c_{i} b_{i}=0$ for $i, k=1, \ldots, i_{0}-1, i_{0}+1, \ldots, n-1$ and $i \neq k$. Thus, there is at most one $c_{k} b_{k} \neq 0$. Let be all $c_{k} b_{k}=0$ for $k=1, \ldots, i_{0}-1, i_{0}+1, \ldots, n-1$ and $k \neq j_{0}$. It follows

$$
\begin{equation*}
f_{j_{0}}^{\prime}=-a b_{j_{0}} c_{j_{0}} e^{-a c_{j_{0}} x_{j_{0}}}+\frac{m \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}}{\varepsilon_{j_{0}} c_{j_{0}}} \tag{2.34}
\end{equation*}
$$

and

$$
\begin{equation*}
f_{k}^{\prime}=\frac{m \sum_{\substack{k=1 \\ k \neq i_{0}}}^{n} \varepsilon_{k} c_{k}^{2}}{\varepsilon_{k} c_{k}} \tag{2.35}
\end{equation*}
$$

for $k=1, \ldots, i_{0}-1, i_{0}+1, \ldots, n-1$ and $k \neq j_{0}$. By substituting (2.30), (2.34) and (2.35) in (2.27), we obtain

$$
\varepsilon_{i_{0}}(n-3) m\left(\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}\right) a^{2} b_{i_{0}} c_{i_{0}}^{2} a c^{a c_{0} x_{i 0}}+\varepsilon_{j_{0}} a^{2} b_{j_{0}} c_{j_{0}}^{2} C e^{-a c_{j_{0}} x_{j 0}}=0,
$$

where

$$
C=(n-3) m \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}-m \sum_{\substack{i=1 \\ i \neq j_{0}}}^{n} \varepsilon_{i} c_{i}^{2}-\varepsilon_{i_{0}} \frac{d_{i_{0}}}{a} .
$$

We rewrite the Eq (2.20) for $n=3$

$$
\begin{align*}
& \varepsilon_{4} \sum_{i=1}^{3} \varepsilon_{i} c_{i}^{2}+\varepsilon_{3} c_{3}^{2} \sum_{i=1}^{2} \varepsilon_{i} f_{i}^{\prime^{2}}+\varepsilon_{1} \varepsilon_{2}\left(c_{1} f_{2}^{\prime}-c_{2} f_{1}^{\prime}\right)^{2} \\
& \quad+2\left[\sum_{i=1}^{2} \varepsilon_{i}\left(\sum_{\substack{j=1 \\
j \neq i}}^{3} \varepsilon_{j} c_{j}^{2}\right) f_{i}^{\prime \prime}\right] \frac{f_{3}^{\prime} f_{3}^{\prime \prime}}{f_{3}^{\prime \prime \prime}}+2\left[\sum_{\substack{i, j=1 \\
i \neq j}}^{2} \varepsilon_{i} \varepsilon_{j} c_{i} f_{i}^{\prime} f_{j}^{\prime \prime}\right] \frac{f_{3}^{\prime \prime}}{f_{3}^{\prime \prime \prime}}=0 . \tag{2.36}
\end{align*}
$$

According to (2.25) and (2.27), (2.36) becomes
$\varepsilon_{4}\left(\varepsilon_{1} c_{1}^{2}+\varepsilon_{2} c_{2}^{2}+\varepsilon_{3} c_{3}^{2}\right)+\varepsilon_{3} c_{3}^{2}\left(\varepsilon_{1} f_{1}^{\prime 2}+\varepsilon_{2} f_{2}^{\prime 2}\right)+\varepsilon_{1} \varepsilon_{2}\left(c_{1} f_{2}^{\prime}-c_{2} f_{1}^{\prime}\right)^{2}+2 c\left(\varepsilon_{1}\left(\varepsilon_{2} c_{2}^{2}+\varepsilon_{3} c_{3}^{2}\right) f_{1}^{\prime \prime}+\varepsilon_{2}\left(\varepsilon_{1} c_{1}^{2}+\varepsilon_{3} c_{3}^{2}\right) f_{2}^{\prime \prime}\right)=0$.
By differentiating the Eq (2.37) with respect to x_{1}, we obtain

$$
\varepsilon_{3} c_{3}^{2} f_{1}^{\prime} f_{1}^{\prime \prime}-\varepsilon_{2} c_{2}\left(c_{1} f_{2}^{\prime}-c_{2} f_{1}^{\prime}\right) f_{1}^{\prime \prime}+c\left(\varepsilon_{2} c_{2}^{2}+\varepsilon_{3} c_{3}^{2}\right) f_{1}^{\prime \prime \prime}=0
$$

If we arrange the equation above, then we get

$$
\begin{equation*}
\left(\varepsilon_{2} c_{2}^{2}+\varepsilon_{3} c_{3}^{2}\right)\left(f_{1}^{\prime}+c \frac{f_{1}^{\prime \prime \prime}}{f_{1}^{\prime \prime}}\right)=\varepsilon_{2} c_{1} c_{2} f_{2}^{\prime} \tag{2.38}
\end{equation*}
$$

From this equation, $f_{2}^{\prime \prime}$ is constant and $f_{2}^{\prime \prime}=0$. This is a contradiction. Also it must be

$$
m \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}-\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} f_{i}^{\prime}=0
$$

We showed that $m \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}-\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} f_{i}^{\prime}=0$ and $f_{i}^{\prime \prime}$ are constants for $1 \leq i \leq n-1, i \neq i_{0}$. Then $f_{i}^{\prime}\left(x_{i}\right)=a_{i}$, where a_{i} are constants for $i=1, \ldots, i_{0}-1, i_{0}+1, \ldots, n-1$ and

$$
\begin{equation*}
m \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}=\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} a_{i} \tag{2.39}
\end{equation*}
$$

We rewrite (2.20),

$$
\begin{align*}
& \varepsilon_{n+1} \sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2}+\varepsilon_{n} c_{n}^{2} \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n-1} \varepsilon_{i} a_{i}^{2}+\varepsilon_{i_{0}} f_{i_{0}}^{\prime 2} \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}+\sum_{\substack{j=1 \\
j \neq i_{0}}}^{n-1}\left(\varepsilon_{j} a_{j}^{2} \sum_{\substack{i=1 \\
i \neq j}}^{n-1} \varepsilon_{i} c_{i}^{2}\right) \\
& -2 \varepsilon_{i_{0}} c_{i_{0}} f_{i_{0}}^{\prime} \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} a_{i}-\sum_{\substack{j=1 \\
j \neq i_{0}}}^{n-1}\left(\varepsilon_{j} c_{j} a_{j} \sum_{\substack{i=1 \\
i \neq j, i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} a_{i}\right) \tag{2.40}\\
& \quad+2 \varepsilon_{i_{0}} f_{i_{0}}^{\prime \prime}\left(\sum_{\substack{i=1 \\
i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}\right) \frac{f_{n}^{\prime} f_{n}^{\prime \prime}}{f_{n}^{\prime \prime \prime}}+2 \varepsilon_{i_{0}} f_{i_{0}^{\prime \prime}}^{\prime \prime}\left(\sum_{\substack{i=1 \\
i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} a_{i}\right) \frac{f_{n}^{\prime \prime}}{f_{n}^{\prime \prime \prime}}=0
\end{align*}
$$

According to (2.25) and (2.39), we rewrite (2.40)

$$
\begin{align*}
& \varepsilon_{n+1} \sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2}+\varepsilon_{n} c_{n}^{2} \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n-1} \varepsilon_{i} a_{i}^{2}+\varepsilon_{i_{0}} f_{i_{0}}^{\prime 2} \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}+\sum_{\substack{j=1 \\
j \neq i_{0}}}^{n-1}\left(\varepsilon_{j} a_{j}^{2} \sum_{\substack{i=1 \\
i \neq j}}^{n-1} \varepsilon_{i} c_{i}^{2}\right) \\
& \quad-2 \varepsilon_{i_{0}} c_{i_{0}} f_{i_{0}}^{\prime} \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} a_{i}-\sum_{\substack{j=1 \\
j \neq i_{0}}}^{n-1}\left(\varepsilon_{j} c_{j} a_{j} \sum_{\substack{i=1 \\
i \neq j i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} a_{i}\right)+2 \varepsilon_{i_{0}} c c_{i_{0}}^{\prime \prime} \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}=0 . \tag{2.41}
\end{align*}
$$

We arrange this equation

$$
\begin{equation*}
\varepsilon_{i_{0}}\left(\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}\right) f_{i_{0}}^{\prime 2}-2 \varepsilon_{i_{0}} c_{i_{0}}\left(\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} a_{i}\right) f_{i_{0}}^{\prime}+2 \varepsilon_{i_{0}} c\left(\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}\right) f_{i_{0}}^{\prime \prime}+B=0, \tag{2.42}
\end{equation*}
$$

with

$$
\begin{aligned}
B & =\varepsilon_{n+1} \sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2}+\varepsilon_{n} c_{n}^{2} \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n-1} \varepsilon_{i} a_{i}^{2}+\sum_{\substack{j=1 \\
j \neq i_{0}}}^{n-1}\left(\varepsilon_{j} a_{j}^{2} \sum_{\substack{i=1 \\
i \neq j}}^{n-1} \varepsilon_{i} c_{i}^{2}\right)-\sum_{\substack{j=1 \\
j \neq i_{0}}}^{n-1}\left(\varepsilon_{j} c_{j} a_{j} \sum_{\substack{i=1 \\
i \neq j i, i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} a_{i}\right) \\
& =\varepsilon_{n+1} \sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2}+\left(\varepsilon_{n} c_{n}^{2}+\varepsilon_{i_{0}} c_{i_{0}}^{2}\right) \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n-1} \varepsilon_{i} a_{i}^{2}+\frac{1}{2} \sum_{\substack{i, j, 1 \\
i \neq j, i, j \neq i_{0}}}^{n-1} \varepsilon_{i} \varepsilon_{j}\left(a_{i} c_{j}-a_{j} c_{i}\right)^{2} .
\end{aligned}
$$

From (2.39), we rewrite (2.42)

$$
f_{i_{0}}^{\prime^{2}}-2 m c_{i_{0}} f_{i_{0}}^{\prime}+2 c f_{i_{0}}^{\prime \prime}+\frac{B}{\varepsilon_{i_{0}}\left(\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}\right)}=0 .
$$

By solving the equation, we find

$$
f_{i_{0}}= \begin{cases}2 c \ln \cos \frac{\sqrt{-A}}{2 c} x_{i_{0}}+m c_{i_{0}} x_{i_{0}}, & \text { if } A<0 \tag{2.43}\\ 2 c \ln \cosh \frac{\sqrt{A}}{2 c} x_{i_{0}}+m c_{i_{0}} x_{i_{0}}, & \text { if } A>0 \text { and }\left|\frac{f_{i_{0}}^{\prime}-m c_{i_{0}}}{\sqrt{A}}\right|<1 \\ 2 c \ln \sinh \frac{\sqrt{A}}{2 c} x_{i_{0}}+m c_{i_{0}} x_{i_{0}}, & \text { if } A>0 \text { and }\left|\frac{f_{i_{0}}^{\prime}-m c_{i_{0}}}{\sqrt{A}}\right|>1 \\ 2 c \ln \left|x_{i_{0}}\right|+m c_{i_{0}} x_{i_{0}}, & \text { if } A=0\end{cases}
$$

with

$$
A=\frac{B}{\varepsilon_{i_{0}} \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}}-m^{2} c_{i_{0}}^{2}
$$

Moreover $f_{i}^{\prime}\left(x_{i}\right)=a_{i}$, where a_{i} are constants for $i=1, \ldots, i_{0}-1, i_{0}+1, \ldots, n-1$ and we rewrite (2.9) again

$$
\begin{align*}
& {\left[\varepsilon_{n+1} \sum_{i=1}^{n} \varepsilon_{i} c_{i}^{2}+\varepsilon_{n} c_{n}^{2} \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n-1} \varepsilon_{i} a_{i}^{2}+\varepsilon_{i_{0}} f_{i_{0}}^{2} \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}+\sum_{\substack{j=1 \\
j \neq i_{0}}}^{n-1}\left(\varepsilon_{j} a_{j}^{2} \sum_{\substack{i=1 \\
i \neq j}}^{n-1} \varepsilon_{i} c_{i}^{2}\right)\right.} \\
& \left.\quad-2 \varepsilon_{i_{0}} c_{i_{0}} f_{i_{0}}^{\prime} \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} a_{i}-\sum_{\substack{j=1 \\
j \neq i_{0}}}^{n-1}\left(\varepsilon_{j} c_{j} a_{j} \sum_{\substack{i=1 \\
i \neq j, i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} a_{i}\right)\right] f_{n}^{\prime \prime} \tag{2.44}\\
& +\left[\varepsilon_{n+1} \varepsilon_{i_{0}}+\varepsilon_{i_{0}} \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n-1} \varepsilon_{i} a_{i}^{2}+\left(\varepsilon_{i_{0}} \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}\right) f_{n}^{\prime^{2}}+2\left(\varepsilon_{i_{0}} \sum_{\substack{i=1 \\
i \neq i_{0}}}^{n-1} \varepsilon_{i} a_{i} c_{i}\right) f_{n}^{\prime}\right] f_{i_{0}}^{\prime \prime}=0 .
\end{align*}
$$

According to (2.41) and (2.44), we get

$$
\begin{equation*}
\left[\varepsilon_{n+1}-2 c\left(\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}\right) f_{n}^{\prime \prime}+\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} a_{i}^{2}+\left(\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}\right) f_{n}^{\prime^{2}}+2\left(\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} a_{i} c_{i}\right) f_{n}^{\prime}\right] f_{i_{0}}^{\prime \prime}=0 . \tag{2.45}
\end{equation*}
$$

Since $f_{i_{0}}^{\prime \prime} \neq 0$, by substituting (2.39) into (2.45) and we obtain

$$
f_{n}^{\prime^{2}}+2 m f_{n}^{\prime}=2 c f_{n}^{\prime \prime}-\frac{\varepsilon_{n+1}+\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} a_{i}^{2}}{\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}} .
$$

When considered this equation with (2.26), then

$$
c_{0}=-\frac{\varepsilon_{n+1}+\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} a_{i}^{2}}{\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}} .
$$

According to (2.39), we get

$$
m^{2}+c_{0}=\frac{-\varepsilon_{n+1} \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}-\varepsilon_{n} c_{n}^{2} \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} a_{i}^{2}-\left[\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} a_{i}^{2} \sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i}^{2}-\left(\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n-1} \varepsilon_{i} c_{i} a_{i}\right)^{2}\right]}{\left(\sum_{\substack{i=1 \\ i \neq i_{0}}}^{n} \varepsilon_{i} c_{i}^{2}\right)^{2}}
$$

Depending on the epsilones (-1 or +1) in the above equation, $m^{2}+c_{0}$ can be positive, negative and zero. With suitable translation, we get $f_{i}=0$ for $i=1, \ldots, i_{0}-1, i_{0}+1, \ldots, n-1$ and following the equations

$$
f_{i_{0}}=\left\{\begin{array}{l}
2 c \ln \cos \frac{\sqrt{-M}}{2 c} x_{i_{0}}, \text { if } M<0 \tag{2.46}\\
2 c \ln \cosh \frac{\sqrt{M}}{2 c} x_{i_{0}}, \text { if } M>0 \text { and }\left|\frac{f_{i_{0}}^{\prime}}{\sqrt{M}}\right|<1 \\
2 c \ln \sinh \frac{\sqrt{M}}{2 c} x_{i_{0}}, \text { if } M>0 \text { and }\left|\frac{f_{i_{0}}^{\prime}}{\sqrt{M}}\right|>1 \\
2 c \ln \left|x_{i_{0} \mid}\right|, \quad \text { if } M=0
\end{array}\right.
$$

and

$$
f_{n}= \begin{cases}-2 c \ln \cos \left(\frac{\sqrt{-N}}{2 c}\left(c_{1} x_{1}+\cdots+c_{n} x_{n}\right)\right), & \text { if } N<0 \tag{2.47}\\ -2 c \ln \cosh \left(\frac{\sqrt{N}}{2 c}\left(c_{1} x_{1}+\cdots+c_{n} x_{n}\right)\right), & \text { if } N>0 \text { and }\left|\frac{f_{n}^{\prime}}{\sqrt{N}}\right|<1 \\ -2 c \ln \sinh \left(\frac{\sqrt{N}}{2 c}\left(c_{1} x_{1}+\cdots+c_{n} x_{n}\right)\right), & \text { if } N>0 \text { and }\left|\frac{f_{n}^{\prime}}{\sqrt{N}}\right|>1 \\ -2 c \ln \left|c_{1} x_{1}+\cdots+c_{n} x_{n}\right|, & \text { if } N=0\end{cases}
$$

where

Therefore we complete the proof of the following main theorem.

Main theorem. M^{n} is a non-degenerate minimal translation graph in semi-Euclidean space \mathbb{R}_{v}^{n+1}, if it is congruent to a part of one of the following surfaces:

1. A non-degenerate hyperplane,
2. A hypersurface parameterized by

$$
\phi\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}, F\left(x_{1}, \ldots, x_{n}\right)\right), \quad F\left(x_{1}, \ldots, x_{n}\right)=f_{i_{0}}\left(x_{i_{0}}\right)+f_{n}(u)
$$

where $u=\sum_{i=1}^{n} c_{i} x_{i}, c_{i}$ are constants, $c_{n} \neq 0$, with the conditions in the Eq (2.4), for a unique i_{0}, $1 \leq i_{0} \leq n-1$, such that $f_{i_{0}}$ and f_{n} one of the previous forms in (2.46) and (2.47), respectively. In additionally, $f_{k}\left(x_{k}\right)=0$ for $k \neq i_{0}$ and $1 \leq k \leq n-1$.

3. Conclusions

Semi-Euclidean spaces are important in applications of general relativity which is the explanation of gravity in modern physics. In this study, we have a characterization of minimal translation graphs which are generalization of minimal translation hypersurfaces in semi-Euclidean space. Also, we obtain the main theorem by which we classify all non-degenerate minimal translation graphs.

Acknowledgments

The author would like to thank the referees for their valuable suggestions.

Conflict of interest

The author declares no conflict of interest.

References

1. L. Verstraellen, J. Walrave, S. Yaprak, The minimal translation surfaces in Euclidean space, Soochow J. Math., 20 (1994), 77-82.
2. F. Dillen, L. Verstraellen, G. Zafindratafa, A generalization of the translation surfaces of Scherk differential geometry in honor of Radu Rosca, Meeting on Pure and Applied Differential Geometry, Leuven, KU Leuven, Department Wiskunde, (1991), 107-109.
3. I. Van de Woestijne, Minimal surfaces of the 3-dimensional Minkowski space, In: M. Boyom, J. M. Morvan, L. Verstraelen, P. Brard, B. Laget, C. M. Marle, Geometry and topology of submanifolds, II, Avignon: World Scientific, (1990), 344-369.
4. K. Seo, Translation hypersurfaces with constant curvature in space forms, Osaka J. Math., 50 (2013), 631-641.
5. T. Hasanis, R. López, Classification and construction of minimal translation surfaces in Euclidean space, Results Math., 75 (2020), 2-22.
6. M. E. Aydn, A. O. Ogrenmis, Translation hypersurfaces with constant curvature in 4-dimensional isotropic space, 2017. Available from: https://arxiv.org/abs/1711.09051.
7. J. Inoguchi, R. López, M. I. Munteanu, Minimal translation surfaces in the Heisenberg group Nil_{3}, Geom. Dedicata, 161 (2012), 221-231.
8. R. López, M. I. Munteanu, Minimal translation surfaces in Sol_{3}, J. Math. Soc. Jpn., 64 (2012), 985-1003.
9. M. Moruz, M. I. Munteanu, Minimal translation hypersurfaces in E^{4}, J. Math. Anal. Appl., 439 (2016), 798-812.
10. M. I. Munteanu, O. Palmas, G. Ruiz-Hernandez, Minimal translation surfaces in Euclidean spaces, Mediter. J. Math., 13 (2016), 2659-2676.
11. R. López, Ó. Perdemo, Minimal translation surfaces in Euclidean space, J. Geom. Anal., 27 (2017), 2926-2937.
12. D. Yang, J. J. Zhang, Y. Fu, A note on minimal translation graphs in Euclidean space, Mathematics, 7 (2019), 889.
13. I. Van de Woestyne, Minimal homothetical hypersurfaces of a semi-Euclidean, Results Math., 27 (1995), 333-342.
© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
