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1. Introduction

As is wellknown the first non-trivial examples of minimal surfaces in 3-dimensional Euclidean
space E® are the catenoids, the helicoids and the minimal translation surfaces. A surface is called a
translation surface if it is given by an immersion

X:UcCE? = E (x,y) = (x,y,2),

where z = f(x) + g(y). Scherk proved in 1835 that the only minimal translation surfaces (besides the

planes) are the surfaces given by
cos(ax)

z=-1o

b

cos(ay)
where a is a non-zero constant [1].

In [2], it has been shown that the minimal translation surfaces are generalized to minimal translation
hypersurfaces as follows:

Let M" (n > 2) be a translation hypersurface in E™*! i.e. M" is the graph of a function

F:R"5SR:(x,...,x,) = F(xy,...,x,) = filx) + - + fulxpn),

where f; is a smooth function of one real variable for i = 1,...,n. Then M" is minimal if and only if
either M" is a hyperplane or a product submanifold M" = M?x E"~2, where M? is a minimal translation
surface of Scherk in E°.
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In [3], Woestyne parameterized minimal translation surfaces in the 3-dimensional Minkowski space
R? with metric g = dx7 + dx3 — dx3, in the following theorems:

Theorem 1. Every minimal, spacelike surface of translation in R?, is congruent to a part of one of the
following surfaces:

1. A spacelike plane,
2. The surface of Scherk of the first kind, a parametrization of the surface is
F(x,y) = (x,y,a ' log(cosh(ay)/ cosh(ax))), with tanh?(ax) + tanhz(ay) < 11[3].

Theorem 2. Every minimal, timelike surface of translation in R?, is congruent to a part of one of the
following surfaces:

1. A timelike plane,

2. The surface of Scherk of the first kind, a parametrization of the surface is
F(x,y) = (x,y,a ' log(cosh(ay)/ cosh(—ax))) with tan h*(—ax) + tan h*(ay) > 1.

3. The surface of Scherk of the second kind, a parametrization of the surface is
F(x,y) = (x,y,a " log(cosh(ay)/ sinh(—ax))).

4. The surface of Scherk of the third kind, a parametrization of the surface is
F(x,y) = (x,y,a ' log(sinh(ay)/ sinh(-ax))) .

5. A flat B-scroll over a null curve, a parametrization of the surface is
F(x,y) = (x,y, +x + g(y)) with g(y) an arbitrary function [3].

Seo, gave a classification of the translation hypersurfaces with constant mean curvature or constant
GaussKronecker curvature in Euclidean space or Lorentz Minkowski space in [4]. Also they
characterized the minimal translation hypersurfaces in the upper half-space model of hyperbolic
space. In particular, they proved the following theorem:

Theorem 3. Let M be a translation hypersurface with constant mean curvature H in R**!'. Then M is
congruent to a cylinder ¥ x R"2, where X is a constant mean curvature surface in R3. In particular,
if H = 0, then M is either a hyperplane or M = ¥ X R""2, where X is a Scherks minimal translation
surface in R3[4].

And they can obtained a similar result in the LorentzMinkowski space as follows:

Theorem 4. Let M be a spacelike translation hypersurface with constant mean curvature H in L"*!,
Then M is congruent to a cylinder ¥ x R"~2, where X is a constant mean curvature surface in L. In
particular, if H = 0, then M is either a hyperplane or M = ¥ x R"2, where X is a Scherks maximal
spacelike translation surface in L* [4].

In [5], Hasanis and Lopez classified and described the construction of all minimal translation
surfaces in R®. In 2019, Aydn and Ogrenmis investigated translation hypersurfaces generated by
translating planar curves and classified these translation hypersurfaces with constant
Gauss-Kronecker and mean curvature [6]. Recently, many authors have studied the geometry of
minimal translational hypersurface [7-12].

In [12], Yang, Zhang and Fu gave a characterization of a class of minimal translation graphs which
are generalization of minimal translation hypersurfaces in Euclidean space. In this paper we study a
characterization of minimal translation graphs in semi-Euclidean space.
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2. Characterization of minimal translation graphs in semi-Euclidean space

By the (n+1)-dimensional semi-Euclidean space with index v, denoted by R"*!, mean R"*! equipped
with the semi-Euclidean metric

g =&1dx +&dxs + - + £pp1dX2, |, (2.1)
for which ¢;, (i = 1,2,...,n + 1) is either —1 or 1. We assume n > 2. The number of minus signs is

equal to the index v and is given by

n+l1

1
V= 5(n+1—zgj).

=1

Let M" be a hypersurface of R"*! for which the induced metric is non-degenerate. Then M" can locally
always be seen as the graph of a function F : R” — R. In what follows, we will assume that f
is a function of the coordinates x,...,x,. This can easily be achieved possibly by rearranging the
coordinates of R"*!. So M" is locally given by

Xpi1 = F(xq,...x,). 2.2)

Assume that M" is minimal. This means that the mean curvature vector vanishes at every point.
The graph M" in the semi-Euclidean space R/, is minimal if and only if

OF (& (oFY OF ~ OF &°F
il i\ 5 ntl | — 7 i =0. 2.3
? (;8(8)@') Té +1) axj P & Bx,- (9x,-(9xj ( )

One easily calculates that minimality condition above [13].
A hypersurface M" in the semi-Euclidean space R”*! is called translation graph if it is the graph of
the function given by
F(xi,...,x0) = filx) + -+ foo1 (1) + fu(@0),

where u = ) c¢;x;, ¢; are constants, ¢, # 0 and each f; is a smooth function of one real variable for
=

i=1,2,...,n. Additionally in this paper, we assume that the following condition are provided:
Zn: 2 : 2 _
gic; #0 and Zejcj;éO, forall i=1,...,n—1. 2.4)
i=1 =1
f; vanishes nowhere fori = 1,2,...,n, otherwise M" is a non-degenerate hyperplane.

The minimality condition (2.3) can be rewritten as

8n+1Zngjj+Zgigj(Fiszj_FiFjFij):O' (25)
=1 i#]
Then we calculate the partial derivatives in the Eq (2.5) for the translation graph,

Fi=fl +cify, Fu=cufy, (2.6)
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Fi=fi+cif’, Fn=cf’, (2.7)
Fij = Ciij,;', Fi, = Cicnj;:,, (2.8)
for1 <i<n-1.Since M" is minimal, we substitute (2.6)—(2.8) into (2.5) and we obtain

n—1 n n—1 n—1
17 2 2 /2 17 2 17 /2
Entl &if” +en gic; + &,¢;, sifl | f. + é&nc, sfi"| 1,

i=1 i=1 i=1 i=1

n—1 1 n—1 (29)
/ IN2 o1 v N2
+ Z g€i(fi +aif) fi + 3 Z giej(cif] —cif))y fi =0.
i,j=1 i.j=1
i#j i#]
Since ¢, # 0, we take the derivative of the Eq (2.9) with respect to x,, we have
n n—1 1 n—1
/2 v 7N\2 7
8n+128icf+8ncﬁzgiﬁ- +§ Zsisj(cifj—cjfi) I
i=1 i=1 ij=1
o (2.10)
n—1 n n—1
2N\ 17 1 o1 Il
+2| Y & D fifl +2 ) e f] £ =0,
ij=1  j=1 ij=1
J#i i#j

According to the Eq (2.10), we get following cases:

Casel. f,” =0.
With proper translation, f, = mu? for a constant m # 0 such that f, = mu?. If m = 0, then M" would
not be a translation graph. According to this, we rewrite (2.10)

n—1 n n—1
2m*u Z Si(z sjcﬁ)fi” +m Z ggicifi fi' = 0. (2.11)
i=1 =1 ij=1
Jj#i Ié’-‘j
Since m # 0, we get
n—1 n n—1
Z Si(z 81'05)]7, =0, Z gieicifi i = 0. (2.12)
=1 =1 i,j=1
i i#j

In the first equation of (2.12), each f/” depends on a different variable, then f/” has to be a constant for
i=1,...,n—1. Also, let be fi(x;) = aixl.z, where q; is constant. Then from (2.12) we obtain following
equations

n—1 n n—1
Zsi(z(s‘jci)a,-:o, a,-c,-Zsjaj:O, where i=1,...,n—1. (2.13)
=1 j=1 j=1

i J#i
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Now we substitute f, = mu? and fi(x;) = a;x? fori = 1,...,n— 1 in the Eq (2.9), we find

n—1 n n—1 n—1

Am? E &i( E gjci)a,- u® + 8m E gigjaicia;x; |u —4m E £i€jQ;0jCiCiXiX;
i=1 j=1 i,j=1 i,j=1
i i#] i#j

(2.14)

n—

n—1 n 1
+4Zela m28c2-+28-a- P +e
i€ Jaj | Xi n+1
j=1 1
JEi i

n—1 n
£,a;,+&,. 1M E eicf =0.
i=1 i=1

i= j=
J

According to (2.13) and (2.14), we obtain

n—1 n—1 n n—1 n— n
4dm Z gi€ja;a;cicixix; = 4 Z sia? m Z 8jC§ + g;a; x? + &,41 Z gQ;+Ep M Z 8iCl-2 (2.15)
ij=1 i=1 =1 =1 i=1 i=1
i#] J#i ] i
Since the above equation is a quadratic polynomial with xi, ..., x,_;, by the arbitrariness of x;, we get
n n—1
alm) e+ > ea;|=0, fori=1,....n-1, (2.16)
J#i i
n—1 n
Z ga;+m Z 8,-0,-2 =0 2.17)
i=1 i=1
and
aiajcici=0, for i,j=1,...,n=1, i # ] (2.18)
According to (2.16) and (2.17), we find
a =-m(ca)’, for i=1,...,n—1. (2.19)

From (2.18), we can see that at most one a,c, # 0. Without loss of generality, we assume ay,cy, # 0
and every ayc, = 0 for k # ky. From (2.19), we get a5, # 0 and a; = O for k # ko. According to
this, with the first equation of (2.13) and the assumption (2.4), we have a contradiction. Therefore, we
obtain that every @y = O fork = 1,...,n— 1 and f’(x;) = 0. By substituting this equalities in (2.9) we
obtain m )| sicf = 0, which is a contradiction with the assumption (2.4).

i=1

Case 2. f,” # 0.
If we divide by f,”” on both sides of the Eq (2.10), we obtain

n n—1
Entl Z;slc +&,¢ Z; ef + 5 Z:l gigf(cif] — cif))
i 14 LJ
# (2.20)
n—1 n
" f/fl/ " f/l

2 Z Si(z 81C5)f; fl// + 2 Z 8181 lf f f/// -

i=1 j=1 i,j=1

J#i i#j
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Differentiating (2.20) with respect to u, we get

1 L7 n-1 17
Zg,( e S (ff ) > asicif f] (f) =0 (221
g, oy J;
Jil i#]

We have 3 possibilities.
Case 2a. (;—)L # 0.

In this case,
fo=af, + bu, (2.22)

where a, b are constants. Since f,”” # 0, then a # 0. By solving this equation we obtain
fu(u) = ke« + bu + ab,
where k is a nonzero constant. According to this equation, we get

Thus, according to (2.21), we obtain

n—1 n
D) eichfl =o0. (2.23)
i=1 j=1

J#i

Since each f!” depends on a different variable, then f” has to be a constant fori = 1,...,n — 1. Let be
filx) = aixl.z, where qg; is constant. From (2.23) we obtain

n—1 n

2
Z si(Z gjcpa; = 0.
=1 j=1

i
Hence, from (2.20) we have
n n—1 n—1 n—1
2 2 2, 1 2
Enstl &ic; + &y, &2aix)” + 5 gi€j(2ciajxj — 2cja;x;)” + 8a gigjciaajx; = 0.
i=1 i=1 ij=1 ij=1
i#] i#]

This is a contradiction.

n—1 n
Case 2b. 3, &3, £,)f" #0.
i=1 j=1
JFi
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n—1 n

Let be ) &( 2] sjci)fi” = 0. Then each f/” is constant for i = 1,...,n — 1. Also we can write

=1 j=1
Jj#i

fi(x) = a,-xl.z, where q; is constant. From the assumption, we have

n—

Zl“ si(zn: sjci)a,- =0.
1 =1

i=

Jj#i
According to (2.21), we get
n—1
Z 81'8]'6','](;-/](‘;/ =0.
ij=1
i#)
From (2.20), we obtain
n n—1 1 n—1
2 2 2 2 _
Entl &iC; + &,C,, &Raix)” + 3 giej2ciajxj — 2cja;x;)” = 0,
i=1 i=1 ij=1
i#]
n—1 n
which is a contradiction. Also it must be )’ &( D € jci) f!" # 0. According to Cases 2a and 2b, we can
=1 j=1
J#i
rewrite (2.21)
n—1
2 &iE jCifi'f;'
ij=1 (f,{fn”)
"¢ 7 i
— =, (2.24)
Y el Y g f (7)14
=t =1
J#i
where m is constant. Thus we have
LN (5
f;;// . =-m fr:/’ u'
By integration of this equation, we get
4 44 44
f”l = - Ju +c (2.25)

f/// f///
n n

where c is a constant. Thus we have f f," = —mf," + cf,”. By integration of this equation, we obtain

7+ 2mf = 2ef + co, (2.26)
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where ¢ 1s a constant. By solving this ODE, after a translation, we find

\Y _(m2 + CO) . 2
—mu—2clncos| ———ul, ifm +cy<0
2c
\m? + '+
—mu—2c1ncosh(uu], ifm*+co >0 and utm <1
Ju= ¢ \Vm? + ¢
‘[ 2 + /4
—mu—2clnsinh(uu], if m*+cy >0 and f > 1
2c \/m2 + co
—mu —2clnly|, ifm2+c0:0.
Moreover, from (2.24), we get
n—1 n—1 n
Z gigjcifi fi =m Z gi(z sjcﬁ)fi". (2.27)
i,j=1 i=1 j=1
i#] J#i
Since 1
Z si(z sjci)f,-" #0,
=1 j=1

J#i
all f” functions dont vanish for i = 1,...,n — 1. Let be f" # 0. By differentiating the Eq (2.27) with

respect to x;,, we obtain

n—1
mZ &iC; Z sicif! f,, =ci, Y &f]. (2.28)
1o i=1
l;&lo t#lo i#io
Thus we get the following case.
n n—1
Case 2¢c. m ), sicf - 2 &icif! = 0.
=1 i=1
;#i() ;iio
n n—1
Letbe m Y, gic? — Y, gicif] # 0. From (2.28), we get
=1 i=1
l!:#i() ;iio
n—1
Z 81',](;‘,,
117 i=1
i #
t = ———————— =4, (2.29)
¢ _
o gy Ei &ict — ;1 gicif
i#io iy
where a is a constant. From (2.29), we obtain
aci x; dio
ﬁo = b[oe 070 — — Xip» (230)

io
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where b;, and d;, are constants. According to (2.29), we get

n

& (f +acif!) = ma Z 8iCl~2,
i=1
1#1p

foreachi=1,...,ip— 1,ip + 1,...,n — 1. By solving the equation, we obtain

n
m Yy, &c;
i=1
a0 Y ES]
fi=be i 0y (2.31)
EiCi
where b; are constants fori = 1,...,ip— 1,ip + 1,...,n— 1. By differentiating (2.27) with respect to x;
fork=1,...,ip—1,ip+1,...,n—1, we get
n—1 n n—1
Al Z gcifi —m Z gt |+ enf! Z gf!’ =0. (2.32)
i=1 i=1 i=1
ik i#k i#k

We substitute (2.30) and (2.31) in (2.32) and we obtain

n

dacibi Y &ictbe N = iy Be (2.33)
P
ik, i%io
where
n n d
B, =(n- 3)mZ sicf - mZ sic? - s,-oi
: : a
i=1 i=1
iio ik
fork=1,...,ip— l,ip+1,...,n— 1. Since x; is arbitrary and from (2.31), we get ¢;bc;b; = 0. Hence

cebieb; =0fori, k=1,...,i0—1,ip+1,...,n—1and i # k. Thus, there is at most one c¢;b; # 0. Let
beall ctby =0fork=1,...,ip—1,ip+1,...,n—1and k # j,. It follows

n
m Y, &c;
i=1
—dC: X i #1
'fJ{O = _abjocjoe it + — (2.34)
€joCljo
and
n
m ), skc%
#i
fl= —— (2.35)
EkCk

fork=1,...,ip0—1,ip+1,...,n—1and k # jy. By substituting (2.30), (2.34) and (2.35) in (2.27), we
obtain

n
gi,(n—3)m E &ic; azbiocioeac"ox"o +gj,a’h joci)Ce_“cfox-"O =0,
i=1

[E3)
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where

n n d
2 2 io
=(n-3)m ) sgc;—m &iC; — Ejy—-.
— a

=] i=1
i#ip i#jo

We rewrite the Eq (2.20) forn = 3

3 2

2 2 2 2
&4 Z &iC; + £3035 Z fl +eelefs —caf])

i=1 i=1

P ) % (2.36)
281(2 &;c j)f” f/// Z gigjc lf f/’ f/u =
i,j=1
j¢l i#]

According to (2.25) and (2.27), (2.36) becomes

2 2 2 2 2 2 2 2 2 2 2
eu(eicirercstescy)tescs(ef] +euf, )re1ea(cify — cof]) +2c(ei(exci+escs) fi +ea(erci+escy) ;) =

(2.37)
By differentiating the Eq (2.37) with respect to x;, we obtain
s = &aca(crfy — eaf D+ cleacs + e3¢ fi” =
If we arrange the equation above, then we get
1244
(szcg + s3c§) (fl' + cl—”) = &c102f5. (2.38)
1
From this equation, f” is constant and f;" = 0. This is a contradiction. Also it must be
n et Sae -
z;tl() l;tlo
n—
We showed that m Z s, Z gicif; = 0 and f” are constants for 1 < i < n—1, i # i;. Then
t#zo l¢10
f!(x;) = a;, where a; are constants fori = 1,...,ip—1,ip+1,...,n— 1 and
n n—1
m Z sicl-z = £icia; (2.39)
i=1 i=1
i#ip i#io
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We rewrite (2.20),
n n—1 n—1
2 2
8n+128,c + &,¢ Zs,a +8,0fl0 Z &iC; +Z 8]a128,c,
i=1 =1 i=1
l¢10 i#ig ];ﬁlo i#]
n n—1 n—1
2&i\Ciy fi E gicia; — E gjcja; Z £;C;0;
Jj=1 i=1
i#ip J#io i# Ji#l
n r £ n—1 77
17 2 fn n 7 f
+ 28i0 io Z €ic; 117 + 281’0 io Z &icid; f/// -
i=1 n i=1
i#ip [E3)
According to (2.25) and (2.39), we rewrite (2.40)
n n—1 n n—1 n—1
2 2 2 /2 2 2 2 : 2
En+l Z EiC; + &,C, Z &gia; + 8,’0](;-0 Z EiC; + Z £;a; EiC;
i=1 i=1 i=1 j=1 i=1
i#io i#i J#io i+
n—1 n—1 n—1
/ 2
- 28ioci0ﬁ0 Z gicia; — gjcja; Z gicia; |+ 28,»0c E c;
i=1 j=1 i=1
i#ig J#io [EFRESN) l#[()
We arrange this equation
n n—1 n
2 ’ 77
& Z &iC; f,o 2g;,¢i, Z gicia; | fi, +2¢&ic Z fiy +B=0,
i=1 i=1 i=1
i#io i#ig [E3N)
with
n n—1 n—1 n—1
B = 2 2
= Ep41 8,c + 8,1 sla + £a; &ic; | — gjcia; g;ca;
i=1 i=1 i=1 j=1 =l
i#io ]:Flo i#j J#io I# JI#1o
n n—1 1 n—1
_ 2 2 2 2 2
= &u41 Z gic; + (sncn + 8,~0Cl~0) Z gia; + 3 gigjlaic; — ajc;)”.
=1 =1 i,j=1
i#io i#]. i.j#io
From (2.39), we rewrite (2.42)
/2 / 2 B _
fio = 2meg fi + 2¢f) + —— = 0.
c 2
&, | 2 &ic;
i=1
i#ig

(2.40)

(2.41)

(2.42)
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By solving the equation, we find

2cIncos 2;Cl4xi0 + mc;yx;,, ifA<O0

'I

i <1
VA

i:) - mc;,

—>1
VA

— mc;,

A
2cIncosh —ux;, + mcj x;,, if A >0 and
2¢ (2.43)

A
2¢ Insinh 2—\/C_xi0 *meyxy, if A> 0 and

2¢In |x; | + meiyxi,, ifA=0
with
B
A= ——— —m?c3.
n ) [}
Eiy 2 &€
i=1
i#ig

Moreover f/(x;) = a;, where a; are constants fori = 1,...,ip — 1,ip + 1,...,n — 1 and we rewrite (2.9)

again

n n—1 n n—1 n—1
2 2 2 72 2 2 2
En+l Z EiC; + &yC, E gia; + 8i0f;~0 Z Eic; + E Sj(Zj Z EiC;
i=1 i=1 i=1 =1 i=1
i#ig [E3N) Jj#io (£
n—1 n—1 n—1
/ 24
—281'0Ci0fi0 Z Eic;a;— Z €ic;a; Z Eicia; fn (244)
i=1 j:l i=1
i#io Jj#io i# ji#io
n—1 n n—1
2 2 ,? ’ "o
+ |&nsr1€i, + &y Z gia; + | & Z sici | f, +2]¢€i Z giaici | | fi =0.
i=1 i=1 i=1
i#i i#ig i#ig
According to (2.41) and (2.44), we get
n n—1 n n—1
2 17 2 2 72 ’ "o
Epp1 — 2C Zs,-ci S+ Zeiai + Ze,-ci fr+2 Zs,-a,-c,- i =0. (2.45)
i=1 i=1 i=1 i=1
[E3N) [E3N) i#ig [E3N)

Since fl; " # 0, by substituting (2.39) into (2.45) and we obtain

n—1

2

Ens1 + 2 Eill;
i=1
i#ig

7+ 2mf = 2cf! -
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When considered this equation with (2.26), then

n—1
2

Ensl + 2, &
i=1
1#10
Co = —

According to (2.39), we get
2

n ) ) n—1 ) n—1 ) n—1 ) n—1
| Z EiC; — &y, Z &ia; — Z &id; Z &iC; — Z €iCid;
i=1 i=1 i=1 i=1 i=1

2 i#ip i#ip i#ig i#ip i#ig
m +cy=
2
S o2
2. EiC;
i=1
[Ea)

Depending on the epsilones (-1 or +1) in the above equation, m?> + ¢, can be positive, negative and
zero. With suitable translation, we get f; = Ofori =1,...,ip — 1,ip + 1,...,n — 1 and following the

equations

v-M
2cIncos TX,-O, lfM <0
M P
2c1ncosh£x,~0, if M >0 and ' <1
fi = 2c (2.46)
M !
2clnsinh£x,-o, if M >0 and P>
2c VM
2¢In x|, if M=0
and
—2clncos( _ (cixy +---+ cnxn)), if N<O
c
N 4
— 2cIncosh £(cl)c1+---+c,1x,,) , if N> 0 and Jn <1
fo = 2c VN (2.47)
N 4
—201nsinh(£(61x1+~-+cnxn)), if N>0 and > ]
2c VN
—2clnlcix; + -+ + x|, ifN=0
where
2 &ic; .
M = 8i08n+1 lz] s N = - n ad
Y, &ic? Y, &ic?

Therefore we complete the proof of the following main theorem.
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Main theorem. M" is a non-degenerate minimal translation graph in semi-Euclidean space R™*!, if it
is congruent to a part of one of the following surfaces:

1. A non-degenerate hyperplane,
2. A hypersurface parameterized by

Gxp, .o X)) = (X1, X, F(xp, o0, x0), Fx, .o, x0) = fig(x,) + fu(w)

n
where u = ) ¢;x;, ¢; are constants, ¢, # 0, with the conditions in the Eq (2.4), for a unique i,

i=1
1 <ip <n—1,suchthat f;, and f, one of the previous forms in (2.46) and (2.47), respectively. In
additionally, fi(x;) =0fork #ipand 1 <k <n-1.

3. Conclusions

Semi-Euclidean spaces are important in applications of general relativity which is the explanation
of gravity in modern physics. In this study, we have a characterization of minimal translation graphs
which are generalization of minimal translation hypersurfaces in semi-Euclidean space. Also, we
obtain the main theorem by which we classify all non-degenerate minimal translation graphs.
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