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1. Introduction

As is wellknown the first non-trivial examples of minimal surfaces in 3-dimensional Euclidean
space E3 are the catenoids, the helicoids and the minimal translation surfaces. A surface is called a
translation surface if it is given by an immersion

X : U ⊂ E2 → E3, (x, y)→ (x, y, z),

where z = f (x) + g(y). Scherk proved in 1835 that the only minimal translation surfaces (besides the
planes) are the surfaces given by

z =
1
a

log
∣∣∣∣∣cos(ax)
cos(ay)

∣∣∣∣∣ ,
where a is a non-zero constant [1].

In [2], it has been shown that the minimal translation surfaces are generalized to minimal translation
hypersurfaces as follows:

Let Mn (n ≥ 2) be a translation hypersurface in En+1 i.e. Mn is the graph of a function

F : Rn → R : (x1, . . . , xn)→ F(x1, . . . , xn) = f1(x1) + · · · + fn(xn),

where fi is a smooth function of one real variable for i = 1, . . . , n. Then Mn is minimal if and only if
either Mn is a hyperplane or a product submanifold Mn = M2×En−2, where M2 is a minimal translation
surface of Scherk in E3.
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In [3], Woestyne parameterized minimal translation surfaces in the 3-dimensional Minkowski space
R3

1 with metric g = dx2
1 + dx2

2 − dx2
3, in the following theorems:

Theorem 1. Every minimal, spacelike surface of translation in R3
1, is congruent to a part of one of the

following surfaces:

1. A spacelike plane,
2. The surface of Scherk of the first kind, a parametrization of the surface is

F(x, y) = (x, y, a−1 log(cosh(ay)/ cosh(ax))), with tanh2(ax) + tanh2(ay) < 1 [3].

Theorem 2. Every minimal, timelike surface of translation in R3
1, is congruent to a part of one of the

following surfaces:

1. A timelike plane,
2. The surface of Scherk of the first kind, a parametrization of the surface is

F(x, y) = (x, y, a−1 log(cosh(ay)/ cosh(−ax))) with tan h2(−ax) + tan h2(ay) > 1.
3. The surface of Scherk of the second kind, a parametrization of the surface is

F(x, y) = (x, y, a−1 log(cosh(ay)/ sinh(−ax))) .
4. The surface of Scherk of the third kind, a parametrization of the surface is

F(x, y) = (x, y, a−1 log(sinh(ay)/ sinh(−ax))) .
5. A flat B-scroll over a null curve, a parametrization of the surface is

F(x, y) = (x, y,±x + g(y)) with g(y) an arbitrary function [3].

Seo, gave a classification of the translation hypersurfaces with constant mean curvature or constant
GaussKronecker curvature in Euclidean space or Lorentz Minkowski space in [4]. Also they
characterized the minimal translation hypersurfaces in the upper half-space model of hyperbolic
space. In particular, they proved the following theorem:

Theorem 3. Let M be a translation hypersurface with constant mean curvature H in Rn+1. Then M is
congruent to a cylinder Σ × Rn−2, where Σ is a constant mean curvature surface in R3. In particular,
if H = 0, then M is either a hyperplane or M = Σ × Rn−2, where Σ is a Scherks minimal translation
surface in R3[4].

And they can obtained a similar result in the LorentzMinkowski space as follows:

Theorem 4. Let M be a spacelike translation hypersurface with constant mean curvature H in Ln+1.

Then M is congruent to a cylinder Σ × Rn−2, where Σ is a constant mean curvature surface in L3. In
particular, if H = 0, then M is either a hyperplane or M = Σ × Rn−2, where Σ is a Scherks maximal
spacelike translation surface in L3 [4].

In [5], Hasanis and Lopez classified and described the construction of all minimal translation
surfaces in R3. In 2019, Aydn and Ogrenmis investigated translation hypersurfaces generated by
translating planar curves and classified these translation hypersurfaces with constant
Gauss-Kronecker and mean curvature [6]. Recently, many authors have studied the geometry of
minimal translational hypersurface [7–12].

In [12], Yang, Zhang and Fu gave a characterization of a class of minimal translation graphs which
are generalization of minimal translation hypersurfaces in Euclidean space. In this paper we study a
characterization of minimal translation graphs in semi-Euclidean space.
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2. Characterization of minimal translation graphs in semi-Euclidean space

By the (n+1)-dimensional semi-Euclidean space with index ν, denoted byRn+1
ν , meanRn+1 equipped

with the semi-Euclidean metric

g = ε1dx2
1 + ε2dx2

2 + · · · + εn+1dx2
n+1, (2.1)

for which εi, (i = 1, 2, . . . , n + 1) is either −1 or 1. We assume n ≥ 2. The number of minus signs is
equal to the index ν and is given by

ν =
1
2

(n + 1 −
n+1∑
j=1

ε j).

Let Mn be a hypersurface of Rn+1
ν for which the induced metric is non-degenerate. Then Mn can locally

always be seen as the graph of a function F : Rn → R. In what follows, we will assume that f
is a function of the coordinates x1, . . . , xn. This can easily be achieved possibly by rearranging the
coordinates of Rn+1

ν . So Mn is locally given by

xn+1 = F(x1, . . . xn). (2.2)

Assume that Mn is minimal. This means that the mean curvature vector vanishes at every point.
The graph Mn in the semi-Euclidean space Rn

ν is minimal if and only if

n∑
j=1

ε j

∂2F
∂x2

j

 n∑
i=1

εi

(
∂F
∂xi

)2

+ εn+1

 − ∂F
∂x j

n∑
i=1

εi
∂F
∂xi

∂2F
∂xi∂x j

 = 0. (2.3)

One easily calculates that minimality condition above [13].
A hypersurface Mn in the semi-Euclidean space Rn+1

ν is called translation graph if it is the graph of
the function given by

F(x1, . . . , xn) = f1(x1) + · · · + fn−1(xn−1) + fn(u),

where u =
n∑

i=1
cixi, ci are constants, cn , 0 and each fi is a smooth function of one real variable for

i = 1, 2, . . . , n. Additionally in this paper, we assume that the following condition are provided:

n∑
i=1

εic2
i , 0 and

n∑
j=1
j,i

ε jc2
j , 0, f or all i = 1, . . . , n − 1. (2.4)

fi vanishes nowhere for i = 1, 2, . . . , n, otherwise Mn is a non-degenerate hyperplane.
The minimality condition (2.3) can be rewritten as

εn+1

n∑
j=1

ε jF j j +

n∑
i, j

εiε j

(
F2

i F j j − FiF jFi j

)
= 0. (2.5)

Then we calculate the partial derivatives in the Eq (2.5) for the translation graph,

Fi = f ′i + ci f ′n , Fn = cn f ′n , (2.6)
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Fii = f ′ii + c2
i f ′′n , Fnn = c2

n f ′′n , (2.7)

Fi j = cic j f ′′n , Fin = cicn f ′′n , (2.8)

for 1 ≤ i ≤ n − 1. Since Mn is minimal, we substitute (2.6)–(2.8) into (2.5) and we obtain

εn+1

n−1∑
i=1

εi f ′′i +

εn+1

n∑
i=1

εic2
i + εnc2

n

n−1∑
i=1

εi f ′
2

i

 f ′′n + εnc2
n

 n−1∑
i=1

εi f ′′i

 f ′
2

n

+

n−1∑
i, j=1
i, j

εiε j( f ′i + ci f ′n)2 f ′′j +
1
2

n−1∑
i, j=1
i, j

εiε j(ci f ′j − c j f ′i )2 f ′′n = 0.
(2.9)

Since cn , 0, we take the derivative of the Eq (2.9) with respect to xn, we haveεn+1

n∑
i=1

εic2
i + εnc2

n

n−1∑
i=1

εi f ′
2

i +
1
2

n−1∑
i, j=1
i, j

εiε j(ci f ′j − c j f ′i )2

 f ′′′n

+ 2


n−1∑
i, j=1

εi(
n∑

j=1
j,i

ε jc2
j) f ′′i

 f ′n f ′′n + 2
n−1∑
i, j=1
i, j

εiε jci f ′i f ′′j f ′′n = 0.

(2.10)

According to the Eq (2.10), we get following cases:

Case 1. f ′′′n = 0.
With proper translation, fn = mu2 for a constant m , 0 such that fn = mu2. If m = 0, then Mn would

not be a translation graph. According to this, we rewrite (2.10)

2m2u
n−1∑
i=1

εi(
n∑

j=1
j,i

ε jc2
j) f ′′i + m

n−1∑
i, j=1
i, j

εiε jci f ′i f ′′j = 0. (2.11)

Since m , 0, we get
n−1∑
i=1

εi(
n∑

j=1
j,i

ε jc2
j) f ′′i = 0,

n−1∑
i, j=1
i, j

εiε jci f ′i f ′′j = 0. (2.12)

In the first equation of (2.12), each f ′′i depends on a different variable, then f ′′i has to be a constant for
i = 1, . . . , n − 1. Also, let be fi(xi) = aix2

i , where ai is constant. Then from (2.12) we obtain following
equations

n−1∑
i=1

εi(
n∑

j=1
j,i

ε jc2
j)ai = 0, aici

n−1∑
j=1
j,i

ε ja j = 0, where i = 1, . . . , n − 1. (2.13)
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Now we substitute fn = mu2 and fi(xi) = aix2
i for i = 1, . . . , n − 1 in the Eq (2.9), we find

4m2


n−1∑
i=1

εi(
n∑

j=1
j,i

ε jc2
j)ai

 u2 + 8m


n−1∑
i, j=1
i, j

εiε jaicia jxi

 u − 4m
n−1∑
i, j=1
i, j

εiε jaia jcic jxix j

+ 4
n−1∑
i=1

εia2
i

m
n∑

j=1
j,i

ε jc2
j +

n−1∑
j=1
j,i

ε ja j

 x2
i + εn+1

n−1∑
i=1

εiai+εn+1m
n∑

i=1

εic2
i = 0.

(2.14)

According to (2.13) and (2.14), we obtain

4m
n−1∑
i, j=1
i, j

εiε jaia jcic jxix j = 4
n−1∑
i=1

εia2
i

m
n∑

j=1
j,i

ε jc2
j +

n−1∑
j=1
j,i

ε ja j

 x2
i + εn+1

n−1∑
i=1

εiai+εn+1m
n∑

i=1

εic2
i (2.15)

Since the above equation is a quadratic polynomial with x1, . . . , xn−1, by the arbitrariness of xi, we get

a2
i

m
n∑

j=1
j,i

ε jc2
j +

n−1∑
j=1
j,i

ε ja j

 = 0, f or i = 1, . . . , n − 1, (2.16)

n−1∑
i=1

εiai + m
n∑

i=1

εic2
i = 0 (2.17)

and
aia jcic j = 0, f or i, j = 1, . . . , n − 1, i , j. (2.18)

According to (2.16) and (2.17), we find

a3
i = −m (ciai)2, f or i = 1, . . . , n − 1. (2.19)

From (2.18), we can see that at most one akck , 0. Without loss of generality, we assume ak0ck0 , 0
and every akck = 0 for k , k0. From (2.19), we get ak0 , 0 and ak = 0 for k , k0. According to
this, with the first equation of (2.13) and the assumption (2.4), we have a contradiction. Therefore, we
obtain that every ak = 0 for k = 1, . . . , n − 1 and f ′′i (xi) = 0. By substituting this equalities in (2.9) we

obtain m
n∑

i=1
εic2

i = 0, which is a contradiction with the assumption (2.4).

Case 2. f ′′′n , 0.

If we divide by f ′′′n on both sides of the Eq (2.10), we obtainεn+1

n∑
i=1

εic2
i + εnc2

n

n−1∑
i=1

εi f ′
2

i +
1
2

n−1∑
i, j=1
i, j

εiε j(ci f ′j − c j f ′i )2


+ 2


n−1∑
i=1

εi(
n∑

j=1
j,i

ε jc2
j) f ′′i

 f ′n f ′′n

f ′′′n
+ 2


n−1∑
i, j=1
i, j

εiε jci f ′i f ′′j

 f ′′n

f ′′′n
= 0

(2.20)
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Differentiating (2.20) with respect to u, we get
n−1∑
i=1

εi(
n∑

j=1
j,i

ε jc2
j) f ′′i


(

f ′n f ′′n

f ′′′n

)
u

+


n−1∑
i, j=1
i, j

εiε jci f ′i f ′′j


(

f ′′n

f ′′′n

)
u

= 0 (2.21)

We have 3 possibilities.

Case 2a.
(

f ′′n
f ′′′n

)
u
, 0.

In this case,
fn = a f ′n + bu, (2.22)

where a, b are constants. Since f ′′′n , 0, then a , 0. By solving this equation we obtain

fn(u) = ke
u
a + bu + ab,

where k is a nonzero constant. According to this equation, we get(
f ′n f ′′n

f ′′′n

)
u

=
k
a

e
u
a , 0.

Thus, according to (2.21), we obtain

n−1∑
i=1

εi(
n∑

j=1
j,i

ε jc2
j) f ′′i = 0. (2.23)

Since each f ′′i depends on a different variable, then f ′′i has to be a constant for i = 1, . . . , n − 1. Let be
fi(xi) = aix2

i , where ai is constant. From (2.23) we obtain

n−1∑
i=1

εi(
n∑

j=1
j,i

ε jc2
j)ai = 0.

Hence, from (2.20) we have

εn+1

n∑
i=1

εic2
i + εnc2

n

n−1∑
i=1

εi(2aixi)2 +
1
2

n−1∑
i, j=1
i, j

εiε j(2cia jx j − 2c jaixi)2 + 8a
n−1∑
i, j=1
i, j

εiε jciaia jxi = 0.

This is a contradiction.

Case 2b.
n−1∑
i=1
εi(

n∑
j=1
j,i

ε jc2
j) f ′′i , 0.
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Let be
n−1∑
i=1
εi(

n∑
j=1
j,i

ε jc2
j) f ′′i = 0. Then each f ′′i is constant for i = 1, . . . , n − 1. Also we can write

fi(xi) = aix2
i , where ai is constant. From the assumption, we have

n−1∑
i=1

εi(
n∑

j=1
j,i

ε jc2
j)ai = 0.

According to (2.21), we get
n−1∑
i, j=1
i, j

εiε jci f ′i f ′′j = 0.

From (2.20), we obtain

εn+1

n∑
i=1

εic2
i + εnc2

n

n−1∑
i=1

εi(2aixi)2 +
1
2

n−1∑
i, j=1
i, j

εiε j(2cia jx j − 2c jaixi)2 = 0,

which is a contradiction. Also it must be
n−1∑
i=1
εi(

n∑
j=1
j,i

ε jc2
j) f ′′i , 0. According to Cases 2a and 2b, we can

rewrite (2.21)
n−1∑
i, j=1
i, j

εiε jci f ′i f ′′j

n−1∑
i=1
εi(

n∑
j=1
j,i

ε jc2
j) f ′′i

= −

(
f ′n f ′′n
f ′′′n

)
u(

f ′′n
f ′′′n

)
u

= m, (2.24)

where m is constant. Thus we have (
f ′n f ′′n

f ′′′n

)
u

= −m
(

f ′′n

f ′′′n

)
u
.

By integration of this equation, we get

f ′n f ′′n

f ′′′n
= −m

f ′′n

f ′′′n
+ c (2.25)

where c is a constant. Thus we have f ′n f ′′n = −m f ′′n + c f ′′′n . By integration of this equation, we obtain

f ′
2

n + 2m f ′n = 2c f ′′n + c0, (2.26)
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where c0 is a constant. By solving this ODE, after a translation, we find

fn =



− mu − 2c ln cos

 √
−(m2 + c0)

2c
u

 , i f m2 + c0 < 0

− mu − 2c ln cosh

 √
m2 + c0

2c
u

 , i f m2 + c0 > 0 and

∣∣∣∣∣∣∣ f ′n + m√
m2 + c0

∣∣∣∣∣∣∣ < 1

− mu − 2c ln sinh

 √
m2 + c0

2c
u

 , i f m2 + c0 > 0 and

∣∣∣∣∣∣∣ f ′n + m√
m2 + c0

∣∣∣∣∣∣∣ > 1

− mu − 2c ln |u| , i f m2 + c0 = 0.

Moreover, from (2.24), we get

n−1∑
i, j=1
i, j

εiε jci f ′i f ′′j = m
n−1∑
i=1

εi(
n∑

j=1
j,i

ε jc2
j) f ′′i . (2.27)

Since
n−1∑
i=1

εi(
n∑

j=1
j,i

ε jc2
j) f ′′i , 0,

all f ′′i functions dont vanish for i = 1, . . . , n − 1. Let be f ′′i0 , 0. By differentiating the Eq (2.27) with
respect to xi0 , we obtain m

n∑
i=1
i,i0

εic2
i −

n−1∑
i=1
i,i0

εici f ′i

 f ′′′i0

f ′′i0

= ci0

n−1∑
i=1
i,i0

εi f ′′i . (2.28)

Thus we get the following case.

Case 2c. m
n∑

i=1
i,i0

εic2
i −

n−1∑
i=1
i,i0

εici f ′i = 0.

Let be m
n∑

i=1
i,i0

εic2
i −

n−1∑
i=1
i,i0

εici f ′i , 0. From (2.28), we get

f ′′′i0

ci0 f ′′i0

=

n−1∑
i=1
i,i0

εi f ′′i

m
n∑

i=1
i,i0

εic2
i −

n−1∑
i=1
i,i0

εici f ′i

= a, (2.29)

where a is a constant. From (2.29), we obtain

fi0 = bi0e
aci0 xi0 −

di0

aci0
xi0 , (2.30)
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where bi0 and di0 are constants. According to (2.29), we get

εi
(
f ′′i + aci f ′i

)
= ma

n∑
i=1
i,i0

εic2
i ,

for each i = 1, . . . , i0 − 1, i0 + 1, . . . , n − 1. By solving the equation, we obtain

fi = bie−aci xi +

m
n∑

i=1
i,i0

εic2
i

εici
xi, (2.31)

where bi are constants for i = 1, . . . , i0 − 1, i0 + 1, . . . , n− 1. By differentiating (2.27) with respect to xk

for k = 1, . . . , i0 − 1, i0 + 1, . . . , n − 1, we get

f ′′′k


n−1∑
i=1
i,k

εici f ′i − m
n∑

i=1
i,k

εic2
i

 + ck f ′′k

n−1∑
i=1
i,k

εi f ′′i = 0. (2.32)

We substitute (2.30) and (2.31) in (2.32) and we obtain

2ac3
kbk

n∑
i=1

i,k,i,i0

εic2
i bie−a(ci xi+ck xk) = c3

kbkBke−ack xk , (2.33)

where

Bk = (n − 3)m
n∑

i=1
i,i0

εic2
i − m

n∑
i=1
i,k

εic2
i − εi0

di0

a

for k = 1, . . . , i0 − 1, i0 + 1, . . . , n− 1. Since xk is arbitrary and from (2.31), we get c3
kbkc2

i bi = 0. Hence
ckbkcibi = 0 for i, k = 1, . . . , i0 − 1, i0 + 1, . . . , n − 1 and i , k. Thus, there is at most one ckbk , 0. Let
be all ckbk = 0 for k = 1, . . . , i0 − 1, i0 + 1, . . . , n − 1 and k , j0. It follows

f ′j0 = −ab j0c j0e
−ac j0 x j0 +

m
n∑

i=1
i,i0

εic2
i

ε j0c j0
(2.34)

and

f ′k =

m
n∑

k=1
k,i0

εkc2
k

εkck
(2.35)

for k = 1, . . . , i0 − 1, i0 + 1, . . . , n − 1 and k , j0. By substituting (2.30), (2.34) and (2.35) in (2.27), we
obtain

εi0(n − 3)m


n∑

i=1
i,i0

εic2
i

 a2bi0c
2
i0e

aci0 xi0 + ε j0a
2b j0c

2
j0Ce−ac j0 x j0 = 0,
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where

C = (n − 3)m
n∑

i=1
i,i0

εic2
i − m

n∑
i=1
i, j0

εic2
i − εi0

di0

a
.

We rewrite the Eq (2.20) for n = 3

ε4

3∑
i=1

εic2
i + ε3c2

3

2∑
i=1

εi f ′
2

i + ε1ε2(c1 f ′2 − c2 f ′1)2

+ 2


2∑

i=1

εi(
3∑

j=1
j,i

ε jc2
j) f ′′i

 f ′3 f ′′3

f ′′′3
+ 2


2∑

i, j=1
i, j

εiε jci f ′i f ′′j

 f ′′3

f ′′′3
= 0.

(2.36)

According to (2.25) and (2.27), (2.36) becomes

ε4(ε1c2
1+ε2c2

2+ε3c2
3)+ε3c2

3(ε1 f ′
2

1 +ε2 f ′
2

2 )+ε1ε2(c1 f ′2 − c2 f ′1)2
+2c(ε1(ε2c2

2+ε3c2
3) f ′′1 +ε2(ε1c2

1+ε3c2
3) f ′′2 ) = 0.

(2.37)
By differentiating the Eq (2.37) with respect to x1, we obtain

ε3c2
3 f ′1 f ′′1 − ε2c2(c1 f ′2 − c2 f ′1) f ′′1 + c(ε2c2

2 + ε3c2
3) f ′′′1 = 0.

If we arrange the equation above, then we get

(ε2c2
2 + ε3c2

3)
(

f ′1 + c
f ′′′1

f ′′1

)
= ε2c1c2 f ′2 . (2.38)

From this equation, f ′′2 is constant and f ′′2 = 0. This is a contradiction. Also it must be

m
n∑

i=1
i,i0

εic2
i −

n−1∑
i=1
i,i0

εici f ′i = 0.

We showed that m
n∑

i=1
i,i0

εic2
i −

n−1∑
i=1
i,i0

εici f ′i = 0 and f ′′i are constants for 1 ≤ i ≤ n − 1, i , i0. Then

f ′i (xi) = ai, where ai are constants for i = 1, . . . , i0 − 1, i0 + 1, . . . , n − 1 and

m
n∑

i=1
i,i0

εic2
i =

n−1∑
i=1
i,i0

εiciai (2.39)
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We rewrite (2.20),

εn+1

n∑
i=1

εic2
i + εnc2

n

n−1∑
i=1
i,i0

εia2
i + εi0 f ′

2

i0

n∑
i=1
i,i0

εic2
i +

n−1∑
j=1
j,i0

ε ja2
j

n−1∑
i=1
i, j

εic2
i


− 2εi0ci0 f ′i0

n−1∑
i=1
i,i0

εiciai −

n−1∑
j=1
j,i0

ε jc ja j

n−1∑
i=1

i, j,i,i0

εiciai


+ 2εi0 f ′′i0


n∑

i=1
i,i0

εic2
i

 f ′n f ′′n

f ′′′n
+ 2εi0 f ′′i0


n−1∑
i=1
i,i0

εiciai

 f ′′n

f ′′′n
= 0

(2.40)

According to (2.25) and (2.39), we rewrite (2.40)

εn+1

n∑
i=1

εic2
i + εnc2

n

n−1∑
i=1
i,i0

εia2
i + εi0 f ′

2

i0

n∑
i=1
i,i0

εic2
i +

n−1∑
j=1
j,i0

ε ja2
j

n−1∑
i=1
i, j

εic2
i


− 2εi0ci0 f ′i0

n−1∑
i=1
i,i0

εiciai −

n−1∑
j=1
j,i0

ε jc ja j

n−1∑
i=1

i, j,i,i0

εiciai

 + 2εi0c f ′′i0

n∑
i=1
i,i0

εic2
i = 0.

(2.41)

We arrange this equation

εi0


n∑

i=1
i,i0

εic2
i

 f ′
2

i0 − 2εi0ci0


n−1∑
i=1
i,i0

εiciai

 f ′i0 + 2εi0c


n∑

i=1
i,i0

εic2
i

 f ′′i0 + B = 0, (2.42)

with

B = εn+1

n∑
i=1

εic2
i + εnc2

n

n−1∑
i=1
i,i0

εia2
i +

n−1∑
j=1
j,i0

ε ja2
j

n−1∑
i=1
i, j

εic2
i

 −
n−1∑
j=1
j,i0

ε jc ja j

n−1∑
i=1

i, j,i,i0

εiciai


= εn+1

n∑
i=1

εic2
i +

(
εnc2

n + εi0c
2
i0

) n−1∑
i=1
i,i0

εia2
i +

1
2

n−1∑
i, j=1

i, j, i, j,i0

εiε j(aic j − a jci)2.

From (2.39), we rewrite (2.42)

f ′
2

i0 − 2mci0 f ′i0 + 2c f ′′i0 +
B

εi0

 n∑
i=1
i,i0

εic2
i


= 0.
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By solving the equation, we find

fi0 =



2c ln cos

√
−A

2c
xi0 + mci0 xi0 , i f A < 0

2c ln cosh

√
A

2c
xi0 + mci0 xi0 , i f A > 0 and

∣∣∣∣∣∣ f ′i0 − mci0
√

A

∣∣∣∣∣∣ < 1

2c ln sinh

√
A

2c
xi0 + mci0 xi0 , i f A > 0 and

∣∣∣∣∣∣ f ′i0 − mci0
√

A

∣∣∣∣∣∣ > 1

2c ln
∣∣∣xi0

∣∣∣ + mci0 xi0 , i f A = 0

(2.43)

with

A =
B

εi0

n∑
i=1
i,i0

εic2
i

− m2c2
i0 .

Moreover f ′i (xi) = ai, where ai are constants for i = 1, . . . , i0 − 1, i0 + 1, . . . , n − 1 and we rewrite (2.9)
again εn+1

n∑
i=1

εic2
i + εnc2

n

n−1∑
i=1
i,i0

εia2
i + εi0 f ′

2

i0

n∑
i=1
i,i0

εic2
i +

n−1∑
j=1
j,i0

ε ja2
j

n−1∑
i=1
i, j

εic2
i


−2εi0ci0 f ′i0

n−1∑
i=1
i,i0

εiciai−

n−1∑
j=1
j,i0

ε jc ja j

n−1∑
i=1

i, j,i,i0

εiciai


 f ′′n

+

εn+1εi0 + εi0

n−1∑
i=1
i,i0

εia2
i +

εi0

n∑
i=1
i,i0

εic2
i

 f ′
2

n + 2

εi0

n−1∑
i=1
i,i0

εiaici

 f ′n

 f ′′i0 = 0.

(2.44)

According to (2.41) and (2.44), we getεn+1 − 2c


n∑

i=1
i,i0

εic2
i

 f ′′n +

n−1∑
i=1
i,i0

εia2
i +


n∑

i=1
i,i0

εic2
i

 f ′
2

n + 2


n−1∑
i=1
i,i0

εiaici

 f ′n

 f ′′i0 = 0. (2.45)

Since f ′′i0 , 0, by substituting (2.39) into (2.45) and we obtain

f ′
2

n + 2m f ′n = 2c f ′′n −

εn+1 +
n−1∑
i=1
i,i0

εia2
i

n∑
i=1
i,i0

εic2
i

.
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When considered this equation with (2.26), then

c0 = −

εn+1 +
n−1∑
i=1
i,i0

εia2
i

n∑
i=1
i,i0

εic2
i

.

According to (2.39), we get

m2 + c0 =

−εn+1

n∑
i=1
i,i0

εic2
i − εnc2

n

n−1∑
i=1
i,i0

εia2
i −

 n−1∑
i=1
i,i0

εia2
i

n−1∑
i=1
i,i0

εic2
i −

 n−1∑
i=1
i,i0

εiciai


2 n∑

i=1
i,i0

εic2
i


2

Depending on the epsilones (-1 or +1) in the above equation, m2 + c0 can be positive, negative and
zero. With suitable translation, we get fi = 0 for i = 1, . . . , i0 − 1, i0 + 1, . . . , n − 1 and following the
equations

fi0 =



2c ln cos

√
−M
2c

xi0 , i f M < 0

2c ln cosh

√
M

2c
xi0 , i f M > 0 and

∣∣∣∣∣∣ f ′i0
√

M

∣∣∣∣∣∣ < 1

2c ln sinh

√
M

2c
xi0 , i f M > 0 and

∣∣∣∣∣∣ f ′i0
√

M

∣∣∣∣∣∣ > 1

2c ln
∣∣∣xi0

∣∣∣ , i f M = 0

(2.46)

and

fn =



− 2c ln cos
 √−N

2c
(c1x1 + · · · + cnxn)

 , i f N < 0

− 2c ln cosh
 √N

2c
(c1x1 + · · · + cnxn)

 , i f N > 0 and

∣∣∣∣∣∣ f ′n
√

N

∣∣∣∣∣∣ < 1

− 2c ln sinh
 √N

2c
(c1x1 + · · · + cnxn)

 , i f N > 0 and

∣∣∣∣∣∣ f ′n
√

N

∣∣∣∣∣∣ > 1

− 2c ln |c1x1 + · · · + cnxn| , i f N = 0

(2.47)

where

M = εi0εn+1

n∑
i=1
εic2

i

n∑
i=1
i,i0

εic2
i

, N = −
εn+1

n∑
i=1
i,i0

εic2
i

.

Therefore we complete the proof of the following main theorem.
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Main theorem. Mn is a non-degenerate minimal translation graph in semi-Euclidean space Rn+1
ν , if it

is congruent to a part of one of the following surfaces:

1. A non-degenerate hyperplane,
2. A hypersurface parameterized by

φ(x1, . . . , xn) = (x1, . . . , xn, F(x1, . . . , xn)), F(x1, . . . , xn) = fi0(xi0) + fn(u)

where u =
n∑

i=1
cixi, ci are constants, cn , 0, with the conditions in the Eq (2.4), for a unique i0,

1 ≤ i0 ≤ n − 1, such that fi0 and fn one of the previous forms in (2.46) and (2.47), respectively. In
additionally, fk(xk) = 0 for k , i0 and 1 ≤ k ≤ n − 1.

3. Conclusions

Semi-Euclidean spaces are important in applications of general relativity which is the explanation
of gravity in modern physics. In this study, we have a characterization of minimal translation graphs
which are generalization of minimal translation hypersurfaces in semi-Euclidean space. Also, we
obtain the main theorem by which we classify all non-degenerate minimal translation graphs.
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