AIMS Mathematics, 6(9): 10070-10091.
ATIMS Mathematics DOI:10.3934/math. 2021585
% : Received: 24 February 2021
o Accepted: 05 July 2021
http://www.aimspress.com/journal/Math Published: 07 July 2021

Research article

Pseudo almost periodic solutions for quaternion-valued high-order Hopfield
neural networks with time-varying delays and leakage delays on time scales

Xiaofang Meng and Yongkun Li"
Department of Mathematics, Yunnan University, Kunming, Yunnan 650091, China
* Correspondence: Email: yklie@ynu.edu.cn.

Abstract: This paper deals with a class of quaternion-valued high-order Hopfield neural networks
with time-varying delays and leakage delays on time scales. Based on the Banach fixed point theorem
and the theory of calculus on time scales, some sufficient conditions are obtained for the existence
and global exponential stability of pseudo almost periodic solutions for the considered networks. The
results of this paper are completely new. Finally, an example is presented to illustrate the effectiveness
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1. Introduction

Because high-order Hopfield neural networks have more extensive applications than Hopfield neural
networks, various dynamical behaviours of high-order Hopfield neural networks such as the existence
and stability of equilibrium points [1, 2], anti-periodic solutions [3], almost periodic solutions [4—6]
and pseudo almost periodic solutions [7] have been studied by many scholars.

On the one hand, due to the limited switching speed of neurons and amplifiers, time delays are
inevitably introduced into neural network models [8—12]. Among all kinds of time delays, the leakage
delay, that is, the time delay in the leakage term, has been proved to have a great influence on the
dynamics of the system. Therefore, it is significant to consider neural networks with time delays in
leakage terms [13—16].

On the other hand, both continuous-time and discrete-time neural networks have equally importance
in various applications. Therefore, it is necessary to consider both continuous time neural networks
and discrete time neural networks. Fortunately, the theory of time scale calculus [17] can unify the
study of continuous analysis and discrete analysis, so the study of neural network models on time scale
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can unify the study of continuous-time and discrete-time neural networks [18-21].

In addition, quaternion-valued neural networks, as an extension of real-valued neural networks
and complex-valued neural networks, have been extensively applied in many fields such as robotics,
satellite attitude control, computer graphics, ensemble control and so on [22-24]. Currently, the study
quaternion-valued neural networks have received much attention of many scholars.

Moreover, although non-autonomous neural networks are more general and practical than
autonomous neural networks, so far, there are still few results about the dynamic behavior of
non-autonomous quaternion-valued neural networks [25-29]. It is well known that periodicity, almost
periodicity and pseudo almost periodicity are very important dynamic behaviors of non-autonomous
systems. Besides, almost periodicity is more reasonable than periodicity. Also, pseudo almost
periodicity is more complex than almost periodicity [30,31]. Therefore, for non-autonomous neural
networks, pseudo almost periodic oscillation is a very important dynamics [32-37].

However, up to now, there has been no paper published on the pseudo almost periodic oscillation
of quaternion-valued high-order Hopfield neural networks. Besides, the pseudo almost periodic
oscillation of quaternion-valued neural networks with quaternion leakage coefficients on time scales
has not been reported. Consequently, it is necessary to study the pseudo almost periodic solutions of
quaternion-valued high-order Hopfield neural networks on time scales whose leakage coefficients are
also quaternions.

Motivated by the above statement, in this paper, we consider the following quaternion-valued high-
order Hopfield neural network with time-varying delays and leakage delays on time scales:

W0 = =ap Ot =00 + ) bpgOF (K1) + D g8y (xg(t = Tpg (1))

q=1 q=1
£ 2 D Tpahy(xg(t = Spqu (DMt = Dpu() + (D), t215, 1€T, (L1)
g=1 I=1
where p € {1,2,...,n} =: S, nis the number of neurons in layers; x,(f) denotes the activation of the pth

neuron at time #; a,(t) € Q represents the rate with the pth unit will reset its potential to the resting state
in isolation when disconnected from the network and external inputs at time f; b,,(t), c,,,(t) € Q are
the delay connection weights from neuron g to neuron p at time ¢, respectively; T,,(?) € Q denotes the
second-order connection weights of the neural network; f;, g,, h, : Q — Q are the activation functions
of signal transmission; u,(t) € Q is the external input on the pth unit at time 7; 17, denotes the leakage
delay at time ¢ and satisfies r — 1,(¢) € T; 7,4, 6, and ¥, are transmission delays at time ¢ and satisfy
t—Tp(t) €T, t=0,u(t) € Tand t — ,,(t) € Tfort € T.
The skew field of quaternions is denoted by

Q:={g= qR+iq’+qu+qu},

where ¢f, ¢!, q’, ¢¥ are real numbers, the three imaginary units i, j and k obey the Hamilton’s
multiplication rules:
ij=—ji=k, jk=-kj=i, ki=—-ik=j ==k =ijk=-1.
Throughout this paper, for x = xf + ix! + jx’ + kx¥X € Q, we denote £ = xf - x,
lIxllg = max {[x"|, |x'|, [x’, [x¥]}, and for x = (x1,%,,...,x,)" € Q", we denote ||xllg = mfgi{||xp||Q}-
pe
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Also, for convenience, we introduce the following notation:
a, =inf{d®(®)), a’ =supld®(®)), & =suplla,@)|.,
S0l @ =swlakol. 7} = sup o],
b;q = sup ”bpq(t)HQ’ C;q = sup ”Cpq(t)”Q’ T;ql = sup ”qul(t)”Q,
teT teT teT
nt = mag;{sup n,®}, T = maﬁ{sup T,,(D}, 6" = ma)fs{sup 5,
PE

€T s €T p.q.le teT

9" = max {supd,,(1)}, 6=max{y", 7,69}
PaIES " 4eT

The initial condition of system (1.1) is of the form
xp(s) = ¢p(s)’ x[A)(S) = lpp(s)9 s € [t() - 95 tO]T’

where ¢,y € C([to — 6, 10]1.Q), p € S.

Our main aim of this paper is to study the existence and stability of pseudo almost periodic solutions
of (1.1). The main contributions of this paper are listed as follows. Firstly, this is the first time to
consider quaternion-valued neural networks on time scales with all the coefficients are quaternions
except time delays. Secondly, this is the first paper to study the pseudo almost periodic solutions for
quaternion-valued high-order Hopfield neural networks with time-varying delays and leakage delays
on time scales. Finally, our method of this paper can be used to study pseudo almost periodic solutions
for other types of quaternion-valued neural networks on time scales.

This paper is organized as follows: In Section 2, we introduce some definitions, preliminary
lemmas. In Section 3, we establish some sufficient conditions for the existence and global exponential
stability of pseodo almost periodic solutions of system (1.1). In Section 4, we give an example to
demonstrate the feasibility of our results. This paper ends with a brief conclusion in Section 5.

2. Preliminaries

Definition 2.1. /38, 39] A time scale T is an arbitrary nonempty closed subset of the real set R with
the topology and ordering inherited from R. The forward and backward jump operators o,p : T — T,
and the forward graininess u : T — [0, 00) are defined, respectively, by

o®)=inf{seT,s>t}, p@) =sup{seT,s<t}, u@) =oc@ -t

The point t € T is called left-dense, left-scattered, right-dense or right-scattered if p(t) = t, p(t) <
t,o(t) = t or o(t) > t, respectively. Points that are right-dense and left-dense at the same time are
called dense. If T has a left-scattered maximum m, define T = T — {m},; otherwise, set T = T. If T has
a right-scattered maximum m, define T, = T — {m}; otherwise, set T, = T.

Definition 2.2. /38, 39] Assume that f : T — R is a function and let t € T*. Then we define f2(t) to
be the number (provided it exists) with the property that given any & > 0, there is a neighborhood U of
t(i.e, U=(t—0,t+9)NTfor somed > 0) such that

[f(a(®) = f(s) = fAO @) = 5)| < elo(t) - 5]

for all s € U. We call fA(t) the delta (or Hilger) derivative of f at t. Moreover, we say that f is delta
(or Hilger) differentiable (or in short: differentiable) on T provided f*(t) exists for all t € T*. The
function 2 : T¥ — R is then called the (delta) derivative of f on T*.
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The derivative of function f(¢) = fR(@) +if (1) + jf/ () + kfX(@) : T — Qs given by
A0 = (0 + (DO + jUDAO + k(% ),
where X, fI, f/, fK . T - R.
Definition 2.3. /38, 39] A function p : T — R is said to be regressive provided
1+u@®p)#0, VYreT
The set of all positive regressive and rd-continuous functions p : T — R are denoted by
R={peR:1+ult)pt)y >0, VtreT}.

Definition 2.4. [38,39] If p € R*, then we define the exponential function by

ey(t,s) = exp (f fﬂ(T)(p(T))AT), Vit,seT,

with the cylinder transformation

f ( ) _{ LOg(;l-l-hZ)’ lfh i O,
L ith = 0.

2

Definition 2.5. [38,39] Let p,q : T — R be two regressive functions, define

p®q=p+q+upq, ©OSp=- s, POq=po(©g).

1+up
Lemma 2.1. [38,39] Let p € R, and t, s,r € T. Then

(1) eo(t,s) = L and ey(t, 1) = 1;
(i) ey(t, 5) = 5 = eap(s, 1)
(ii1) e,(t, 8)ey(s,r) = e,(t,r);

(iv) (egp(t, $)* = (©p)(D)ey(t, 5).

Definition 2.6. [18] A time scale T is called an almost periodic time scale if
M:={reR:r+7€T,VteT}+{0}.

We denote by BC(T, Q") the set of all bounded continuous functions from T to Q". Similar to
Definition in [18], we give the following definition.

Definition 2.7. Let T be an almost periodic time scale. A function f € BC(T,Q") is called an almost
periodic on T if the e-translation set of

T(e.f)={rell:||ft+1)- f@)|, <& YteT)

is a relatively dense set in R for all € > O, that is, for any given & > 0, there exists a constant l(g) > 0
such that each interval of length l(€) contains at least one 1(¢) € T (g, f) such that

|lft+1) = f@0)||, <& VieT.
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We denote by AP(T, Q") the set of all almost periodic functions defined on T.
Define the class of functions PAPy(T, Q") as follows:

PAPy(T,Q") = { f € BC(T,Q") : f is A — measurable such that

lim — f | #@ll,ar = 0. where r e 7).

Similar to Definition in [35], we give the following definition.

Definition 2.8. A function f € BC(T,Q") is called pseudo almost periodic if f = g + h, where g €
AP(T,Q") and h € PAPy(T,Q").

We denote by PAP(T, Q") the set of all pseudo almost periodic functions from T to Q".
Similar to the proofs in [21], it is not difficult to prove the following lemmas.

Lemma 2.2. If f,g € PAP(T,Q"), then f + g, fg € PAP(T,Q"), if f € PAP(T,Q"), g € AP(T,Q"),
then fg € PAP(T,Q").

Lemma 2.3. If f € C(Q, Q) satisfies the Lipschitcz condition, ¢ € PAP(T,Q) and T € C'(T,II) N
AP(T,R*) with in{{l —74(t)} > 0, then f(¢(- — 7(-))) € PAP(T, Q).
te

Throughout this paper, we assume that the following conditions hold:
(H)) af € AP(T,R*) with —al € R*, a, € AP(T,Q), bpg, Cpg» Tpgis tp € PAP(T, Q), 11, Tpg Spgts O pgt €
C'(T,TI) N AP(T,R*) with inf{l - n5(®)} > 0,inf {1 — 2 (O} > 0, inf {1 — 62 ()} > 0, inf {1 —
P 1T rq 1€T Pl 1€T
pql(t)} > 0, where p,q,l € S

(H») There exist positive constants Lg LS, LZ, M” such that for any x, y € Q,

1 = £, < 240 = 24l = Liflx = 5]l

”hq(x) hq(y)”Q 5 Lh“x y”Q’ ||h‘1(x)||Q S Mh
and f,(0) = gq(O) = h,(0) =0, where g € S.
(H3) max{ o (1 + ) } =: p < 1, where

n hyh hoagh
asnh + +Zb;qu cpqL§+ZZT;q,ML + Lim)).
g=1 g=1 I=1

3. Main results

LetE = {¢ = (¢1,¢2.. ..., |9, ¢" € PAP(T,Q")} with the norm
o 6%}

where ||q§||0 = SZIEJPHP rlljlgsx {H(/)p“w} and ||¢p||oo = Stlelpﬂp ||¢p(t)||Q, then E is a Banach space.

o]l = max{
¢ E peS
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Set ¢° = (¢0, 9%, ..., %), where

¢(1) = f e_(t,o(s)uy(s)ds, t€T, peS

and « is a constant satisfying « > ||¢O||E.

Lemma 3.1. Let (H,) hold, then every bounded solution x = (x,%a,...,X,)" of system (1.1) is a
solution of the following system:

S

xp(t) = I e_q(t, O'(S))[GI;(S) xlA,(u)Au + a,(8)x,(s — n,(5))

[+5) S—T]p(S)

3 DD (5 (5) + Y €pgl)84(%y(5 = Tpg(5))
g=1 q=1

D Togl()g(g(s = Opqu(DuCxi(s = Bpi(s)) + () |As, 3.1)

g=1 I=1
where p € S, t € T, and vice versa.

Proof. On the one hand, if x = (x;, X, ..., x,)T is a solution of (3.1), then by A-differentiate both sides
of (3.1), we see that x = (x|, X2, ..., x,) is also a solution of (1.1).
On the other hand, let x be a bounded solution of (1.1), then for p € S,

t

xXo(1) = —as@)x,(0) + ak(r) o X5($)As + a,(0)x,(t — 7,(1))

+ 2 bpfyeg(0) + D g8yt = Tpy(1)))
g=1 g=1

" Tog Oyt = SpquOhiCxt = Opg(1) + (), 1€T. (3.2)

g=1 I=1
Multiply both sides of (3.2) by e_ag(to, o (1)), we can get

[xp(De_ax (10, nl*

= e_g(1, Cf(t))[af.f(t) ()X,A,(S)AS + a,()x,(1 — (1))
t-np(t

+ 3 by 0) + Y €pg0)g4(xyt = Tpg(1))
g=1 g=1

D Tpgr(Dhy Gyt = Spu(Ou(xt = Fpgr(0)) + (1), (3.3)

g=1 I=1

where t > 1, ty € T. Integrating both sides of (3.3) from ¢, to ¢, we obtain

)

xp(H) = e_al,g(t,to)xp(to)+fe_allg(t,a(s))[allf(s) | xf,(u)Au

1o s=1p(s)
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(%) (s = () + Y Dpg()Fy(Xy(8) + ) €pg()84(g(5 = Tpg(5))
q=1 q=1

D T hgigls = Spa(DIGi(s = D) + 4,() A

g=1 I=1
Letting ) — —oo, then we obtain that (1.1) holds. The proof is complete. O

Theorem 3.1. Let (H,)-(H3) hold. Then system (1.1) has a unique pseudo almost periodic solution in
E'={¢|¢cEllg - ¢l < 15).
Proof. For any ¢ € E, we define a mapping ® : E — PAP(T, Q") by setting

(¢1,¢2, .. .,(]5,1) 4 (X?,X?, .. .,Xﬁ),

where

)

X = f e_a,R,a,a(s))[a’;(s) L GAAU+ ay ()8 (s — 1y()

) s=1p(s)

+ 2 Do)y @) + D og(5)84(By(s = Tpgl(5)))
g=1 q=1

0D  Toat(hg(@g(s = Spg(IDulpils = Dpg(s))) + up(s>]As, pesS.

g=1 I=1

First, we will prove that ® maps E into itself. To this end, let

Fo(s) = ay(s) B AU+ 2, () (s = 17p(5)) + Z bpg(8) fo(q(s))
gq=1

s=1p(s)

3 Cpa$)84(bg(s = Tpg() + DY Tpar(Vhg(@y(s = 5pgi(s))
g=1

g=1 I=1

Xhl(¢l(s - 0pql(s))) + up(s)’ JZS S.

Then, by Lemmas 2.2 and 2.3, we find that #,(s) € PAP(T, Q). So, for all p € S, we can set F,(s) =

F,(s) + F,(s), where ¥ € AP(T,Q) and ¥, € PAPy(T, Q). We shall show that x) € PAP(T, Q), that

¢

is, x,, can be expressed as

X = f e_u(t, ()T, ()As + f e_gx(t, o (s))F ) ()As

00 —

= QO+Q)0D, peS,

where Q) € AP(T, Q) and Q) € PAP(T, Q).
In fact, since a’lf € AP(T,R") and Tpl € AP(T, Q), for every & > 0, there exists [ > 0 such that every
interval of length / contains a number 7 € II satisfying

|a§(t +7)— a’;(t)| <eg, ||77p1(t +71)— ﬁ(t)”Q <g pesS, teT.
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Consequently, we have

70+ m - 7o,

” f et +7,0(s + T)F, (s + T)As — f e_as(t, () F, (5)As

Q

t

3
” f e—aﬁ(f +1,0(s + T))Tpl(s + T)As — f e_aﬁ(t +1,0(s + T))?'pl(s)As

IA

Q

1

+'| f e_uzpe(t +71,0(s + ‘z’))?’fp1 ($)As — f e_aﬁ(t, O'(S))TPI(S)AS

—00

Q

IA

I |e_a§(t +1,0(s+ T))|||7:pl(s +7)— ﬁ(s)||QAs

+ f le_an(t +7,0°(s + 1) = e_as (1, 0 (5))| ||, ()| , A
= L

a, (a, )2

g, pes,

which implies that Q) € AP(T,Q). Then, we will prove that Q) € PAPy(T,Q). In addition, from
TI? € PAP\(T,Q), r € T, we have

f e_g(t, o (5))F, ()As

1 '
lim f we_ag(l‘,o'(s))( f r||¢,?(s>||QAs)At, PES,

r—+00

At
Q

Il

I»—-
=
Q=
N\l <

IA

which implies that Q?, € PAPy(T, Q). Therefore, xﬁ € PAP(T,Q), that is, ® maps E into PAP(T,Q").
Next, we will show that @ is a self-mapping from E* to E*. In fact, for each ¢ € E*, we have

[@a)@) = ¢° )],

f e_(t,07(5))

3 by @g(9) + D Cpy(5)24(By(s = Tpg(5)
q=1 g=1

S

ak(s) FEWAU + ()P = 1p(5))

s=1p(s)

= max {
peS

+ Z Z qul(s)hq(¢q(s - 5pql(s)))hl(¢l(s - 0pql(s)))]AS

g=1 I=1 Q}

max | f e o ]amillapll. + Il ot - msnll,

peS

IA

+ Z ”bpq(s)”QLg”‘bq(S)”Q + Z ||cm(s)||QL§”¢q(s - qu(s))”Q
q=1 g=1
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+ ||qu1(s)||QMth||¢q(s ql(s)))”Q]As}
qg=1 I=1
< max{ ;[ iy + ZquLﬁ ;CMLZ
+ T;qthLh]}”‘p”E'
g=1 I=1
Thus, we have
loe - ]|,
< rgg}g{a a,, + +ZquL§ Zcpqui+ZZT§sz’“Lh]}II¢IIE- (34)
q=1 g=1 I=1

On the other hand, we have

A
||[q)¢ - ¢"] ”0
!

= maX{Sllp Fp(t) — al(t) f e_ar(t, 0 ())F,(s)As }

peS et oo P 0
o AEA WA D WL WILALE

" q=1 q=1 g=1 I=1

at n n
+a—’j[a;n; vah+ Y B+ Z DY Z e M) Lh]}” il s
b q=1 q=1 g=1 I=1

Noting the fact that for ¢ € E*, we have

Kp < K
-p l-p

lplle < Nlg°llz + 1lgp — ¢°lle < & + 1
It follows from (3.4)-(3.5), and (H3) that

loo -l < 1=

thus, we have ®¢ € E*.
Finally, we will show that @ is a contraction mapping in E*. For any ¢, ¥ € E*, we can get

= maX
peS

‘ f e (t, a(s))(a (s) ¢ () = ¥, ()] Au

s=11p(s)
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() Bp(s = 1p(5) = (s = Mp(N] + D B fy(bg() = fyWg(s))]
g=1
+ Z Cpa(9)[ (D45 = Tpgl)) = W5 = Tpg(s)))]

* Z Z pat( (B (s = Spu( i = Fpr(5)))

g=1 I=1
—hg(9g(s = 6 pq(HNhi(i(s — ﬁpqz(S)))])As Q}
max {I e (t, a(s))(a;n;”(bf, — b+ ||£z,,(s)||Q||¢p(s — ()

peS

IA

(s = mpDlg + D raoLalea) = vl + 3 len @l LS
g=1 g=1

X[[64(s = Tpg(5) = g5 = Tpg(Mlg + D D I Tma(o,

g=1 I=1

X[|[g(Bq(s = Spu(M|JIrbiCs = Bpau(5)) = uWi(s = Fpu(I),
a5 = pa) = hWrs = S| [uts = Do ] s}

S 4
max {— [pfwa +prqu chmLf}

+30  T(titt+ ) o - ol

g=1 I=1
It follows from (3.6) that

IA

log - @y,
< r;lé%l;({ [a np+a +Zb L§+;cpqL§

2wt )| Mo - il = ma (22 2o - ol

g=1 I=1

On the other hand, we can derive that

106 - 00|, < max (=, + =2, Ho - ]
By (3.7), (3.8) and (H3), we have

|©¢ — yl|, < ¢ — ¥,

Q
S "c+

(3.6)

(3.7)

(3.8)

in view of the definition of p, which implies that ® is a contraction mapping. Therefore, @ has a
unique fixed point in E*, that is, (1.1) has a unique pseudo almost periodic solution in E*. The proof is

complete.

O

AIMS Mathematics Volume 6, Issue 9, 10070-10091.



10080

Definition 3.1. Let x = (x,X2,...,x,)" be a solution of (1.1) with the initial value
¢ = (¢1,0,...,0.)". If there exist positive constants A > 0 and M > 0 such that every solution
Y=Y ) of (1.1) with initial value = (Y1, ¥, ..., ¥,)T satisfies

b = x|, <

Yt e (ty, +00)T,

@ = x|, = max {[lyt) = x®)| .- [0 = D1 .},
v = oll, = max{ sup )=y sup lwcs) - g1’

€[to—0,t0]T s€[to—0.t0]T

where

o)
then the solution x is said to be globally exponentially stable.

Theorem 3.2. Assume that (H,)—(H3) hold, then system (1.1) has a unique pseudo almost periodic
solution that is globally exponentially stable.

Proof. From Theorem 3.1, we see that system (1.1) has a pseudo almost periodic solution
x(t) = (x1(8), x2(0),...,x,(t))T with initial value ¢(s) = (¢(s),P2(5),...,d.(s))T. Suppose that
y@©) = 1), y2(),...,y.()T is an arbitrary solution of system (1.1) with initial value

W(s) = (Wi(s), Ya(s),
S Un(s)T and let z(f) = y(¢) — x(¢), then we have

2,0 = —a, O]y (1) = x,(0] + ay (1) [y5(s) — x5($)]As

[_np(l)

+ap (DYt = 1y (D) = 2t = 1)) + D bpgOLfs 0 (1)) = Fyrg(0)]
q=1
+ Z Cpq(t)[gq(yq(t - qu(t))) - gq(xq(t - qu(l)))]

* Z Z pat (D[t = S ODIG(E = B (1))

g=1 I=1

—hy(x4(t = SpaON(xi(t = Fpu(D))], peS, teT. (3.9)

For p € S, let ®, and ¥, be defined as follows:
O, = a,—-w-exp(w supu(s))[a;n; exp(wr}) + & exp (wn’)
seT

+ Z b;qu; cpqL§ exp (wT Z Z T;q, Mth exp (cué;q,)
q= = g=1 I=1

+Lth exp (w? qz))]
and

Y, (w) = a,-w-(a,exp(w squ,u(s))+a )| a,n, exp(wn,)
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+a, exp (wr,) + Z b L+ > ch LEexp(wty,

Pa—q Pa—q

+ Z Z T3 (MIL) exp (w5?,) + LiM] exp (wﬁ;ql))],

g=1 I=1

By (H3), we have
0,0)=a,-E,>0
and
¥,0) =a, - (a, +a,)=, > 0.

Based on the continuities of functions ®, and ¥, on [0, +o0), and the fact that ©,(w), ¥ ,(w) — —oo,
as w — +oo, there exist {,,&, > 0 such that ©,(£,) = ¥,(£,) = 0 and O,(w) > 0 for w € (0,,),
¥,(w) > 0 for w € (0,¢,). Take y = min {¢p. &), we have ©,(y) = 0, ¥,(y) = 0. So, we can choose a

positive constant 0 < A < min {y, ml;l{ }} with A € R* such that
0, >0, ¥Y,1)>0, pes,
which implies that

exp (Asup ey u(s))
a, — A

+ > bh Ly + Z ¢t Lsexp (ATh,) Z Z » (ML} exp (457,
g=1 g=1

g=1 I=1

[a; 1, exp(dn,) + &, exp (An;)

+Lth exp (19 q,))]

and

(s s exp (A5up,r 1(s))

—— )[a;n; exp(y’) + & exp (A7)
P

n Z bt L + Z et Lsexp (ATh,) Z Z . M’;L? exp (167,
g=1 g=1

g=1 I=1

+Lth exp (19 q,))] , pPeS.

Let M = meg({_—‘_’} then by (H3), we have M > 1. Thus,
peS 7

1 ] {exp (Asup,r u(s))
— — min
a, — A

mir |75 expCn;) + ajy exp (1)
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+ Z bt L + Z et L exp (ATh) Z Z T} (MIL! exp (a5},)
q=1 q=1

g=1 I=1

+L2Mlh exp (/lﬂ;ql))]} <0
Since eq,(t, ty) > 1 for t € [ty — 6, 1y]r, it is obvious that, for any € > 0,

[z, < (llw = glly + &)

and

lofl, < (= ¢lls + &)ecat. 10)
< M(lly = ¢llg + e)eca(t, ty), Vtel[ty—06,1]r.

We claim that
20|, < Ml = Bllo + &)ear(t. 10), Y1 € (19, +00)y. (3.10)

If (3.10) is not true, then there must be some #; € (fy, +00)7 such that

{

Hence, there must exist a constant £ > 1 such that

Z(fl)”1 > M(lly — ¢llg + €)eca(ts, 1o),
20|, < My = Bllo + &)eaa(t.to), 1 € (to, 1)1

{ 2t)|, = PM(y = gl + )eca(t, 1), 31D
Z(f)”1 < PM(lly — ¢llg + e)eca(t, to), 1 € (to, t1)r. '
Multiplying both sides of (3.9) by €4t (ty, 0(¢)) and integrating over [ty, t]r, we get
(1) = et 10)zp(t0) + f e_a(t, a(s»(a,";(s) NEAOEEADIY
fo s=11p($)
+&p(s)[yp(s - Up(S)) - )Cp(S - Up(S))] + Z bpq(s)[fq(yq(s))
q=1
iGN+ D Crg(5)8g0rg(5 = Tpg()) = 84((Xy(s = Tpg())]
g=1
" Tog() g Qgls = Spgr(SDI(I(s = Fpgr(5)))
g=1 I=1
—hy(x4(s = 6pgr(s)))huxi(s — 19pqz(S)))])AS- (3.12)

In view of (3.12) and M > 1, we have
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IA

IA

IA

S

max {
pes $=71p(5)

+p(5)[yp(s = 1p(5)) = Xp(s = Mp(N] + D g fy(5))
gq=1

n

~ (D] + D Cng()[8g(g(s = Tpgls) = &g(y(5 = Tpg())]

q=1

0 Tty g(s = Opar(mii(s = B pi(s)

g=1 I=1
J

g5 = By (IS = D SDAs
max {e_ 01,100 + PMecattr, 1)1 = ¢l +2)

X f e—aﬁ@l(tl’o-(s))[a; f e, whu +a,ea(o(s), s —1m,(s))
o S"]p(s)

+ Z b;;qu;e/l(O'(S) s) + Z cr Liea(o(s), s = 7p4(s))

g=1

3 ST (ML), 5 = Sp(s) + LiMPe(r(s) s - Bpat(s))) A5}

g=1 I=1

max {e_alg(ﬁ 10)||ep(to)||, + PMecatr, 1)y = ¢lli + &)
3
x f e-ayea(t, (5D exp A0, + sup(s)]
1o NS

+a, exp [A(77, + sup u(s)] + Z b;ng exp (A sup u(s))

g=1 seT

+ZcpqL§ exp [A(T, +sup u(s)] + ZZ (ML

g=1 I=1

xexp (67, + supu(s)] + LyM] exp [0}, + sup u(s)]) s

e—aﬁea/l(fl 1)

ma {PMesa(1, ) - 9l + o) =

3l
+ f e_yron(t1, 0°(s))
to

x exp (A sup ﬂ(S))[a;n; exp (n) + &) exp (An})

seT
+ Z b;qL{; cpng exp (/lrpq) + Z Z T;q, Mth exp (/16;(]1)
g=1 g=1 [=1

+Lth exp (/119+q,))]As}}

e (11, 10)2,(t0) + f e_a;;m,a(s))(aﬁ(s) [y - x3w))Au
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<
<
and
@l =
<
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e—aﬁea/l(tl’ tO) 1 - e—alpe@/l(tl 4 tO)
+
M a,—A4

ma Mt 1)~ ol + 2){

x exp (A sup /J(s))[a;n; exp (A1) + &, exp (A7) + Z bl L)

seT

+ Z et LEexp (ATh,) + Z Z T} (MIL! exp (a5},)

g=1 =1

+L M exp (w;q,))]}}

1 A
Thes {PMeeﬂ(fl, to)(lly — ¢l + 8){(M _ exp (Asup,er u(s))

al‘,—/l

X[a;n; exp (An,) + a, exp (Any,) + Z b;qu; ¢, Lsexp (AT,
g=1 =1

+ Z Z T, (MILY exp (48,) + LiM] exp (19 q,))])
qg=1 I=1

exp (4 sup u(s))

seT

[;—/l

+ > bi L+ Z ¢t LEexp (ATh,) Z Z T (MIL] exp (457,
g=1 g=1

g=1 I=1

Xe_ygonlti,10) + amy exp (An}) + &) exp ()

+Lth exp (A q,))]}}
PMeca(t1, 1)l — llg + €)

n,}gg{HZﬁ(ﬁ)HQ}
max {ae_(01,0)(10 = ¢l + ) + PMesa (. 0)(1 = ¢l +2)

3l
Ja [ exotsnms+agendro.n-mw)
t1-mp(t1)

+ Z b;ngea(O'(ﬁ), )+ Z cr Lie(o(t), ti = Tpy(th))

g=1

+ Z Z T;ql Mth@A(O'(fl), t = Opq(t))) + LZMlheﬂ(o-(tl), t — ﬂpql(tl)))]

g=1 =1

+a, PMeca(t1, to)(Ily — Bl + S)f e_area(t1, 0(s))

X[a; fs ea(o(u), WAu + aye (o (s), s — 1,(s))
s=1p(s)
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n

+ Z br Lleo(s),s) + Z cr Lser(T(s), s = Tpy(s))

q=1

+ Z Z T;ql Mtheﬂ(O'(s), s — Op(s)) + LZMlhe)(O'(s), s — 19pql(S)))]AS}

qg=1 I=1

max {ae_g(01,0)(10 = &l + ) + PMesa(tr.0)(1 = bl +2)

IA

x[a;np exp (An,) + a, exp (An,) + Z bl LI+ Z c, L5 exp(Ar,,
q_

+ Z Z T} (MEL! exp (a5},,) + LM exp (w;ql))]
g=1 I=1
1]

x[l +aexpsupi(s) [ e_ppan(tn, O'(S))As]}

seT fo
exp(A sup, ey (5))
a; —-A

IA

1
max {PMeai(t. )10 - ol + )| 37 -
x[a;n; exp (An,) + a, exp (An,) + Z bl LI+ Z c, L5 exp (AT,

g=1 g=1

+ Z Z T} (MIL! exp (a5},,) + LM exp (Aﬁ;ql))]e_ag@ﬂ(zl, f0)

g=1 =1
.\ (1 .\ a,, exp(A sup cr u(s))
a; -4

+ Z bt LY + Z et Lsexp (ATh,) + Z Z . M’;L? exp (167,
:1 =

g=1 I=1

)[a;n;exp(ﬂn;)4—&;exp(ﬂn;)

+Lth exp (19 ql))]}}
< PMeca(tr, to)(lly — ¢lly + &).

The above two inequalities imply that
[z, < PMeca(tr, 1)1y = blls + £),
which contradicts the first equation of (3.11). Therefore, (3.10) holds. Letting € — 0* leads to
lz@)|, < Meaa(t, to)llyr = pllo, V1 € (9, +00)r.

Hence, the pseudo almost periodic solution of system (1.1) is globally exponentially stable. The proof
is complete. O
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4. Illustrative example

Example 4.1. In system (1.1), let n = 2,ty = 0 and take

1 1 1 1
fax) = 75 sin(x + x] + x5) + i Sin X, + j7g Sin x) + ko sin x5,

1 1 1 1
2% = 55 sin xh + iss sin(x) + x}) + jgg sin x5+ kss sin(x) + x5),

1 1 1 1
hy(x,) = 30 sinxfj + i% sin x(ll + jg sin x; + kg sin(x; + x(’;),

ai(f) = 0.4 + 0.1 cos V2t + 0.2i cos 27 + (0.2 — 0.05 cos 3¢)j + 0.1k sin V21,
a>(t) = 0.6 — 0.1 sin V3t +0.3isin V2t + 0.2 sin V31 + 0.25k cos 21,
b1 (1) = bia(7) = 0.2 cos V31 + 0.2icos 27 + 0.4 sin V2t + 0.3k sin 21,
by (1) = by (£) = 0.4sin 21 + 0.2 cos 3¢ + 0.5 sin V37 + 0.5k sin V21,
c11(®) = c12(t) = 0.5 sin V2t +0.5isint + 0.8jcost + 0.6k cos 2t,

1
ex1(f) = exn(t) = 0.8 oS+ —— +isin2r + 0.5 sint + 0.9 cos V3,

+ 12
Ti11(0) = Tipa(t) = 0.4sin V21 + 0.3isinz + 0.5 sin V3¢ + 0.2k cos V2z,
Tio1() = Tino(t) = 1.2sin7 + 1.5icos t + 0.7j cos V2t + kcost,
To11(t) = Tapa(2) = 0.5 cos 2 + 0.8i sin 7 + 0.6,/ sin V2t + 0.7k sin V2z,
T21(t) = Ta(t) = 2cos2t + 1.6icost + 0.9 cos 2t + k sin 2¢,
up(t) = 0.2(sin V3r+ ™) + 0.4icos 2r + 0.3 cos V2r +0.3ksin V3r,

ur() = 0.3(cos V2t + e ") + 0.4 sin V2t + 0.35jsin 2t + 0.2k cos V3t.
If T =R, we take

7p(1) = 0.1]sin2t],  Tpy(t) = 0.2/ costl,  Spg(t) = 9pqu(t) = 0.3]sin 24].

If T =7Z, we take

n,(1) = 2|cos@2nt)l, T,,(t) = 3|sinnt], O,u(t) = Fpu(t) = 2| sin(2m1)|.
By a simple calculation, we have

1 1 1 1
Lf =—, L8 = —, Lh — Lh =, Mh — Mh = —,
T " 50 a7 00 a 1720

a; =04, a;=05 a =05 al=07 a =02 a =03,
bi =b, =04, bl =b,=05 ¢ =c,=08 i =c,=1,

T1+11 = T1+12 = 0.5, T1+21 = T1+22 = 1.5, T;n = T;IZ = 0.8, T;21 = ngz =2.

AIMS Mathematics Volume 6, Issue 9, 10070-10091.
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When T = R, we have

0.463

n;; =01, 7,,=02, & =03, &,=0322, &,

and

= ai\_ & a\_
max ) —, (1 +—_):1, —, (1+—_)E2
a, a, a, a,

= max {0.805, 0.7245,0.926,0.6482} = 0.926 = p < 1.

When T = Z, we have

and

=) + =)
= aj\. =2 ar N\,

max{—_ ) (1 + __):'1 > T (1 + —_)ﬁz
a, a, a, a,

= max {0.68,0.34,0.786,0.5502} = 0.786 = p < 1.

Hence, whether T = R or T = Z, all the conditions of Theorems 3.1 and 3.2 are satisfied. Consequently,
we know that system (1.1) has a pseudo almost periodic solution, which is globally exponentially stable.
Simulated by Matlab, when T = R and T = Z, Figures I and 2 show the time responses of the variables
of system (1.1). Figure 1 has initial values

(R0), XX 0)" = (-0.5,-0.1)7,(0.5,0.3)",(0.1,-0.2)",
(x1(0), x£(0))" = (-0.2,-0.5)",(~0.3,0.1)", (0.4,0.2)",
(x1(0), xJ(0))" = (-0.1,0.1),(0.3,-0.3)", (0.5, -0.5)",
(xX(0), xK(0))" = (=0.25,0.3)", (~0.5,0.5)", (-0.15,0.1)" .
Figure 2 has initial values
(R0), £0)" = 0.1,-0.2)",(0.2,-0.3)", (0.4, -0.5)",

(1 (0), x4(0))" = (0.5,-0.4)7,(-0.3,-0.1)",(0.2,0.35)",
(x1(0), xJ(0))" = (-0.5,0.1),(-0.1,0.3)",(-0.3,0.5)",
(xX(0), xK(0))" = (0.05,-0.2)", (-0.4,-0.5)",(0.25,0.5)".
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5. Conclusions

In this paper, we have established the existence and global exponential stability of pseudo almost
periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays
and leakage delays on time scales. The results of this paper are essentially new. In addition, we expect
to extend this work to study other types of quaternion-valued neural networks on time scales.
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