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1. Introduction and position of problem

The study of nonlinear wave processes in real media with dispersion, despite the significant progress
in this area in recent years, for example, [1–3] and numerous references in these works are still relevant.
This, in particular, concerns the dynamics of oscillations in cases where high-energy particle fluxes
occur in the medium, which significantly change such parameters of propagating wave structures, such
as their phase velocity, amplitude and characteristic length. In recent and earlier years, a fairly large
number of works have been devoted to studies of this kind of relativistic effects (see [12–14]).

Recently, the great interest on the KP equation has led to the construction and the study of many
extensions to the KP equation . These new extended models propelled greatly the research that directly
resulted in many promising findings and gave an insight into some novel physical features of scientific
and engineering applications. Moreover, lump solutions, and interaction solutions between lump waves
and solitons, have attracted a great amount of attentions aiming to make more progress in solitary
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waves theory. Lump solutions, have been widely studied by researchers for their significant features in
physics and many other nonlinear fields [18–20].

Let u = u(x, y, t), (x, y, t) ∈ R3 and α ≥ 4. We consider the initial value problem for the generalized
Kadomtsev-Petviashvili I equation,{

∂tu + |Dx|
α∂xu + ∂−1

x ∂
2
yu + u∂xu = 0

u(x, y, 0) = f (x, y).
(1.1)

with
Dα

x u(x, y, t) =
1

(2π)
3
2

∫
R3
|ξ|αFu(ξ, µ, τ)eixξ+iyµ+itτdξdµdτ

This equation belongs to the class of Kadomtsev-Petviashvili equations, which are models for the
propagation of long dispersive nonlinear waves which are essentially unidirectional and have weak
transverse effects. Due to the asymmetric nature of the equation with respect to the spatial derivatives,
it is natural to consider the Cauchy problem for (1.1) with initial data in the anisotropic Sobolev spaces
H s1,s2(R2), defined by the norm

‖u‖Hs1 ,s2 (R2) =

(∫
〈ξ〉2s1〈η〉2s2 |̂u(ξ, η)|2dξdη

)1/2

.

Many authors have investigated the Cauchy problem for Kadomtsev-Petviashvili equations as in, for
instance [4, 8, 16]. Yan et al. [17] established the local well-posedness of the Cauchy problem for the
Kadomtsev-Petviashvili I equation in anisotropic Sobolev spaces H s1,s2(R) with s1 > −

α−1
4 , s2 ≥ 0 with

α ≥ 4 and globally well-posed in H s1,0(R) with s1 > −
(α−1)(3α−4)

4(5α+3) if 4 ≤ α ≤ 5 also proved that the
Cauchy problem is globally well-posed in H s1,0(R) with s1 > −

α(3α−4)
4(5α+4) if α > 5. The authors in [8]

proposed the problem {
∂tu − ∂5

xu + ∂−1
x ∂

2
yu + u∂xu = 0,

u(x, y, 0) = u0(x, y),
(1.2)

and proved that it is globally well-posed for given data in an anisotropic Gevrey space
Gσ1,σ2(R2), σ1, σ2 ≥ 0, with respect to the norm

‖ f ‖Gσ1 ,σ2 (R2) =

(∫
R2

e2σ1 |ξ|e2σ2 |η|| f̂ (ξ, η)|2dξdη
)1/2

.

With initial data in anisotropic Gevrey space

Gσ1,σ2,κ
s1,s2

(R2) = Gσ1,σ2,κ
s1,s2

, σ1, σ2 ≥ 0, s1, s2 ∈ R,

and κ > 1, we will consider the problem (1.1). The spaces Gσ1,σ2,κ
s1,s2 can be defined as the completion of

the Schwartz functions with respect to the norm

‖ f ‖Gσ1 ,σ2 ,κ
s1 ,s2 (R2) =

(∫
R2

e2σ1 |ξ|
1
κ e2σ2 |η|

1
κ
µ2(s1, s2)| f̂ (ξ, η)|2dξdη

)1/2

,

where
µ(s1, s2) = 〈ξ〉s1〈η〉s2 .
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In addition to the holomorphic extension property, Gevrey spaces satisfy the embeddings Gσ1,σ2
s1 ↪→

Gσ′1,σ
′
2

s′1
for s1, s′1 ∈ R and σ′i < σi where Gσ1,σ2,1

s1,0
= Gσ1,σ2

s1 , which follow from the corresponding
estimates

‖ f ‖
G
σ′1 ,σ

′
2

s′1

. ‖ f ‖Gσ1 ,σ2
s1

.

The main aim to consider initial data in these spaces is because of the Paley-Wiener Theorem.

Proposition 1.1. Let σ1 > 0,s ∈ R. Then f ∈ Gσ1
x (R) if and only if it is the restriction to the to the real

line of a function F which is holomorphic in the strip {x + iy ∈ C : |y| < σ}, and satisfies

sup
|y|<σ1

‖F(x + iy)‖Hs
x < ∞.

Notation

We will also need the full space time Fourier transform denoted by

f̂ (ξ, η, τ) =

∫
R3

f (x, y, t)e−i(xξ+yη+tτ) dxdydt.

In both cases, we will denote the corresponding inverse transform of a function

f = f (ξ, η) or f = f (ξ, η, τ) by F−1( f ).

To simplify the notation, we introduce some operators. We first introduce the operator Aσ1,σ2
κ , which

we define as
Aσ1,σ2
κ f = F−1

(
eσ1 |ξ|

1
κ eσ2 |η|

1
κ f̂

)
. (1.3)

Then, we may then define another useful operator

Nσ1,σ2
κ ( f ) = ∂x

[
(Aσ1,σ2

κ f )2 − Aσ1,σ2
κ ( f 2)

]
. (1.4)

For x ∈ Rn, we denote 〈x〉 = (1 + |x|2)1/2. Finally, we write a . b if there exists a constant C > 0 such
that a ≤ Cb, and a ∼ b if a . b . a. If the constant C depends on some quantity q, we denote this by
a .q b.

Function spaces

Since our proofs rely heavily on the theory developed by Yan et al., let us state the function spaces
they used explicitly, so that we can state their useful properties which we will exploit in our
modifications of their spaces. The main function spaces they used are the so-called anisotropic
Bourgain spaces,adapted to the generalized Kadomtsev-Petviashvili I, whose norm is given by

‖u‖Xs1 ,s2 ,b
=

(∫
R3
θ2(s1, s2, b)|û(ξ, η, τ)|2dξdηdτ

) 1
2

,

where
θ(s1, s2, b) = 〈ξ〉s1〈η〉s2〈τ + m(ξ, η)〉b,
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with m(ξ, η) = ξ|ξ|α +
η2

ξ
.

Furthermore, we will also need a hybrid of the anlytic Gevrey and anisotropic Bourgain spaces,
designated Xσ1,σ2,κ

s1,s2,b
(R3) and defined by the standard

‖u‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

=

(∫
R3

e2σ1 |ξ|
1
κ e2σ2 |η|

1
κ
θ2(s1, s2, b)|û(ξ, η, τ)|2dξdηdτ

) 1
2

,

It is well-known that these spaces satisfy the embedding

Xσ1,σ2,κ
s1,s2,b

↪→ C
(
R; Gσ1,σ2,κ

s1,s2
(R2)

)
.

Thus, solutions constructed in Xσ1,σ2,κ
s1,s2,b

belong to the natural solution space.
When considering local solutions, it is useful to consider localized versions of these spaces. For a

time interval I and a Banach space Y, we define the localized space Y(I) by the norm

‖u‖Y(I) = inf{‖v‖Y : v = u on I}.

2. Main results

The first result related to the short-term persistence of analyticity of solutions is given in the next
Theorem.

Theorem 2.1. Let s1 > −α−1
4 , s2 ≥ 0,α ≥ 4, σ1 ≥ 0, σ2 ≥ 0 and κ ≥ 1. Then for all initial data

f ∈ Gσ1,σ2,κ
s1,s2 and |ξ|−1 f̂ (ξ, µ) ∈ L2(R2), there exists δ = δ(‖ f ‖Gσ1 ,σ2 ,κ

s1 ,s2
) > 0 and a unique solution u

of (1.1) on the time interval [0, δ] such that

u ∈ C
(
[0, δ]; Gσ1,σ2,κ

s1,s2
(R2)

)
.

Moreover the solution depends continuously on the data f . In particular, the time of existence can be
chosen to satisfy

δ =
c0

(1 + ‖ f ‖Gσ1 ,σ2 ,κ
s1 ,s2

)γ
,

for some constants c0 > 0 and γ > 1. Moreover, the solution u satisfies

sup
t∈[0,δ]

‖u(t)‖Gσ1 ,σ2 ,κ
s1 ,s2

≤ 4‖ f ‖Gσ1 ,σ2 ,κ
s1 ,s2

.

The second main result concerns the evolution of the radius of analyticity for the x-direction is given
in the next Theorem. Here

Xσ1,0,1
s1,0,b

= Xσ1,0
s1,b

, s2, σ2 = 0 and κ = 1.

Theorem 2.2. Let σ1 > 0, s1 > −
α−1

4 , α = 4, 6, 8, ... and assume that f ∈ Gσ1,0
s1 , |ξ|−1 f̂ (ξ, µ) ∈ L2(R2).

Then the solution u given by Theorem 2.1 extends globally in time, and for any T > 0, we have

u ∈ C
(
[0,T ],Gσ1(T ),0

s1
(R2)

)
with σ1(T ) = min

{
σ1,CT−ρ

}
,

with ρ = 4
α−1 + ε for ε > 0 when α = 4 and ρ = 1 when α = 6, 8, 10, ... and the constant C is a positive.
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The method used here for proving lower bounds on the radius of analyticity was introduced in [15] in
the study of the non-periodic KdV equation. It was applied to the the higher order nonlinear dispersive
equation in [9] and the system of mKdV equation in [10].

Our last aim is to show the regularity of the solution in the time. A non-periodic function φ(x) is
the Gevrey class of order κ i.e, φ(x) ∈ Gκ, if there exists a constant C > 0 such that

|∂k
xφ(x)| ≤ Ck+1(k!)κ k = 0, 1, 2, . . . . (2.1)

Here we will show that for x, y ∈ R, for every t ∈ [0, δ] and j, l, n ∈ {0, 1, 2, . . . }, there exist C > 0 such
that,

|∂
j
t∂

l
x∂

n
yu(x, y, t)| ≤ C j+l+n+1( j!)(α+1)κ(l!)κ(n!)κ. (2.2)

i.e, u(·, ·, t) ∈ Gσ(R) ×Gσ(R) in x, y and u(x, y, ·) ∈ G(α+1)κ([0, δ]) in time variable.

Theorem 2.3. Let s1 > −
α−1

4 , s2 ≥ 0,α ≥ 4, σ1 ≥ 0, σ2 ≥ 0 and κ ≥ 1.
If f ∈ Gσ1,σ2,κ

s1,s2 then the solution
u ∈ C

(
[0, δ],Gσ1,σ2,κ

s1,s2

)
,

given by Theorem 2.1, belongs to the Gevrey class G(α+1)κ in time variable.

Corollary 2.4. Let σ1 > 0, s1 > −
α−1

4 , α = 4, 6, 8, .... If f ∈ Gσ1,0
s1 then the solution

u ∈ C
(
[0,T ],Gσ1(T ),0

s1
(R2)

)
,

given by Theorem 2.2, belongs to the Gevrey class G(α+1) in time variable.

The rest of the paper is organized as follows: In section 3, we present all the auxiliary estimates
that will be employed in the remaining sections. We prove Theorem 2.1 in subsection 4.1 using the
standard contraction method and Theorem 2.2 in subsection 4.2. Finally, in section 5, we prove G(α+1)

regularity in time.

3. Auxiliary estimates

To begin with, let us consider the related linear problem

∂tu + |Dx|
α∂xu + ∂−1

x ∂
2
yu = F,

u(0) = f .

By Duhamel’s principle the solution can be written as

u(t) = S (t) f −
1
2

∫ t

0
S (t − t′)F(t′)dt′, (3.1)

where
Ŝ (t) f (ξ, η) = eitm(ξ,η) f̂ (ξ, η).

We localize it in t by using a cut-off function satisfying ψ ∈ C∞0 (R), with ψ = 1 in [−1, 1] and suppψ ⊂
[−2, 2].
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We consider the operator Φ given by

Φ(u) = ψ(t)S (t) f −
ψδ(t)

2

∫ t

0
S (t − t′)

(
∂xu2(t′)

)
dt′, (3.2)

where ψδ(t) = ψ( t
δ
). To this operator, we apply the following estimates.

Lemma 3.1. (Linear estimate) Let s1, s2 ∈ R,−
1
2 < b′ ≤ 0 ≤ b ≤ b′ + 1, σ1 ≥ 0, σ2 ≥ 0, κ ≥ 1 and δ ∈

(0, 1). Then

‖ψ(t)S (t) f ‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

≤ C‖ f ‖Gσ1 ,σ2 ,κ
s1 ,s2

, (3.3)

∥∥∥∥∥∥ψδ(t)
∫ t

0
S (t − t′)F(x, y, t′)dt′

∥∥∥∥∥∥
Xσ1 ,σ2 ,κ

s1 ,s2 ,b

≤ Cδ1−b+b′‖F‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

′
. (3.4)

Proof. The proofs of (3.3) and (3.4) for σ1 = σ2 = 0 can be found in Lemma 2.1 of [17]. These
inequalities clearly remain valid for σ1, σ2 > 0, as one merely has to replace f by Aσ1,σ2

κ f , F by
Aσ1,σ2
κ F. �

The final preliminary fact we must state is the following bilinear estimate, which is Lemma 3.1
of [17].

Lemma 3.2. (Bilinear estimate in Bourgain space.)
Let s1 ≥ −

α−1
4 + 4αε, s2 ≥ 0, α ≥ 4, b = 1

2 + ε and b′ = −1
2 + 2ε. Then, we have

‖∂x(u1u2)‖Xs1 ,s2 ,b
′ . ‖u1‖Xs1 ,s2 ,b‖u2‖Xs1 ,s2 ,b .

To this result, we apply the following Lemma, which is a corollary of Lemma 3.2.

Lemma 3.3. (Bilinear estimate in Gevrey-Bourgain space.)
Let s1 > −

α−1
4 + 4αε, s2 ≥ 0, α ≥ 4, σ1 ≥ 0, σ2 ≥ 0, κ ≥ 1, b = 1

2 + ε and b′ = −1
2 + 2ε. Then, we have

‖∂x(u1u2)‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

′
. ‖u1‖Xσ1 ,σ2 ,κ

s1 ,s2 ,b
‖u2‖Xσ1 ,σ2 ,κ

s1 ,s2 ,b
.

Proof. It is not hard to see that

e2(σ1 |ξ|
1
κ +σ2 |η|

1
κ )

∣∣∣û1u2(ξ, η, τ)
∣∣∣2

= e2(σ1 |ξ|
1
κ +σ2 |η|

1
κ )

∣∣∣∣∣∫ û1(ξ − ξ1, η − η1, τ − τ1)û2(ξ1, η1, τ1) dξ1dη1dτ1

∣∣∣∣∣2
≤

∣∣∣∣∣∫ eσ1 |ξ−ξ1 |
1
κ +σ2 |η−η1 |

1
κ û1(ξ − ξ1, η − η1, τ − τ1)eσ1 |ξ1 |

1
κ +σ2 |η1 |

1
κ û2(ξ1, η1, τ1) dξ1dη1dτ1

∣∣∣∣∣2
=

∣∣∣∣ ̂Aσ1,σ2
κ uAσ1,σ2

κ v
∣∣∣∣2 .

By Lemma 3.2, we get

‖∂x(u1u2)‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

′
≤ ‖∂x(Aσ1,σ2

κ u1Aσ1,σ2
κ u2)‖Xs1 ,s2 ,b

′

. ‖Aσ1,σ2
κ u1‖Xs1 ,s2 ,b‖Aσ1,σ2

κ v‖Xs1 ,s2 ,b

= ‖u1‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b
‖u2‖Xσ1 ,σ2 ,κ

s1 ,s2 ,b
′
.

�
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4. Proof of main results regarding the existence

4.1. Local well-posedness in an anisotropic Gevrey space

The above Lemmas will be used without somtimes mention to prove Theorem 2.1.

Lemma 4.1. Let s1 > −
α−1

4 + 4αε, s2 ≥ 0, α ≥ 4, σ1 ≥ 0, σ2 ≥ 0, κ ≥ 1, b = 1
2 + ε, b′ = −1

2 + 2ε and 0 <
δ < 1. Then

‖Φ(u)‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

≤ C‖ f ‖Gσ1 ,σ2 ,κ
s1 ,s2

+ Cδε‖u‖2
Xσ1 ,σ2 ,κ

s1 ,s2 ,b
,

and
‖Φ(u1) − Φ(u2)‖Xσ1 ,σ2 ,κ

s1 ,s2 ,b
≤

1
2
‖u1 − u2‖

2
Xσ1 ,σ2 ,κ

s1 ,s2 ,b
.

Proof. Combining Lemma 3.3 and Lemma 3.1 with the fixed point Theorem. We define

B(0, 2C‖ f ‖Gσ1 ,σ2 ,κ
s1 ,s2

) =

{
u : ‖u‖Xσ1 ,σ2 ,κ

s1 ,s2 ,b
≤ 2C‖ f ‖Gσ1 ,σ2 ,κ

s1 ,s2

}
.

Then, we have

‖Φ(u)‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

≤ ‖ψ(t)S (t) f ‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

+ ‖
1
2
ψδ(t)

∫ t

0
S (t − t′)∂xu2dt′‖Xσ1 ,σ2 ,κ

s1 ,s2 ,b

≤ C‖ f ‖Gσ1 ,σ2 ,κ
s1 ,s2

+ Cδε‖∂xu2‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

′

≤ C‖ f ‖Gσ1 ,σ2 ,κ
s1 ,s2

+ Cδε‖u‖2
Xσ1 ,σ2 ,κ

s1 ,s2 ,b
.

We choose δ such that
δ <

1

(C2‖ f ‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

)
1
ε

. (4.1)

We have

‖Φ(u)‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

≤ 2C‖ f ‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

.

Thus, Φ(u) maps B(0, 2C‖ f ‖Gσ1 ,σ2 ,κ
s1 ,s2

) into B(0, 2C‖ f ‖Gσ1 ,σ2 ,κ
s1 ,s2

) which is a contraction, since

‖Φ(u1) − Φ(u2)‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

≤ C

∥∥∥∥∥∥1
2
ψδ(t)

∫ t

0
S (t − t′)(∂xu2

1 − ∂xu2
1)dt′

∥∥∥∥∥∥
Xσ1 ,σ2 ,κ

s1 ,s2 ,b

≤ Cδε‖u1 − u2‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

[
‖u1‖Xσ1 ,σ2 ,κ

s1 ,s2 ,b
+ ‖u2‖Xσ1 ,σ2 ,κ

s1 ,s2 ,b

]
≤ 4C2δε‖ f ‖Gσ1 ,σ2 ,κ

s1 ,s2
‖u1 − u2‖Xσ1 ,σ2 ,κ

s1 ,s2 ,b

≤
1
2
‖u1 − u2‖Xσ1 ,σ2 ,κ

s1 ,s2 ,b
.

Here we choose δ such that
δ <

1

(8C2‖ f ‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

)
1
ε

. (4.2)
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We choose the time of existence where

δ =
c0

(1 + ‖ f ‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

)
1
ε

.

For appropriate choice of c0, this will satisfy inequalities (4.1) and (4.2). �

From Lemma 4.1, we see that for initial data f (x, y) ∈ Gσ1,σ2,κ
s1,s2 (R2) if the lifespan δ = c0/(1 +

‖ f ‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

)
1
ε then the map Φ(u) is a contraction on a small ball centered at the origin in Xσ1,σ2,κ

s1,s2,b
. Hence,

the map Φ(u) has a unique fixed point u in a neighborhood of 0 with respect to the norm ‖ · ‖Xσ1 ,σ2 ,κ
s1 ,s2 ,b

.
The rest of the proof follows the standard argument.

4.2. Global well-posedness

In this section, we prove Theorem 2.2. The first step is to obtain estimates on the growth of the
norm of the solutions. For this end, we need to prove the following approximate conservation law.

Theorem 4.2. Let σ1 > 0 and δ be as in Theorem 2.1, there exist b ∈ (1/2, 1) and C > 0, such that
for any solution u ∈ Xσ1,0

0,b (I) to the Cauchy problem (1.1) on the time interval I ⊂ [0, δ], we have the
estimate

sup
t∈[0,δ]

‖u(t)‖2
Gσ1 ,0

0

≤ ‖ f ‖2
Gσ1 ,0

0

+ Cσ%
1‖u‖

3
Xσ1 ,0

0,b (I)
. (4.3)

with % ∈ [0, 3
4 ) if α = 4, and % = 1 if α = 6, 8, 10, . . . .

Before we may show the proof, let us first state some preliminary Lemmas. The first one is an
immediate consequence of Lemma 12 in [15].

Lemma 4.3. For σ > 0, 0 ≤ θ ≤ 1 and ξ, ξ1 ∈ R, we have

eσ|ξ−ξ1 |eσ|ξ1 | − eσ|ξ| . σθ 〈ξ − ξ1〉〈ξ1〉

〈ξ〉
eσ|ξ−ξ1 |eσ|ξ1 |.

This will be used to prove the following key estimate.

Lemma 4.4. Let Nσ1,0
1 (u) be as in Eq (1.4) for σ1 ≥ 0 and σ2 = 0. Then for b as in Lemma 3.2, we

have
‖Nσ1,0

1 (u)‖X0,b−1 ≤ Cσ%
1‖u‖

2
Xσ1 ,0

0,b

,

with % ∈ [0, 3
4 ) if α = 4 and % = 1 if α = 6, 8, 10, ...

Proof. We first observe that the inequality in Lemma 3.2, is equivalent to∥∥∥∥∥∥ξθ(s1, s2, b − 1)
∫

f̂ (ξ − ξ1, η − η1, τ − τ1)
〈ξ − ξ1〉

s1〈η − η1〉
s2〈φ(ξ − ξ1, η − η1, τ − τ1)〉b−1 ×

×
ĝ(ξ1, η1, τ1)

〈ξ1〉
s1〈η1〉

s2〈φ(ξ1, η1, τ1)〉b−1 dξ1dη1dτ1

∥∥∥∥∥
L2
ξ,η

. ‖ f ‖L2
x,y
‖g‖L2

x,y
,

AIMS Mathematics Volume 6, Issue 9, 10037–10054.



10045

where we denote φ(τ, ξ, η) = 〈τ + m(ξ, η)〉. With this, we observe that the left side of the inequality in
Lemma 4.4 can be estimated by Lemma 4.3 as

‖Nσ1,0
1 (u)‖X0,b−1 . σ

∥∥∥∥∥∥ ξ〈ξ〉−1

〈φ(τ, ξ, η)〉β

∫
eσ1 |ξ−ξ1 |û(ξ − ξ1, η − η1, τ − τ1)

〈ξ − ξ1〉
−1 ×

×
eσ1 |ξ1 |û(ξ1, η1, τ1)

〈ξ1〉
−1 dξ1dη1

∥∥∥∥∥∥
L2
ξ,η

.

If we apply Lemma 3.2 with s1 = −%, s2 = 0, it will follow, from the comments above, that

‖Nσ1,0
1 (u)‖X0,b−1 . σ

%
1‖u‖

2
Xσ1 ,0

0,b

.

�

Proof of Theorem 4.2. Begin by applying the operator Aσ1,0
1 to Eq (1.1). If we let U = Aσ1,0

1 u, then
Eq (1.1) becomes

∂tU − ∂αx U + ∂−1
x ∂

2
yU + U∂xU = Nσ1,0

1 (u), (4.4)

where α = 4, 6, 8, .. and Nσ1,0
1 (u) is defined in Lemma 4.4. Multiplying (4.4) by U and integrating with

respect to the spatial variables, we obtain∫
U∂tU − U∂αx U + U∂−1

x ∂
2
yU + U2∂xU dxdy =

∫
UNσ1,0

1 (u) dxdy.

If we apply integration by parts, we may rewrite the left-hand side as

∂t

∫
1
2

U2 dxdy +

∫
∂
α
2
x U∂

α
2 +1
x Udxdy −

∫
∂yU∂−1

x ∂yU dxdy +

∫
U2∂xU dxdy =

∫
UNσ1,0

1 (u) dxdy,

which can then be rewritten as

∂t

∫
1
2

U2 dxdy+

∫
1
2
∂x((∂

α
2
x U)2)dxdy−

∫
1
2
∂x[(∂−1

x ∂xU)2] dxdy+

∫
1
3
∂x(U3) dxdy =

∫
UNσ1,0

1 (u) dxdy.

By noticing that ∂ j
xU(x, t)→ 0 as |x| → ∞ (see [15]) we obtaining

∂t

∫
U2(x, y, t) dxdy = 2

∫
U(x, y, t)Nσ1,0

1 (u)(x, y, t) dxdy.

Integrating with respect to time yields∫
U2(x, y, t) dxdy =

∫
U2(x, y, 0) dxdy + 2

∫ t

0

∫
U(x, y, t′)∂xNσ1,0

1 (u)(x, y, t′) dxdydt′.

Applying Cauchy-Schwarz and the definition of U, we obtain

‖u(t)‖2
Gσ1 ,0

0

≤ ‖ f ‖2
Gσ1 ,0

0

+ ‖u‖Xσ1 ,0
0,b
‖Nσ1,0

1 (u)‖X0,0
0,b−1(I).

We now apply Lemma 4.4 and the fact that b = 1
2 + ε, we can further estimate this by

‖u(t)‖2
Gσ1 ,0

0

≤ ‖ f ‖2
Gσ1 ,0

0

+ Cσ%
1‖u‖

3
Xσ1 ,0

0,b

, (4.5)

as desired. �
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Proof of Theorem 2.2. With the tools established in the previous subsection, we may begin the proof
of Theorem 2.2. Let us first suppose that T ∗ is the supremum of the set of times T for which

u ∈ C([0,T ]; Gσ1,0
x ).

If T ∗ = ∞, there is nothing to prove, so let us assume that T ∗ < ∞. In this case, it suffices to prove that

u ∈ C
(
[0,T ],Gσ1(T ),0

x

)
, (4.6)

for all T > T ∗. To show that this is the case, we will use Theorem 2.1 and Theorem 4.2 to construct a
solution which exists over subintervals of width δ, using the parameter σ1 to control the growth of the
norm of the solution. We first prove the case s = 0 and then we will generalize the case.

4.2.1. The case s = 0

The desired result will follow from the following proposition.

Proposition 4.5. Let T > 0, x = 0,0 < σ1 ≤ σ0 and δ > 0 be numbers such that nδ ≤ T < (n + 1)δ.
Then the solution u to the Cauchy problem (1.1) satisfies

sup
t∈[0,nδ]

‖u(t)‖2
Gσ1 ,0

0

≤ ‖ f ‖2
Gσ1 ,0

0

+ 23Cσ%
0n‖ f ‖3

G
σ0 ,0
0

, (4.7)

and
sup

t∈[0,nδ]
‖u(t)‖2

Gσ1 ,0
0

≤ 4‖u(t)‖2
G
σ0 ,0
0

, (4.8)

if

σ1 = C1T−
1
% , and C1 =

 c0

C25 ‖ f ‖Gσ0 ,0
0

(1 + 2 ‖ f ‖Gσ0 ,0
0

)
1
ε


1
%

,

for some constant C > 0.

Proof. For fixed T ≥ T ∗, we will prove, for sufficiently small σ1 > 0, that

sup
t∈[0,T ]

‖u(0)‖2
Gσ1 ,0

0

≤ 4‖u(0)‖2
G
σ0 ,0
0

. (4.9)

We will use the Theorem 2.1 and Theorem 4.2 with the time step

δ =
c0

(1 + 4 ‖ f ‖Gσ0 ,0
0

)
1
ε

. (4.10)

The smallness conditions on σ1 will be

σ1 ≤ σ0 and
2T
δ

Cσ%
14

3
2 ‖ f ‖Gσ0 ,0

0
≤ 1, (4.11)

where C > 0 is the constant in Theorem 4.2. Proceeding by induction, we will verify that

sup
t∈[0,δ]

‖u(t)‖2
Gσ1 ,0

0

≤ ‖ f ‖2
Gσ1 ,0

0

+ nCσ%
123‖ f ‖3

G
σ0 ,0
0

, (4.12)
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sup
t∈[0,δ]

‖u(t)‖2
Gσ1 ,0

0

≤ 4‖ f ‖2
G
σ0 ,0
0

, (4.13)

for n ∈ {1, · · ·,m + 1}, where m ∈ N is chosen, so that T ∈ [mδ, (m + 1)δ). This m does exist, since by
Theorem 2.1 and the definition of T ∗, we have

δ <
c0

(1+ ‖ f ‖Gσ0 ,0
0

)
1
ε

< T ∗, hence δ < T.

We cover now, the interval [0, δ], and by Theorem 4.2, we have

sup
t∈[0,δ]

‖u(t)‖2
Gσ1 ,0

0

≤ ‖ f ‖2
Gσ1 ,0

0

+ Cσ%
1‖ f ‖

3
Gσ,0

0
≤ ‖ f ‖2

Gσ1 ,0
0

+ Cσ%
1‖ f ‖

3
G
σ0 ,0
0

,

where we used that
‖ f ‖Gσ1 ,0

0
≤ ‖ f ‖Gσ0 ,0

0
,

since σ1 ≤ σ0. This verifies (4.12) for n = 1 and now, (4.13) follows using again

‖ f ‖Gσ1 ,0
0
≤ ‖ f ‖Gσ0 ,0

0
,

as well as Cσ%
1‖ f ‖Gσ0 ,0

0
≤ 1. Next, assuming that (4.12) and (4.13) hold for some n ∈ {1, · · ·,m}, we will

prove that they hold for n + 1. We estimate

supt∈[nδ,(n+1)δ] ‖u(t)‖2
Gσ1 ,0

0

≤ ‖u(nδ)‖2
Gσ1 ,0

0

+ Cσ%
1‖u(nδ)‖3

Gσ1 ,0
0

≤ ‖u(nδ)‖2
Gσ1 ,0

0

+ Cσ%
123‖ f ‖3

G
σ0 ,0
0

≤ ‖ f ‖2
Gσ1 ,0

0

+ nCσ%
123‖ f ‖3

G
σ0 ,0
0

+ Cσ%
123‖ f ‖3

G
σ0 ,0
0

,

verifying (4.12) with n replaced by n + 1. To get (4.13) with n replaced by n + 1, it is then enough to
have

(n + 1)Cσ%
123‖ f ‖Gσ0 ,0

0
≤ 1.

But this holds by (4.11), since

n + 1 ≤ m + 1 ≤
T
δ

+ 1 <
2T
δ
.

Finally, the condition (4.11) is satisfied for σ1 ∈ (0, σ0) such that

2T
δ

Cσ%
123 ‖ f ‖Gσ0 ,0

0
= 1.

Thus, σ1 = C1T−
1
% , where

C1 =

 c0

C25 ‖ f ‖Gσ0 ,0
0

(1 + 2 ‖ f ‖Gσ0 ,0
0

)
1
ε


1
%

.

�
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4.2.2. The general case

For general s, we have
u0 ∈ Gσ0,0

s ⊂ Gσ0/2,0
0 .

The case s = 0 already being proved, we know that there is a T1 > 0, such hat

u ∈ C
(
[0,T1),Gσ0/2,0

0

)
,

and
u ∈ C

(
[0,T ],G2ςT−1/%,0

0

)
, f or T ≥ T1,

where ς > 0 depends on f , σ0 and ς. We now conclude that

u ∈ C
(
[0,T1),Gσ0/4,0

s

)
,

and
u ∈ C

(
[0,T ],GςT−1/%,0

s

)
, f or T ≥ T1.

The proof of Theorem 2.2 is now completed. �

5. Gevrey’s regularity in time

We follow the methods found in [5–7, 11] to treat the regularity in time in Gevrey sens for unique
solution of (1.1).

Proposition 5.1. Let δ > 0, s1 > −
α−1

4 , s2 ≥ 0 and

u ∈ C
(
[0, δ]; Gσ1,σ2,κ

s1,s2

)
,

be the solution of (1.1). Then u belong in x, y to Gκ for all times near the zero. In other words,

|∂l
x∂

n
yu(x, y, t)| ≤ Cl+n+1(l!)κ(n!)κ, (5.1)

for all (x, y) ∈ R2 ,C > 0, t ∈ [0, δ], l, n ∈ {0, 1, ...}.

Proof. We have, for any t ∈ [0, δ]

‖∂l
x∂

n
yu(·, ·, t)‖2Hs1 ,s2 =

∫
R2
〈ξ〉2s1 〈η〉2s2 |∂̂l

x∂
n
yu(ξ, η, t)|2dξdη

=

∫
R2
|ξ|2l|η|2n 〈ξ〉2s1 〈η〉2s2 |̂u(ξ, η, t)|2dξdη

=

∫
R2
|ξ|2l|η|2ne−2σ1 |ξ|

1
κ e−2σ2 |η|

1
κ
〈ξ〉2s1 〈η〉2s2 e2σ1 |ξ|

1
κ e2σ2 |η|

1
κ
|̂u(ξ, η, t)|2dξdη.

We observe that

e
2σ1
κ |ξ|

1
κ

=

∞∑
j=0

1
j!

(
2σ1

κ
|ξ|

1
κ

) j

≥
1

(2l)!

(2σ1

κ

)2l

|ξ|
2l
κ , ∀l ∈ {0, 1, ...}, ξ ∈ R,
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and

e
2σ2
κ |η|

1
κ

=

∞∑
j=0

1
j!

(
2σ2

κ
|η|

1
κ

) j

≥
1

(2n)!

(2σ2

κ

)2n

|η|
2l
κ , ∀n ∈ {0, 1, ...}, η ∈ R.

This implies that
|ξ|2le−2σ1 |ξ|

1
κ
≤ C2l

σ1,κ
(2l)!κ,

|η|2ne−2σ2 |η|
1
κ
≤ C2n

σ2,κ
(2n)!κ.

Thus,

‖∂l
x∂

n
yu(·, ·, t)‖2Hs1 ,s2 ≤ C2l+2n

σ1,σ2,κ
(2l)!κ(2n)!κ

∫
R2
〈ξ〉2s1 〈η〉2s2 e2σ1 |ξ|

1
κ e2σ2 |η|

1
κ
|̂u(ξ, η, t)|2dξdη

= C2l+2n
σ1,σ2,κ

(2l)!κ(2n)!κ‖u(·, ·, t)‖2
Gσ1 ,σ2 ,κ

s1 ,s2
.

Since (2l)!κ ≤ c2l
1 (l!)2κ and (2n)!κ ≤ c2n

2 (n!)2κ, for some c1, c2 > 0, we have for all l, n ∈ {0, 1, 2, . . . }

|∂l
x∂

n
yu| . ‖∂l

x∂
n
yu(·, ·, t)‖Hs1 ,s2 ≤ C0Cl+n

1 (l)!κ(n)!κ for ∀t ∈ [0, δ],

where C0 = ‖u(·, ·, t)‖Gσ1 ,σ2 ,κ
s1 ,s2

and C1 = c2
0Cσ1,σ2,κ and c0 = max(c1, c2), which implies that the solution u

is analytic in x, y for all time near zero and s1, s2 ≥ 0.
Now, for −α−1

4 < s1 < 0, s2 ≥ 0 and for any 0 < ε < σ1, there exists a positive constant C = Cs,ε > 0
such that ∫

R2
e2(σ1−ε)|ξ|

1
κ e2σ2 |η|

1
κ
〈η〉2s2 |̂u(ξ, η, t)|2dξdη

≤ C
∫
R2

e2ε|ξ|
1
κ

〈ξ〉−2s1
e2(σ1−ε)|ξ|

1
κ e2σ2 |η|

1
κ
〈η〉2s2 |̂u(ξ, η, t)|2dξdη

= C
∫
R2
〈ξ〉2s1 〈η〉2s2 e2σ1 |ξ|

1
κ e2σ2 |η|

1
κ
|̂u(ξ, η, t)|2dξdη.

This implies that if
u ∈ C

(
[0,T ]; Gσ1,σ2,κ

s1,s2

)
and s1 < 0, s2 ≥ 0,

then
u ∈ C

(
[0,T ]; Gσ1−ε,σ2,κ

0,s2

)
,

which allows us to conclude that u is in Gκ in x, y for all s1 > −
α−1

4 , s2 ≥ 0. �

In order to prove Theorem 2.3 it is enough to prove the following result.

Lemma 5.2. For j, l, n ∈ {0, 1, 2, . . . }, the next inequality∣∣∣∂ j
t∂

l
x∂

n
yu

∣∣∣ ≤ C j+l+n+1((l + n + (α + 1) j)!)κL j, (5.2)

holds, where L = Cα + 1
120κ + C

40κ , ∀x, y ∈ R, t ∈ [0, δ].
In fact, taking l = n = 0 we obtain∣∣∣∂ j

t u
∣∣∣ ≤ C j+1((α + 1) j!)κL j ≤ K j+1( j!)(α+1)κ.
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Proof. We use the induction on j to prove Lemma 5.2.
For j = 0 and l, n ∈ {0, 1, 2, . . . }, we have, by (5.1)∣∣∣∂l

x∂
n
yu(x, y, t)

∣∣∣ ≤ Cl+n+1(l!)κ(n!)κ ≤ Cl+n+1(l + n)!κ. (5.3)

For j = 1 and l, n ∈ {0, 1, 2, . . . }, we have∣∣∣∂t∂
l
x∂

k
yu

∣∣∣ ≤ ∣∣∣|Dx|
α∂l+1

x ∂n
yu

∣∣∣ +
∣∣∣∂l−1

x ∂n+2
y u

∣∣∣ +
∣∣∣∂l

x∂
n
y(u∂xu)

∣∣∣. (5.4)

The terms of (5.4) can be estimated as∣∣∣|Dx|
α∂l+1

x ∂n
yu

∣∣∣ ≤ Cl+1+α+n+1(l + 1 + α + n)!κ

≤ Cl+n+1+1(l + n + (α + 1) · 1)!κCα,

(5.5)

∣∣∣∂l−1
x ∂n+2

y u
∣∣∣ ≤ Cl−1+n+2+1(l − 1 + n + 2)!κ

≤ Cl+n+1+1(l + n + 5 · 1)!
1

(l + n + 2)κ(l + n + 3)κ(l + n + 4)κ(l + n + 5)κ

≤ Cl+n+1+1(l + n + 5 · 1)!
1

120κ
.

(5.6)

The nonlinear terms are treated as follows

∣∣∣∂l
x∂

n
y(u∂xu)

∣∣∣ =

∣∣∣∣∣∣ l∑
p=0

n∑
k=0

(
l
p

)(
n
k

) (
∂l−p

x ∂n−k
y u

) (
∂p+1

x ∂k
yu

) ∣∣∣∣∣∣.
Recalling that for l ≥ p and n ≥ k, we have the next inequality(

l
p

)(
n
k

)
≤

(
l + n
p + k

)
. (5.7)

By (5.7), we have

∣∣∣∂l
x∂

n
y(u∂xu)

∣∣∣ ≤ ∣∣∣∣∣∣ l∑
p=0

n∑
k=0

(
l + n
p + k

) (
∂l−p

x ∂n−k
y u

) (
∂p+1

x ∂k
yu

) ∣∣∣∣∣∣
≤

l∑
p=0

n∑
k=0

((l + n)!)κ

((p + k)!)κ((l + n − p − k)!)κ
Cl−p+n−k+1((l + n − p − k)!)κ

Cp+1+k+1((p + 1 + k)!)κ

= Cl+n+3((l + n)!)κ
l∑

p=0

n∑
k=0

(p + 1 + k)κ.

AIMS Mathematics Volume 6, Issue 9, 10037–10054.



10051

At this stage, we use the fact that

l∑
p=0

n∑
k=0

(p + 1 + k) =
(l + 1)(n + 1)(l + n + 2)

2
. (5.8)

Then, ∣∣∣∂l
x∂

n
y(u∂xu)

∣∣∣ ≤ Cl+n+3((l + n)!)κ
(l + 1)κ(n + 1)κ(l + n + 2)κ

2κ

≤ Cl+n+1+1((l + n)!)κ(l + n + 1)κ(l + n + 2)κ(l + n + 3)κ
C
2κ

= Cl+n+1+1((l + n + (α + 1))!)κ
1

(l + n + 4)κ(l + n + (α + 1))κ
C
2κ

≤ Cl+n+1+1((l + n + (α + 1) · 1)!)κ
C

40κ
.

(5.9)

From (5.5), (5.6) and (5.9), it follows that∣∣∣∂t∂
l
x∂

k
yu

∣∣∣ ≤ Cl+n+1+1((l + n + (α + 1) · 1)!)κL1,∀x, y ∈ R, t ∈ [0, δ].

We assume that (5.2) is correct for j ≥ m ≥ 1 where l, n ∈ {0, 1, 2, . . . } and then we prove it for
m = j + 1 and l, n ∈ {0, 1, 2, . . . }.

We obtain ∣∣∣∂ j+1
t ∂l

x∂
k
yu

∣∣∣ ≤ ∣∣∣∂ j
t |Dx|

α∂l+1
x ∂n

yu
∣∣∣ +

∣∣∣∂ j
t∂

l−1
x ∂n+2

y u
∣∣∣ +

∣∣∣∂ j
t∂

l
x∂

n
y(u∂xu)

∣∣∣.
These terms are estimated as follows∣∣∣∂ j

t |Dx|
α∂l+1

x ∂n
yu

∣∣∣ ≤ C j+l+(α+1)+n+1(l + n + ((α + 1)( j + 1))!)κL j

≤ C( j+1)+l+n+1(l + n + ((α + 1)( j + 1))!)κCαL j,

(5.10)

and ∣∣∣∂ j
t∂

l−1
x ∂n+2

y u
∣∣∣ ≤ C j+l−1+n+2+1(( j + l − 1 + n + 2)!)κL j

≤ C( j+1)+l+n+1((l + n + (α + 1)( j + 1))!)κ
L j

120κ
.

(5.11)

The nonlinear terms are treated as follows

∂
j
t∂

l
x∂

n
y(u∂xu) =

l∑
p=0

n∑
k=0

(
l
p

)(
n
k

) (
∂

j
t∂

l−p
x ∂n−k

y u
) (
∂p+1

x ∂k
yu

)
+

l∑
p=0

n∑
k=0

(
l
p

)(
n
k

) (
∂l−p

x ∂n−k
y u

) (
∂

j
t∂

p+1
x ∂k

yu
)

+

j−1∑
q=1

l∑
p=0

n∑
k=0

(
j
q

)(
l
p

)(
n
k

) (
∂

j−q
t ∂l−p

x ∂n−k
y u

) (
∂

q
t ∂

p+1
x ∂k

yu
)
.

(5.12)
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Using (5.7) to estimate (5.12)1∣∣∣∣∣∣∣
l∑

p=0

n∑
k=0

(
l
p

)(
n
k

) (
∂

j
t∂

l−p
x ∂n−k

y u
) (
∂p+1

x ∂k
yu

)∣∣∣∣∣∣∣
≤

1
3

C( j+1)+l+n+1((l + n + (α + 1)( j + 1))!)κ
C

40κ
L j. (5.13)

We estimate (5.12)2 as ∣∣∣∣∣ l∑
p=0

n∑
k=0

(
l
p

)(
n
k

) (
∂l−p

x ∂n−k
y u

) (
∂

j
t∂

p+1
x ∂k

yu
) ∣∣∣∣∣ ≤

1
3

C( j+1)+l+n+1((l + n + (α + 1)( j + 1))!)κ
C

40κ
L j. (5.14)

To estimate (5.12)3, we recall that for j ≥ q, l ≥ p and n ≥ k, we have the next inequality(
j
q

)(
l
p

)(
n
k

)
≤

(
j + l + n

q + p + k

)
.

Then ∣∣∣∣∣∣∣
j−1∑
q=1

l∑
p=0

n∑
k=0

(
j
q

)(
l
p

)(
n
k

) (
∂

j−q
t ∂l−p

x ∂n−k
y u

) (
∂

q
t ∂

p+1
x ∂k

yu
)∣∣∣∣∣∣∣

≤

j−1∑
q=1

l∑
p=0

n∑
k=0

(
j + l + n

q + p + k

)
C j−q+l−p+n−k+1((l − p + n − k + (α + 1)( j − q))!)κL j−q

Cq+p+1+k+1((p + 1 + k + (α + 1)q)!)κLq

≤
1
3

C( j+1)+l+n+1((l + n + (α + 1)( j + 1))!)κ
C

40κ
L j.

(5.15)

Finally by using (5.13)–(5.15) we arrive at∣∣∣∂ j+1
t ∂l

x∂
k
yu

∣∣∣ ≤ C( j+1)+l+n+1((l + n + (α + 1)( j + 1))!)κL j+1,

for all (x, y) ∈ R2, t ∈ [0, δ].
The detailed proof of (5.12) for κ = 1 is given in [6]. �

6. Conclusions

We have discussed the local well-posedness for a generalized Kadomtsev-Petviashvili I equation
in an anisotropic Gevrey space. We proved the existence of solutions using the Banach contraction
mapping principle. This was done by using the bilinear estimates in anisotropic Gevrey-Bourgain. We
used this local result and a Gevrey approximate conservation law to prove that global solutions exist.
These solutions are Gevrey class of order (α+ 1)κ in the time variable. The results of the present paper
are new and significantly contribute to the existing literature on the topic.
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