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Abstract: Recently, non-singular fractional operators have a significant role in the modeling of real-
world problems. Specifically, the Caputo-Fabrizio operators are used to study better dynamics of
memory processes. In this paper, under the non-singular fractional operator with exponential decay
kernel, we analyze the Ambartsumian equation qualitatively and computationally. We deduce the result
of the existence of at least one solution to the proposed equation through Krasnoselskii’s fixed point
theorem. Also, we utilize the Banach fixed point theorem to derive the result concerned with unique
solution. We use the concept of functional analysis to show that the proposed equation is Ulam-Hyers
and Ulam-Hyers-Rassias stable. We use an efficient analytical approach to compute a semi-analytical
solution to the proposed problem. The convergence of the series solution to an exact solution is proved
through non-linear analysis. Lastly, we present the solution for different fractional orders.

Keywords: Ambartsumian equation; Ulam-Hyres-Rassias stable; non-linear analysis
Mathematics Subject Classification: 26A33, 34A08, 34K38

1. Introduction and motivation

Ambartsumian derived the standard Ambartsumian equation (SAE) [1]. The absorption of light by
interstellar matter has been defined in this equation. In the theory of surface brightness in the Milky
Way, the Ambartsumian delay equation is used. We consider the fractional Ambartsumian equation
(FAE) in this paper as [2]:  d

dtA(t) = 1
η
A( t

η
) −A(t), η > 1,

A(0) = µ,
(1.1)
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where η and µ are constants andA(t) represent the fluctuation of the surface brightness in Milky Way.
Kato and McLeod have proven and explored existence and uniqueness of Eq (1.1) [2]. Because of its
use in astronomy, it is important to find an accurate solution to this equation. Very recently, Patade
and Bhalekar [3] find the analytical solution of Ambartsumian equation using the technique developed
in [4]. The convergence for all |η| > 1 was addressed, where the solution did not occur in the entire
domain. Therefore, using the Adomian decomposition method (ADM), which has more precision and
validity, a new series solution was deduced. The ADM is a useful tool for the solution of nonlinear
differential and integral equations, and IV and BV problems [5,6]. In ADM, when we choose a suitable
canonical form; the solution converges to an infinite series. Cherruault and Adomian [7] have recorded
ADM fast convergent and estimate the error terms in the series solution. Bakodah and Ebaid obtained
the exact solution for the SAE [8]. Alatawi et al., achieve the approximate solution using HPM for
the SAE in term of the exponential functions [9]. Recently, HTAM is used to find out the approximate
solution for the FAE in [10].

At present, non-integer order integration and differentiation is a hot area of research. Fractional
calculus has many applications in various fields like chemical, mechanical and electrical engineering,
medical sciences, electrodynamics, dynamical system, and many more due to memory in heredity
properties [11–14]. The qualitative analysis of fractional differential equations and their applications
has been studied by many researchers [15–18]. Ullah et al., utilized the Caputo fractional derivative to
study the dynamics of childhood diseases [19]. Nisar and his coauthors analyzed the transmission of
COVID-19 by using the fractional operator in the sense of Caputo [20]. Many authors studied it for
the existence and uniqueness of solution [21, 22], using “topological degree theory”, “Banach and
Leray-Shaudar fixed point theorem”, etc. However, many definitions are available in the literature for
the fractional derivative with different kernels, which motivates the researches to adopt a best suitable
operator, for the considered model. Fractional derivative with non-singular kernel has got great
attention among the researchers. Caputo and Fabrizio [23] are the ones who define the
fractional-derivative in a new scenario. They extend the Caputo fractional derivative having
non-singular kernel. This idea has successfully applied in many real-world phenomena [24, 25].
Baleanu et al., analyzed the dynamics of the human liver model through Caputo-Fabrizio model [26].
A Caputo-Fabrizio Rubella disease model has been studied by Baleanu et al., [27]. Gao et al.,
demonstrate the effect of delay terms on the immune system in the Hepatitis B virus model through
Caputo-Fabrizio fractional operator [28]. Ahmad et al., studied computationally the third-order
dispersive PDE with nonsingular fractional operator [29].

In the applied analysis, we investigate two types of solutions the analytical and the numerical, for
which different analytical and computational techniques are used respectively. To obtain the analytical
and the numerical solutions for FDEs is of great interest among the researchers. Therefore, the
researchers introduce different methods to solve FDEs. Padey et al., used Homotopy analysis Sumudu
transform method to solve the third order dispersive PDE under fractional operator [30]. Collocation
method was used to solve nonsingular fractional order differential equations by Dumitru with his
co-authors [31]. In these methods, LADM is the best one for solving nonlinear FDEs. The Laplace
transform method and the Adomian decomposition method are combined to form LADM. Like
Runge-Kutta and collocation methods LAMD doesn’t require any predefined size and discretization
of data which require extra memory and time-consuming process. These methods are expensive.
Moreover, the homotopy perturbation methods needed the auxiliary parameters which control both
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the technique and the solution. While in LADM, neither discretization of date nor auxiliary
parameters are required [32]. It produces the same solution generated by the other methods.
Therefore, we considered LADM, an ideal for the solution of the proposed equation. The comparison
between ADM and LADM is available in [33]. Some of the applications of LADM are also available
in [34, 35]. These motivated us to study the Ambartsumian equation by the aforementioned fractional
derivative. The Ambartsumian equation under the Caputo-Fabrizio fractional derivative is given byCF

0 D
ϑ
tA(t) = 1

η
A( t

η
) −A(t), ϑ ∈ (0, 1], η > 1, t > 0,

A(0) = µ.
(1.2)

In the current article, we study the qualitative and quantitative aspects of the Eq (1.2). We use fixed
point results for qualitative analysis of the considered equation. For quantitative approach, we utilize an
efficient and accurate analytical method (LADM). We prove the convergence of the suggested method
via nonlinear analysis.

2. Preliminaries

Let H1[0, t] = { f : f ∈ L2[0,T ] and f
′

∈ L2[0,T ]}, where L2[0,T ] is the space of square integrable
functions on the [0,T ]. For the sake of simplicity denote the exponential kernel as
K(t, %) = exp

[
−γ t−%

1−γ

]
.

Definition 2.1. [7] IfA(t) ∈ H1[0,T ],T > 0, γ ∈ (0, 1), then the Caputo-Fabrizio derivative is defined
as

CF Dϑ
t [A(t)] =

M (ϑ)
1 − ϑ

∫ t

0
A
′

(%)K(t, %)d%,

M (ϑ) satisfies M (1) = M (0) = 1, is the normalization f unction. However, ifA(t) < H1[0,T ], then

CF Dϑ
t [A(t)] =

M (ϑ)
1 − ϑ

∫ t

0

[
A(t) −A(%)

]
K(t, %)d%.

Definition 2.2. [7] The Caputo-Fabrizio fractional integral is defined as

CF Iϑt [A(t)] =
1 − ϑ
M (ϑ)

A(t) +
ϑ

M (ϑ)

∫ t

0
A(%)d%, t ≥ 0, ϑ ∈ (0, 1]. (2.1)

Definition 2.3. [35] Taking M = 1, the Laplace transform of CF Dϑ
t [A(t)] is given by

L
[
CF Dϑ

t [A(t)]
]

=
sL [A(t)] −A(0)

s + ϑ(1 − s)
. (2.2)

3. Existence and stability theory

3.1. Existence theory

In this section, we use fixed point theory approach to confirm the existence of solution of the
proposed equation under the nonsingular fractional derivative. Consider the proposed model as
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CF
0 D

ϑ
tA(t) = F

(
t,A( t

η
),A(t)

)
, ϑ ∈ (0, 1], η > 1, t > 0,

A(0) = µ,
(3.1)

where

Q

(
t,A(

t
η

),A(t)
)

=
1
η
A(

t
η

) −A(t).

Now using CF Iϑt , we have A(t) = A(0) +
[
Q

(
t,A( t

η
),A(t)

)
− Q0

]
1−ϑ

M (ϑ)

+ ϑ
M (ϑ)

∫ t

0
Q

(
ζ,A( ζ

η
),A(ζ)

)
dζ.

(3.2)

To derive the existence and uniqueness results, we define a Banach space B = C [P ,R]; where P =

[0,T] and 0 ≤ t ≤ T < ∞. We define a norm for Banach space as follows

‖A‖ = sup
t∈P
{|A(t)| : A ∈ B} . (3.3)

Let us define an operator T : B→ B as

TA(t) = A(0) +

[
Q

(
t,A(

t
η

),A(t)
)
− Q0

]
1 − ϑ
M (ϑ)

+
ϑ

M (ϑ)

∫ t

0
Q

(
ζ,A(

ζ

η
),A(ζ)

)
dζ. (3.4)

We impose growth and Lipschitz condition on Q as

• Under the continuity of Q, for KQ > 0, we define Q : P × R→ R such that∣∣∣∣∣∣Q
(
t,A(

t
η

),A(t)
)
− Q

(
t,A(

t
η

),A(t)
)∣∣∣∣∣∣ ≤ KQ

{∣∣∣∣∣A(
t
η

) −A(
t
η

)
∣∣∣∣∣ +

∣∣∣A(t) −A(t)
∣∣∣} . (3.5)

• There exists CQ > 0,LQ > 0,and MQ such that∣∣∣∣∣∣Q
(
t,A(

t
η

),A(t)
)∣∣∣∣∣∣ ≤ CQ

∣∣∣∣∣A(
t
η

)
∣∣∣∣∣ + LQ |A(t)| + MQ. (3.6)

Theorem 3.1. Assume that the conditions (3.5) and (3.6) hold. Then there is at least one solution of
the Eq (3.2), if KQ(1−ϑ)

M (ϑ) < 1.

Proof. Let E = {A ∈ B : ‖A‖ ≤ κ, κ > 0} ⊂ B be a convex and closed set. Now, we define two
operators as

GA(t) =A(0) +

[
Q

(
t,A(

t
η

),A(t)
)
− Q0

]
1 − ϑ
M (ϑ)

, (3.7)

HA(t) =
ϑ

M (ϑ)

∫ t

0
Q

(
ζ,A(

ζ

η
),A(ζ)

)
dζ, (3.8)

such that GA(t) + HA(t) = TA(t). First, we prove that G is a contractive mapping, for this let
A,A ∈ B, one has∥∥∥GA − GA∥∥∥ = sup

t∈P

∣∣∣∣∣∣
(
A(0) +

[
Q

(
t,A(

t
η

),A(t)
)
− Q0

]
1 − ϑ
M (ϑ)

)
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−

(
A(0) +

[
Q

(
t,A(

t
η

),A(t)
)
− Q0

]
1 − ϑ
M (ϑ)

)∣∣∣∣∣∣
=

1 − ϑ
M (ϑ)

sup
t∈P

∣∣∣∣∣∣A(0) +

[
Q

(
t,A(

t
η

),A(t)
)
− Q0

]
−A(0) −

[
Q

(
t,A(

t
η

),A(t)
)

+ Q0

]∣∣∣∣∣∣
=

1 − ϑ
M (ϑ)

sup
t∈P

∣∣∣∣∣∣Q
(
t,A(

t
η

),A(t)
)
− Q

(
t,A(

t
η

),A(t)
)∣∣∣∣∣∣

≤
(1 − ϑ)
M (ϑ)

KQ
∥∥∥A−A∥∥∥ .

By the hypothesis (1−ϑ)
M (ϑ) KQ < 1, the operator G is contraction. Next, we show that H : E → E is

bounded. For this, letA ∈ E, one has

‖HA‖ = sup
t∈P

∣∣∣∣∣∣ ϑ

M (ϑ)

∫ t

0
Q

(
ζ,A(

ζ

η
),A(ζ)

)
dζ

∣∣∣∣∣∣
≤

ϑ

M (ϑ)
sup
t∈P

∫ t

0

∣∣∣∣∣∣Q
(
ζ,A(

ζ

η
),A(ζ)

)∣∣∣∣∣∣ dζ
≤

ϑT
M (ϑ)

sup
t∈P

(
CQ

∣∣∣∣∣A(
t
η

)
∣∣∣∣∣ + LQ |A(t)| + MQ

)
≤

ϑT
M (ϑ)

(
CQ ‖A‖ + LQ ‖A‖ + MQ

)
≤

ϑT
M (ϑ)

(
κCQ + LQκ + MQ

)
< ∞.

It follows that the operatorH is bounded. Next, to show the equi-continuity ofH consider t1 < t2, one
has

|HA(t1) −HA(t2)| =

∣∣∣∣∣∣ ϑ

M (ϑ)

∫ t1

0
Q

(
ζ,A(

ζ

η
),A(ζ)

)
dζ −

ϑ

M (ϑ)

∫ t2

0
Q

(
ζ,A(

ζ

η
),A(ζ)

)
dζ

∣∣∣∣∣∣
≤

ϑ

M (ϑ)

∣∣∣∣∣∣Q
(
t,A(

t
η

),A(t)
)∣∣∣∣∣∣

(∫ t1

0
dζ −

∫ t2

0
dζ

)
≤

ϑ

M (ϑ)

(
CQ

∣∣∣∣∣A(
t
η

)
∣∣∣∣∣ + LQ |A(t)| + MQ

)
(t1 − t2) ,

when t1 → t2, then |HA(t1) −HA(t2)| → 0. Also the continuity and boundeness of H implies that
‖HA(t1) −HA(t2)‖ → 0, as t1 → t2. Thus H is completely continuous by the “Arzelá–Ascoli
theorem”. Thus, by “Krasnoselskii’s fixed point theorem [40]”, our proposed equation has at least one
solution. �

Now, we show that our proposed equation possess at most one solution. To achieve this goal, we
will use Banach contraction theorem.
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Theorem 3.2. Assume that condition (3.5) holds. Then the proposed equation has at most one solution,
if the following condition hold (

(1 − ϑ)KQ
M (ϑ)

+
ϑTKQ
M (ϑ)

)
< 1. (3.9)

Proof. LetA,A ∈ B, then

∥∥∥TA − TA∥∥∥ = sup
t∈P

∣∣∣∣∣∣
[
Q

(
t,A(

t
η

),A(t)
)
− Q0

]
1 − ϑ
M (ϑ)

+
ϑ

M (ϑ)

∫ t

0
Q

(
ζ,A(

ζ

η
),A(ζ)

)
dζ

−

[[
Q

(
t,A(

t
η

),A(t)
)
− Q0

]
1 − ϑ
M (ϑ)

+
ϑ

M (ϑ)

∫ t

0
Q

(
ζ,A(

ζ

η
),A(ζ)

)
dζ

]∣∣∣∣∣∣
≤

1 − ϑ
M (ϑ)

sup
t∈P

∣∣∣∣∣∣Q
(
t,A(

t
η

),A(t)
)
− Q

(
t,A(

t
η

),A(t)
)∣∣∣∣∣∣

+
ϑ

M (ϑ)
sup
t∈P

∫ t

0

[∣∣∣∣∣∣Q
(
t,A(

t
η

),A(t)
)
− Q

(
t,A(

t
η

),A(t)
)∣∣∣∣∣∣
]

dt

≤
(1 − ϑ)KQ

M (ϑ)

∥∥∥A−A∥∥∥ +
ϑTKQ
M (ϑ)

∥∥∥A−A∥∥∥
≤

(
(1 − ϑ)KQ

M (ϑ)
+
ϑTKQ
M (ϑ)

) ∥∥∥A−A∥∥∥ .
By hypothesis (3.9), T is contraction. Thus by “Banach contraction theorem”, the proposed equation
has unique solution. �

3.2. Stability theory

The stability of mathematical models is an important aspect of the DEs. To study the different kinds
of stability, one can find the most interesting kind is Ulam-Hyers stability introduced by Ulam [36],
further generalized by Rassias [37]. The more general form of this stability is known as Ulam-Hyers-
Rassias stability. This stability is studied by many authors in the last few years [38, 39]. Therefore, in
this article, we also use UH stability for the mentioned problem.

3.2.1. Ulam-Hyers stability

Definition 3.3. Let A(t) ∈ B be any solution. Then the proposed equation is Ulam-Hyers stable if for
any ω > 0 with the following inequality∥∥∥∥∥∥CF

0 D
ϑ
tA(t) − Q

(
t,A(

t
η

),A(t)
)∥∥∥∥∥∥ ≤ ω, (3.10)

there exists a unique solutionA(t) ∈ B of the proposed equation with Uq > 0 such that∥∥∥A−A∥∥∥ ≤ Uqω. (3.11)

Further, if ∃ Λ(ω) ∈ C [R,R] with Λ(0) = 0 such that
∥∥∥A−A∥∥∥ ≤ Λ(ω), then the proposed equation is

generalized Ulam-Hyers stable.
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Remark 3.4. We perturb our proposed equation by taking a small perturbation ∆(t) ∈ C [P ,R] which
depends onA and satisfies the following

• For ω > 0,|∆(t)| ≤ ω.
• CF

0 D
ϑ
tA(t) = Q

(
t,A( t

η
),A(t)

)
+ ∆(t).

The corresponding perturbed equation is given byCF
0 D

ϑ
tA(t) = Q

(
t,A( t

η
),A(t)

)
+ ∆(t),

A(0) = µ.
(3.12)

Now, we prove an important Lemma, which will be used for further analysis.

Lemma 3.5. The following result holds for the perturbed Eq (3.12)

‖A − TA‖ ≤ Uqω, (3.13)

where Uq =
(

(1−ϑ)+ϑT
M (ϑ)

)
.

Proof. Applying the fractional integral to the perturbed Eq (3.12), we get

A(t) = µ + CF Iϑt Q
(
t,A(

t
η

),A(t)
)

+ CF Iϑt ∆(t).

Now using Eq (3.4), we have

‖A − TA‖ =

∥∥∥∥∥∥µ + CF Iϑt Q
(
t,A(

t
η

),A(t)
)

+ CF Iϑt ∆(t)

−

(
µ + CF Iϑt Q

(
t,A(

t
η

),A(t)
))∥∥∥∥∥∥

=

∥∥∥∥∥∥ (1 − ϑ)
M (ϑ)

∆(t) +
ϑ

M (ϑ)

∫ t

0
∆(ζ)dζ

∥∥∥∥∥∥
≤

(1 − ϑ)
M (ϑ)

sup
t∈P
|∆(t)| +

ϑ

M (ϑ)
sup
t∈P

∣∣∣∣∣∣
∫ t

0
∆(ζ)dζ

∣∣∣∣∣∣
≤

(1 − ϑ)
M (ϑ)

ω +
ϑT

M (ϑ)
ω

≤ Uqω.

This complete the required result. �

Theorem 3.6. Under the above Lemma 3.5, the solution of the proposed equation is Ulam-Hyers stable
and also generalized- Ulam-Hyers stable if Uq < 1.

Proof. Let A,A ∈ B, be any solution and a unique solution of the considered equation respectively.
Then∥∥∥A−A∥∥∥ =

∥∥∥A− TA∥∥∥
AIMS Mathematics Volume 6, Issue 9, 9981–9997.
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≤ ‖A − TA‖ +
∥∥∥TA − TA∥∥∥

≤ Uqω + sup
t∈P

∣∣∣∣∣∣
[
Q

(
t,A(

t
η

),A(t)
)
− Q0

]
1 − ϑ
M (ϑ)

+
ϑ

M (ϑ)

∫ t

0
Q

(
ζ,A(

ζ

η
),A(ζ)

)
dζ

−

[[
Q

(
t,A(

t
η

),A(t)
)
− Q0

]
1 − ϑ
M (ϑ)

+
ϑ

M (ϑ)

∫ t

0
Q

(
ζ,A(

ζ

η
),A(ζ)

)
dζ

]∣∣∣∣∣∣
≤ Uqω +

1 − ϑ
M (ϑ)

sup
t∈P

∣∣∣∣∣∣Q
(
t,A(

t
η

),A(t)
)
− Q

(
t,A(

t
η

),A(t)
)∣∣∣∣∣∣

+
ϑ

M (ϑ)
sup
t∈P

∫ t

0

[∣∣∣∣∣∣Q
(
t,A(

t
η

),A(t)
)
− Q

(
t,A(

t
η

),A(t)
)∣∣∣∣∣∣
]

dt

≤ Uqω +
(1 − ϑ)KQ

M (ϑ)

∥∥∥A−A∥∥∥ +
ϑTKQ
M (ϑ)

∥∥∥A−A∥∥∥
≤ Uqω +

(
(1 − ϑ)
M (ϑ)

+
ϑT

M (ϑ)

)
KQ

∥∥∥A−A∥∥∥∥∥∥A−A∥∥∥ ≤ Uqω + UqKQ
∥∥∥A−A∥∥∥ .

This implies that ∥∥∥A−A∥∥∥ ≤ Uqω[
1 − UqKQ

] .
Hence, the proposed problem is Ulam-Hyers stable. Consequently, it is generalized Ulam-Hyers stable.

�

Definition 3.7. Let A(t) ∈ B be any solution. Then the proposed equation is Ulam-Hyers-Rassias
stable for χ ∈ C [P ,R] , if for any ω > 0 with the following inequality∥∥∥∥∥∥CF

0 D
ϑ
tA(t) − Q

(
t,A(

t
η

),A(t)
)∥∥∥∥∥∥ ≤ χ(t)ω, (3.14)

there exists a unique solutionA(t) ∈ B of the proposed equation with Uq > 0 such that∥∥∥A−A∥∥∥ ≤ χ(t)Uqω. (3.15)

Further, if ∃ χ(ω) ∈ C [R,R] with χ(0) = 0 such that
∥∥∥A−A∥∥∥ ≤ Uqχ(ω), then the proposed equation

is generalized Ulam-Hyers-Rassias stable.

Remark 3.8. We perturb our proposed equation by taking a small perturbation ∆(t) ∈ C [P ,R] which
depends onA and satisfies the following

• For ω > 0, |∆(t)| ≤ ωχ(t).
• CF

0 D
ϑ
tA(t) = Q

(
t,A( t

η
),A(t)

)
+ ∆(t).

Lemma 3.9. The following result holds for the perturbed Eq (3.12)

‖A − TA‖ ≤ χ(t)ω, (3.16)

Proof. The proof is similar to the above Lemma 3.5. �
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Theorem 3.10. The solution of the proposed problem is Ulam-Hyers-Rassias stable if Uq < 1.

Proof. LetA be any solution andA be a unique solution of considered model, then∥∥∥A−A∥∥∥ =
∥∥∥A− TA∥∥∥

≤ ‖A − TA‖ +
∥∥∥TA − TA∥∥∥

≤ Uqχ(t)ω + sup
t∈P

∣∣∣∣∣∣
[
Q

(
t,A(

t
η

),A(t)
)
− Q0

]
1 − ϑ
M (ϑ)

+
ϑ

M (ϑ)

∫ t

0
Q

(
ζ,A(

ζ

η
),A(ζ)

)
dζ

−

[[
Q

(
t,A(

t
η

),A(t)
)
− Q0

]
1 − ϑ
M (ϑ)

+
ϑ

M (ϑ)

∫ t

0
Q

(
ζ,A(

ζ

η
),A(ζ)

)
dζ

]∣∣∣∣∣∣
≤ Uqχ(t)ω +

1 − ϑ
M (ϑ)

sup
t∈P

∣∣∣∣∣∣Q
(
t,A(

t
η

),A(t)
)
− Q

(
t,A(

t
η

),A(t)
)∣∣∣∣∣∣

+
ϑ

M (ϑ)
sup
t∈P

∫ t

0

[∣∣∣∣∣∣Q
(
t,A(

t
η

),A(t)
)
− Q

(
t,A(

t
η

),A(t)
)∣∣∣∣∣∣
]

dt

≤ Uqχ(t)ω +
(1 − ϑ)KQ

M (ϑ)

∥∥∥A−A∥∥∥ +
ϑTKQ
M (ϑ)

∥∥∥A−A∥∥∥
≤ Uqχ(t)ω +

(
(1 − ϑ)
M (ϑ)

+
ϑT

M (ϑ)

)
KQ

∥∥∥A−A∥∥∥∥∥∥A−A∥∥∥ ≤ Uqχ(t)ω + UqKQ
∥∥∥A−A∥∥∥ .

This implies that ∥∥∥A−A∥∥∥ ≤ Uqχ(t)ω[
1 − UqKQ

] .
Thus the proposed equation is Ulam-Hyers-Rassias stable. Consequently, it is generalized
Ulam-Hyers-Rassias stable. �

3.3. Solution of the proposed equation and simulations

In this section, we will deduce a solution of (1.2) by an efficient analytical technique called Laplace
transform. Via Laplace transform, we will find the concerned equation for semi-analytical solution.
Now applying the Laplace transform on (1.2), we get

L
[
CF
0 D

ϑ
tA(t)

]
= L

[
1
η
A(

t
η

) −A(t)
]
,

sA(s) −A(0)
s + ϑ(1 − s)

= A(ηs) −A(s),

sA(s) −A(0) = µ + (s + ϑ(1 − s))A(ηs) − (s + ϑ(1 − s))A(s),
sA(s) + (s + ϑ(1 − s))A(s) = µ + (s + ϑ(1 − s))A(ηs),
A(s) [s + s + ϑ(1 − s)] = µ + (s + ϑ(1 − s))A(ηs),

A(s) =
µ

2s + ϑ(1 − s)
+

(s + ϑ(1 − s))A(ηs)
2s + ϑ(1 − s)

.
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To get approximate solution, we assume the solution in series form as

A(s) =

∞∑
v=1

Av(s),

which gives

A0(s) =
µ

2s + ϑ(1 − s)
, (3.17)

Av(s) =
(s + ϑ(1 − s))Av−1(ηs)

2s + ϑ(1 − s)
, for v ≥ 1. (3.18)

The recursion formula (3.18) gives the following result

A1(s) =
(s + ϑ(1 − s))A0(ηs)

2s + ϑ(1 − s)

=

(
(s + ϑ(1 − s))
2s + ϑ(1 − s)

) (
µ

2ηs + ϑ(1 − ηs)

)
A1(s) =

µ (s + ϑ(1 − s))
(2s + ϑ(1 − s)) (2ηs + ϑ(1 − ηs))

, (3.19)

A2(s) =
(s + ϑ(1 − s))A1(ηs)

2s + ϑ(1 − s)

A2(s) =

(
(s + ϑ(1 − s))
2s + ϑ(1 − s)

) (
µ (ηs + ϑ(1 − ηs))

(2ηs + ϑ(1 − ηs))
(
2η2s + ϑ(1 − η2s)

))
A2(s) =

µ (s + ϑ(1 − s)) (ηs + ϑ(1 − ηs))
(2s + ϑ(1 − s)) (2ηs + ϑ(1 − ηs))

(
2η2s + ϑ(1 − η2s)

) , (3.20)

and so on. Now applying inverse Laplace transform to (3.17) and (3.19), we get

A0(t) =
−µ exp( ϑt

ϑ−2 )
ϑ − 2

(3.21)

A1(t) = µ

− exp( ϑt
ϑ−2 )

(ϑ − 2)2(η − 1)
+

exp( ϑt
(ϑ−2)η )(ϑ − 1 + 2η − ϑη)

(ϑ − 2)2(1 − η)η

 . (3.22)

So the first two term of the infinite series solution is given by

A(t) =
−µ exp( ϑt

ϑ−2 )
ϑ − 2

+ µ

− exp( ϑt
ϑ−2 )

(ϑ − 2)2(η − 1)
+

exp( ϑt
(ϑ−2)η )(ϑ − 1 + 2η − ϑη)

(ϑ − 2)2(1 − η)η

 + · · · (3.23)

Next we prove by fixed point theory that the obtained series solution is a convergent series, i.e., it
uniformly converges to the exact solution.

Proposition 3.11. Let B be a Banach space and Ω : B → B be a mapping satisfying the contraction
condition, i.e., for allA, Ā ∈ B,

∥∥∥Ω(A) −Ω(Ȳ)
∥∥∥ ≤ Φ

∥∥∥A− Ȳ∥∥∥ , where Φ ∈ (0, 1). Then Ω has a unique
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fixed pointA such thatA = ΩA.Moreover, the series solution of the proposed equation can be written
as

A j = ΩA j−1, A j−1 =

j−1∑
h=0

Ah, j = 1, 2, 3, . . . ,

Consider Gα(A) =
{
Ā ∈ B :

∥∥∥A− Ȳ∥∥∥ < α} and assume that A ∈ B, then A j ∈ Gα(A) and
lim j→∞A j = A.

Proof. To prove the required result, we use the concept of mathematical induction, for j = 1, we have

‖A1 −A‖ = ‖Ω(A0) −Ω(A)‖
≤ Φ ‖A0 −A‖ ,

which is true for j = 1. Assume that the result is true for j − 1, then∥∥∥A j−1 −A
∥∥∥ ≤ Φ j−1 ‖A0 −A‖ .

Now for j + 1, we have ∥∥∥A j −A
∥∥∥ =

∥∥∥Ω(A j−1) −Ω(A)
∥∥∥

≤ Φ
∥∥∥A j −A

∥∥∥
≤ ΦΦ j−1 ‖A0 −A‖

≤ Φ j ‖A0 −A‖

≤ Φ jα

≤ α,

this shows that A j ∈ Gα(A). Now, we prove the second part. Since
∥∥∥A j −A

∥∥∥ ≤ Φ j ‖A0 −A‖ and
Φ ∈ (0, 1), therefore, Φ j → 0 as j → ∞. Consequently,

∥∥∥A j −A
∥∥∥ → 0 as j → ∞. Thus, lim j→∞A j =

A. �
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Figure 1. Graphical representation of solution (3.23) for µ = 1, η = 1.5 and at different
fractional orders.
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Figure 2. Graphical representation of solution (3.23) for µ = 5, η = 2 and at different
fractional orders.
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Figure 3. Graphical representation of solution (3.23) for µ = 100, η = 100 and at different
fractional orders.
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Figure 4. Graphical representation of solution (3.23) in 3D for µ = 1 and at different
fractional orders.
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Figure 5. Graphical representation of solution (3.23) in 3D for µ = 3 and at different
fractional orders.
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Figure 6. Graphical representation of solution (3.23) in 3D for µ = 5 and at different
fractional orders.

4. Conclusions

In this paper, we have investigated the Ambartsumian equation under a non-singular fractional
operator called the Caputo-Fabrizio operator. We have deduced the existence and uniqueness results
by Krasnoselskii’s fixed point theorem and Banach fixed point theorem. We have used the notion of
functional analysis to show that the proposed equation is Ulam-Hyers and Ulam-Hyers-Rassias stable.
We have used an efficient analytical method to find a novel series solution of the proposed equation.
We have proved that the series solution is convergent to the exact solution of the equation. Lastly, we
have simulated the obtained results for different non-integer orders belongs to (0,1] in Figures 1–6. We
have shown through graphs that when the fractional order tends to unity, then solution curves at non-
integer orders tend to solution curves at integer order. Thus, we conclude that nonsingular fractional
operators are appropriate for the study of the dynamics of a model at fractional orders. In the future,
we will study the concerned equation under more generalized non-integers derivatives.
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