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1. Introduction 

In 1925, Hardy [1] gave a generalization of the Hilbert’s inequality by introducing one pair of 

conjugated exponents ),( qp  which satisfies 
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where the constant factor sin( / )p

 is the best possible. The inequality (1) is called the Hardy-Hilbert 

inequality. In particular, when ,2== qp  the Hardy-Hilbert inequality reduces to the Hilbert’s 
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inequality (see [2]). As is known to us, the Hardy-Hilbert inequality plays an important role in 

analysis number theory, real analysis and divergent series theory (see [3]). 

For the continuous case, the integral version of Hardy-Hilbert inequality can be stated as 

follows (see [3], Theorem 316): 
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where the constant factor sin( / )p

  is the best possible. 

The Hardy-Hilbert inequalities (1) and (2) has been studied extensively, numerous variants, 

generalizations, and extensions can be found in the literatures (see [4–8]). 

Motivated by the Hardy-Hilbert inequality, in 1929, Mulholland [9] proposed a similar version 

of inequality (1), which contains the same best possible constant factor sin( / )p

  as in (1), i.e., 
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Obviously, the Mulholland’s inequality (3) can be rewritten in an equivalent form as: 
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In recent years, the Mulholland inequality has been generalized by various methods of 

constructing parameters, see [10–15] and the references cited therein. 

Let us recall some results which are connected with the current investigation. Hong and Wen [16] 

and Hong [17] studied the Hilbert type series inequalities and the Hilbert type integral inequalities 

with homogeneous kernel, respectively. They established the necessary and sufficient condition for 

which the inequalities hold under the best constant factor. Subsequently, by using the 

quasi-homogeneous kernels instead of the homogeneous kernel in the Hilbert type integral 

inequalities, Hong, He and Yang [18] established the necessary and sufficient condition for which the 

inequalities hold under the best constant factor. Recently, with the help of the Euler-Maclaurin 

summation formula, Yang, Wu and Liao [19] and gave the extension of Hardy-Hilbert’s inequality 

and its equivalent forms. In [20], Yang, Wu and Chen investigated the generalization of 

Hardy-Littlewood-Polya’s inequality and its equivalent forms. 

In this paper, following the ideas of [16–20], we will study the Mulholland-type inequalities. 

The present research objects are structurally different from Hilbert type inequalities, and this will 

involve new techniques in dealing with the inequalities. Specifically, we will establish a reverse 

Mulholland-type inequality with multi-parameters. And then, we discuss the equivalent statements of 

the best possible constant factor associated with several parameters. Finally, we illustrate that some 

new inequalities of Mulholland-type can be derived from the equivalent expressions of the reverse 

Mulholland-type inequality. 
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2. Preliminaries 

In this section, we present some preliminary results which are essential for establishing our 

main results in subsequent sections. We begin with introducing the notations ),()( yxk 
  and , ( )k    

with their associated formulas. 

(i) In view of the following expression (see [21]) 
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(ii) For ,0,   we set the homogeneous function of order −  as follows: 
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It follows that ),()( yxk 
  is a positive and continuous function with respect to 0, yx . For 

,yx   we obtain 
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for ,yx  0),( 

 yx
x
 . It follows that ),( yx  is strictly decreasing (resp. increasing) with respect 

to yx  (resp. yx  ). Since )0(0),(min),(
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strictly decreasing with respect to 0x . In the same way, we can show that ),()( yxk 
  is also 

strictly decreasing with respect to 0y . 
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Definition 1. We define the following weight functions: 
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Lemma 1. For 12  , we have 
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Hence, we get the inequality (8). 
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Hence, we deduce the inequality (9). The Lemma 1 is proved. 
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Lemma 2. We have the following inequality: 
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By (8) and (9), we get the inequality (11). This completes the proof of Lemma 2. 
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Hence, inequality (12) is an extension of inequality (13). 

Lemma 3. For any 0 , we have 
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Hence, inequality (14) follows. The proof of Lemma 3 is complete. 
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Then we find 
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The Lemma 4 is proved. 
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The proof of Lemma 5 is completed. 
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Lemma 6. If ,|||| 021  p−−  and the constant factor )()( 1,2,
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qp kk −  in (11) is the 

best possible, then we have 21  += . 

Proof. If the constant factor )()( 1,2,
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qp kk −  in (11) (or (16)) is the best possible, then by (12) 
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It follows that (17) keeps the form of equality. 
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Namely, 21  += . This completes the proof of Lemma 6. 

3. Main results 

Theorem 1. Inequality (11) is equivalent to the following inequalities: 
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Proof. Suppose that (18) is valid. By the reverse Hӧlder inequality, we have 
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Then by (18), we obtain (11). On the other hand, assuming that (11) is valid, we set 
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thus, (18) follows, which is equivalent to (11). 

Suppose that (19) is valid. By the reverse Hӧlder inequality, we have 
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It follows that 
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thereby, (19) follows, which is equivalent to (11). Hence, inequalities (11), (18) and (19) are 

equivalent. 

This completes the proof of Theorem 1. 
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Proof. (i) (ii). By (i), we have 
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=−=−

−→−→
. 

Then by (i), (15) and the above result, we find 

==+=+
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−
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 kkk
p

p
qp

)()( 1,2,

11

 
qp kk − . 

(ii) (iii). by (ii), (17) keeps the form of equality. In view of the proof of Lemma 6, it follows 

that 21  += . 

(iii) (i). By (iii), for 21  += , both )()( 1,2,

11

 
qp kk −  and )( 12

, qp
k



 +
−

 are equal to

)( 1, k , which are independent of ,p q . Hence, we have (i) (ii) (iii). 

(iii) (iv). By Lemma 5 and Lemma 6, we have the conclusions. 

(iv) (v). If the constant factor in (11) is the best possible, then so is the constant factor in (18) 

(resp. (19)). Otherwise, by (20) (resp. (22)), we would reach a contradiction that the constant factor 

in (11) is not the best possible. On the other hand, if the constant factor in (18) (resp. (19)) is the best 

possible, then so is the constant factor in (11). Otherwise, by (21) (resp. (23)), we would reach a 

contradiction that the constant factor in (18) (resp. (19)) is not the best possible. 

Hence, the statements (i), (ii), (iii), (iv) and (v) are equivalent. The proof of Theorem 2 is 

complete. 

4. An application 

In this section, we illustrate that some novel inequalities of Mulholland type can be derived 

from our main results as special cases. 

Remark 3. Taking 1==   in (24) and (25) respectively, we have the following inequalities 

which is equivalent to (13) with the best possible constant factor )( 1, k : 

p

p

p

n

p

m

mnm

nm

nn

n a
1

1
1,

12

])([
2 2

lnln

lnln

)),(
~

1(

ln 


=



=
−

−

− ++−

−










 

p

p

p p

m

m
m

mak
1

1

1)11(

])[(
2

ln
1, 



=

−

−−




 ,         (26) 

q
q q

m n

nnm

nm
m

m b
1

11

])([
2 2

lnln

lnlnln 


=



=
−

−
++

−





 

q

q

q q

n

n
n

nbnk
1

1

1)21(

])),(
~

1()[(
2

ln
1,1, 



=

−

−−

−


  .      (27) 

In particular, putting 
2
1

21,1 ===  in (13), (26) and (27) respectively, we have the following 

equivalent reverse inequalities with the best possible constant factor 
)1(21
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

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Choosing 1= in (28), (29) and (30) respectively, we have the reverse of inequality (3) and the 

equivalent forms with the best possible constant factor  : 
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5. Conclusions 

In this paper, by the use of the weight coefficients and the idea of introducing parameters, a new 

reverse Mulholland-type inequality with multi-parameters and the equivalent forms were given in 

Lemma 2 and Theorem 1. The equivalent statements of the best possible constant factor related to 

several parameters were obtained in Theorem 2. Some other inequalities associated with reverse 

Mulholland-type inequality were established in Remarks 1 and 3. The lemmas and theorems 

presented in this paper provided an extensive account of this type of inequalities. 
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