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1. Introduction

Bilinear optimal control problems are types of quintessential optimal control problems governed by
a partial differential equation, which investigated in material mechanics, engineering mechanics, and
engineering design, etc [9,11,22]. Effective numerical methods, such as in [1,12,21] for finite element
methods, [4, 5] for spectral Galerkin methods, and [6] for fast algorithms, are the key to the successful
application of optimal control problems in the practical field. Accordingly, the study of the efficient
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numerical algorithm for the bilinear optimal control problem has far-reaching theoretical value and
application prospects.

The finite element method is frequently applied to solve optimal control problems and uses the
thought of mathematical approximation to model the actual physical system. It replaces complex
problems with simpler ones by assuming that each element has a suitable, simple approximate solution
and then derives a universal satisfaction condition for the solution domain [10,23]. Since the actual
problem is replaced by a simpler one, this solution is not precise, but approximate. Given that the finite
element method has high computational accuracy and can adapt to a variety of complex shapes, it has
become an effective engineering analysis method.

Babuska first proposed the adaptive finite element method [2]. The adaptive finite element method
1s an accurate and efficient method of finite element discretization, which saves a lot of calculation time
based on ensuring the specified accuracy. Appropriate grids can enormously reduce the errors resulting
from the discretization of finite element approximation procedure in copying with an optimal control
problem. As the case stands, the solutions for the optimal control problem of the nonlinear system
are generally not available. In addition to the complexity and diversity of the nonlinear equations, it is
practicable to solve the nonlinear equations with the thought of the adaptive finite element method.

Adaptive finite element methods had popularized for many years, but the theoretical analysis of the
entire algorithm has just been actualized. The subject work in the early stage was made by Dorfler [13],
in which he investigated an adaptive finite element for Poisson’s equation by a reduction of energy
errors under a mild assumption on the initial grid 77,. Later, Demlow, Morin, et-al. [14,24,25] proved
the convergence of adaptive finite element methods without the mild assumption. Then another decisive
issue of adaptive finite element methods has been investigated by Binev et al. [3]. In the last decades,
much work has been done on the concept of total error and the sum of error energy plus oscillations
[8,12,26]. Recently, Liu and Yan [22] found that adaptive finite element methods could be successfully
applied in constrained optimal control problems. The later investigations could be found in [15, 19].
Inspired by these works, Gong and Yan [18] investigated the convergence and quasi-optimality of an
adaptive finite element for control constrained optimal control problems via applying variation control
discretization. Later, Leng and Chen [20] studied the convergence of an adaptive finite element method
for optimal control problems with integral control constraints.

To proceed, Section 2 next focuses on the bilinear optimal control problem with integral control
constraints, which adopt piecewise constant discretization to deal with the control via. For the state
and the co-state, by applying continuous piecewise linear discretization, respectively. Section 3 deduce
a posteriori error estimate. For the convergence and the quasi-optimality, we prove them relying on
quasi-orthogonality and discrete local upper bound. Section 4 based on the mild assumption to the
initial grids, obtain the proof of convergence and quasi-optimality employing the solution operator of
nonlinear elliptic equations. Section 5 then advances some numerical illustration.

Here are some notations that will be employed in this paper. Let € be a bounded Lipschitz domain
on R? and 6Q denote the boundary of Q. We adopt the standard notation W"4(w) for Sobolev space
with norm |- ||,.4., and seminorm |- |, ,,. Where w C €, and we will omit the sub description if w = Q.
We denote W™(Q) by H™(€) and set Hy(Q) = {v € H'(Q) : v =0 0on 9Q}. Form = 0 and g = 2,
we denote WO2(w) = L*(w) and set || - llo2w = |l - llow- Let T3, denote the initial partition of Q into
disjoint triangles. By newest-vertex bisections for 77,,, we obtain a class T of conforming partitions.
For 75,7, € T, we use 7, C 7, to indicate that 7, is a refinement of 77,, where hy = |T|'/2. Denote the
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L? inner product by (-, -), and let C be a constant independent of grids size.
2. A residual-based posteriori error estimates

In this paper, we focus our attention on the following bilinear convex optimal control problem:

(1 , @ o
min {1y = vl + Sl e
—Ayt+uy=f, inQ, ylo =0, (2.2)

where Q and Qy are bounded open sets in R? with a Lipschitz boundary dQ and dQy. Let f € L*(Q),
and U, be a closed convex set defined as follows

Uuit = {u € LA(Q) : f u = 0}.

Qu

We take the state space V = H, (L), the control space U = L*(Qy), and H = L*(Q) to determine the
concept of finite element approximation for our discussion with the bilinear optimal control problems
(2.1)-(2.2). We first give a weak formula for the state equation

a(y,v)szy-Vvdx, YyveV,

Q

(fi.f)= | fifedx, Y (fi,f.) e HXH,
Q

(y,v):fyvdx, VY (fi,f) e UxU.
Qu

We set a norm |||, = Va(v,v), which is equivalent to |[v||;. Exist constants ¢ and C that satisfies
a(v,v) = cVlly,  a(,v) < ClhllvIVlly, Y y,veV. (2.3)

Then the bilinear optimal control problem (2.1)-(2.2) can be restated as

. (1 a
min {1y - vl + Sl (2.4)
a(y, V) + Wy, v) = (f,1), VveV, 2.5)

It is well known that the optimal control problem (2.4)-(2.5) has a solution (y, #) which was proved in
the Theorem 2.2.4 of [22], and that if a pair (y, u) is the solution of (2.4)-(2.5), then there exist a costate
p € V such that the triplet (y, u, p) satisfies the following optimality conditions:

a(y,v) + (uy,v) = (f,v), VYvey, (2.6)
a(g,p) + (up,q) = (y=ya,q), VYgEeV, 2.7
(au—-yp,v—u)y 20, VvelU, cCU. (2.8)

For (2.6), since the coercivity of a(, -), and we set a operator S : L*(Q) — Hé (Q) such that Su = y.
For (2.7), let S* be the adjoint operator of S, we assume that y — y, is given, such that S*(y — y,) = p.
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Let V), be the continuous piecewise linear finite element space for the partition 7, € T. We define U"
as the piecewise constant finite element space of 7. Set UZ‘ L, =lmelU b fg v, > 0}, then we derive
the standard finite element discretization for the bilinear optimal control problem

(1 A
min {1 =l + 5 sl . 2.9)
a(y/’t’ V) + (”h)’ha V) = (f’ V), Yve Vh' (210)

It is well known that the optimal control problem (2.9)-(2.10) has a solution (y,, u;) and that if a pair
Vp,up) € Vj X Uﬁ , 18 the solution of (2.9)-(2.10), then there is a co-state p, € Vj, such that the triplet
(vn, un, pp) satisfies the following optimality conditions

a(yh,v)"'(uh)’h,v) = (fav)’ VVE Vh - ‘/a (211)
a(q, pr) + WUppn, @) = O —ya-q), Vg€V, CV, (2.12)
(auy, — yppi, v —un)y 20, YvelU' cU. (2.13)

Similarly, we set a operator S,: U fl’ ', — Vj such that Su;, = y,. Let S be the adjoint operator of S,
such that S (y, — ya) = pj. Let us now introduce some error indicators which we will frequently use in
this paper, namely the error 7(-) and oscillation osc(:). For 7, € T, T € 7, that are defined by:

(s T) = BV pall2 7,

7@t i T) = HEIlf = wnynllozr + hrllIVYA] - 1l g
., O P> T) = B3llyn = Ya — unpillg 7 + Arll[V pa] - 0l g7 50
0scy, (f, T) = Wllf = frllG 7

osc. n = ya: T) = W3l = ya) = On = Yo)r Il 1+

where u, € U" and y,, p, € Vi, fr is L*-projection of f onto piecewise constant space on T and

fr = % For w C 773, such that

M (P @) = D 7, (o T,

Tew
0sch(f,w) = ) 0sck(f,T),
Tew

Similarly, ”%:r,l(”h’ Vi W), ng’,rh (tp, yp, w) and osczﬂ (yn — Y4, w) can be denoted as well.
Before we discuss residual-based posteriori error estimates for the bilinear optimal control problem,
we introduce the well-known result for the integral averaging operator [12].

Lemma 2.1. Let nj : L'(Qy) — U" C U be the integral averaging operator such that

1
Y = — , YT eT,.
()l T fTv h
Then form = 0,1 and 1 < g < oo, here

v —mvllogr < ChypVlngr, Y ve W™ (Qy). (2.14)
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We next discuss the residual-based posteriori error estimates for the bilinear optimal control
problem. Moreover, we introduce the following auxiliary problems

a(y",v) + uy",v) = (f,v), Vvey, (2.15)
a(g, P+ 0" p" @) = On—yarq), YVvEV. (2.16)

Here we state the theorem about a posteriori error estimates.

Theorem 2.1. Let (y,u,p) € Hé(Q) X Ugg X Hé(Q) be the solution of problems (2.6)-(2.8), and
Vpy tn, pr) € Vi X UZ’d X V), be the solution of problems (2.11)-(2.13). Then exist constants ¢ and
C holds

llu = willg + ly = yall} + lp = pall;
SC(U%;;—,,(P}“ Thn) + U%,Th(uh,)’h, Thn) + U%,Th()’h, DPisTh)), (2.17)

and

COT . (Phs T3 + 13 s Vs Th) + o, s P Ti))
<llu = will§ + 1ty = yall2 + lp = pall; + 0s¢. (f, Ti) + 0sci n = Ya» Ti)- (2.18)

Proof. By applying Lemma 2.1, we infer that

D Wpn =7l < € (o T,
TeTh

where 7, is the L?>—projection operator onto piecewise constant space on 7. Therefore, it follows from
Theorem 3.1 of [16], we derive that

llu = ullg 7 <C Z pn = 7pallo.r + C15.. (s Y T) + C1 . s Py T)
TeTh

<COT, 7. (Pis T) + M, (s Y T + 137 Ot P T))- (2.19)

Assume that e’ = p" — p;,, and e} = fyeP, where #, is the average interpolation operator defined in
Lemma 3.2 of [17], then we obtain

cllp” = pallz <(Ve?, p" = pi) + wn(p" = pu), €”)
=(V(e" = €}),V(p" - pn)) + (uh<ph —pn). e’ —ef)
+ (e, p" = pi) + (un(p" = pu), et

-, f (0% = Ya = wnpa)(e” =€)

f([Vph 1-m)(e” —ef) = " = yn, e

TeTh 8T\HQ
<C(@) Y h f On =y = wpa)® + C@) D hr | (pul - w7
TeTh aT\o0Q
+Co Y f le? = P+ Cam > hrle” = el + CINY' = yullolle” o
TeTh aT\oQ
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<C(@) Y 1 f G =Ya = wpp? + C@) " by | (Vpal-m)?
T

TeT, AT\OQ or
) 2
+ C(@)llyn = y'lly + Colle|l;,

where [|V]|p4 < C|v||; is defined in the embedding theorem of [7], and the property |[v||; < C. Then, let

—_ c ;
0= 55, We obtain

w18 <C Y0 [ Gy
T

TeT,

+C > hr | ((Vpal - + Iy = Y'IG. (2.20)
aT\0Q ar

Similarly, let &’ = y" -y, and eﬁ be the average interpolation of ¢”. It follows from (2.11) and (2.15)
that

el = il <(VO! = ), Ve') + o = i), e)
=(VO" =y, V(€ = D) + un(y" = yu). € = €))

= Z fT (f —upyn)(€ —e)) — Z ([Vpal - m)(e — €))

TeTh anoa YT
<C(o) ).} f (f = wyn)* + C(@) > by f ((Vyn] - m)* + Corle’]2.
TeT T AT\oQ or
Thus, it holds that
=y <€ Y [(F=my+C Y b [ (- w @21
TeT), T aT\IQ ar
Note that
Iy = Yalla < Iy = Yalla + 1y = ¥ llus (2.22)
P = palla < 1P" = pall + 1lp = P"llas (2.23)
lip = P12+ lly = Y112 < Cllu — uyll5. (2.24)

Hence, (2.17) follows from (2.19)-(2.21) and (2.22)-(2.24).

To derive the a posteriori lower error bounds for the optimal control problems governed by bilinear
elliptic equations we use the standard bubble function technique (see [1,17,27]). Let b7 be the standard
third order polynomial bubble on 7 scaled with by = A;4,45. We denote by {4, 4,, A3} the barycentric
coordinates of 7. Due to y, is piecewise linear, we set

wr = (Oh = Ya)r — YaPn)b7s

b2 ..
where ¢; = meT denotes a positive constant, here

||WT||%,T = fc%(()’h —Ya)r — wpp)°by < ¢ f((yh — Y — Wnpn)’
T T
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Then there holds ;4,45 = 0 on 9T, and satisfies
wrloraa = cl(On = Yo)r — unPn)(A1223) a7 = 0.
Moreover, we obtain
Vwrlaraea = 2¢1((n — ya)r — uppr)(A1243)V(A1 A, 43)|ar = 0,

thus we can conclude that wy € HS(T). Using the results from [1,27], we derive that

i,y < Chy? f Wi (T)P.
T

We set 7' be a reference element, and X = F 7(X) = X + br be an affine map from 7 onto T, we also set
W = w o F;'(X). Thus we conclude that

2 A <\ (2
wrloy = f Wor(X)P.
T

Where wy € Hy(T), we obtain that Wy € Hg(f). Using the Poincare’s inequality, we deduce the results

below
WwrX)F < C f D Wr(X)I,
ff ’ >, [ 1Dy

lal=2

such that
z < Chi z
|WT|0,T T|WT|0,2,T-

Thus we can obtain that
h7? 2 < 2 < Ch7? 2 YT €T, 2.25
chny ”WT”(),T |WT|0,2,T T ||WT||0,T, he (2.25)

Then use of bubble function wy with (2.25) yields

fhzr((yh —Ya)r = Yupr) = fhzT()’h = Ya)T — UhPR)WT
T T
< f(yh = Ya = uppn = (Y = Ya — up))wr

T

+C(0) f 5 = Ya = On = yor) + CohliwrlR,
T
= - f V(ph = p)Vwr + f % = Y)wr + f (upi — up)
T T T
+C@) [ On=3a=On =y + Cotwnli
T

<C()llps = pllz7 + C@lyn = Ylig 7 + C(@)llutn = ullg 7

+ C(0) f h3(n = ya — On = yor)* + Coh?wrllg 7,
T
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We set u,p, — up = u,(p, — p) + (u, — u)p, such that
fh%@h = Ya — Up — Ph)2
T
<C f (h = Yo)r — wppn)* + C f h3(h = ya = On = yoIr))°
T

T

<Cllpn = pllz.r + Cllyn = ¥lls 7 + Cllay, — ully r + C f W n = Ya = O = Ya)1))*- (2.26)
T

Then by using the Schwarz’s inequality, it follows from (2.25) that

f hr([Vpul-m)* = | ([Vpul - m)war = ([Vpr]l -m = [Vp] -m)wyr
or or ar
= f V(py — p)Vwyr + f (Y = ya — up)wer
ar ar
<C()llpn - P||iaT\ag + f (y = yn)war
or
+ f (Yh = Ya — unpr)Wor + f (up — uppp)war
or or
SC(O-)”ph - p”i[jT\aQ + C(O-)“y - yh”é’aT\ag + C(O-)”M - uh”é’aT\ag

2 2 -2 2
+C(0) f Vh = Ya — uppp)” + CO—(”WC')T“a,aT\{)Q + hT ”WﬁT”oﬁT\aQ)’
oT

assume that up — u,p;, = (u — u,)p + u,(p — pr). Then there holds

f he (Vo] -0 <Cllps = Pl o0 + Cly = ¥l 7100
oT
+ Cllu = upll§ g\ o0, + Cf ' = Ya — UnPn)™. (2.27)
oT

Applying (2.26)-(2.27) and the Poincare’s inequality, we obtain

n%,‘i’h(yh,ph,ﬂ) = Z fh%(Yh —Ya — i) + Z f hr([Vpsu] - m)®
7T, VT arvoq YT
<Cllp = pallz + Clly = yullZ + Cllu — wll§ + COSCrZrh()’h -ya, T). (2.28)

Similarly, we also derive that

., (s Vs T3) = Z fhzr(f —uppp)’ + Z f hr([Vyn] - m)?
re7y VT ar\oQ Y or
<Clip - pullz + Clly = yullz + Cliu = |l + Coscy. (f, T). (2.29)

Combining Lemma 3.6 of [17], we can derive the same result for bilinear elliptic equations

2 2 2
lpn — ﬂhph”()j < Cllu - uh”o,T +Cllp - thO,T'
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From Lemma 2.1, we infer that

lpn = 7upulls 7 < CREIV pull; 1.

Then using the inverse estimates to infer that

M. (P Th) = Z h3llpn = mupilli 7 < Cllu = uyllg + Cllp = pall2, (2.30)
TeT
and hence, (2.18) follows from (2.28)-(2.30). O

Theorem 2.1 gives reliable and efficient posteriori error estimates. Now we introduce an adaptive
finite element algorithm to explain what we mainly investigate in this paper.

Algorithm 2.1. Adaptive finite element algorithm for bilinear optimal control problems:

(0) Given an initial mesh T}, and construct finite element space UZ; and Vy,. Select marking
parameter O < 0 < 1 and set k := 0.

(1) Solve the discrete bilinear optimal control problem (2.11)-(2.13), then obtain an approximate
solution (yn,, Un,, pn,) With respect to T,.

(2) Compute the local error estimator ng, (T) for all T € Th,.

(3) Select a minimal subset M, of T}, such that

M7, Mu) > 67, (Th,),

where ﬂ%—hk (@) = 171 - (Phs @) + 115 o Uy V> ) + 175 - Vs P> ) for all o € T,

(4) Refine M,, by bisecting b > 1 times in passing from T}, to T}, and generally additional
elements are refined in the process in order to ensure that T,,, is conforming.

(5) Solve the discrete bilinear optimal control problem (2.11)-(2.13), then obtain approximate
solution (yn,,,, Un,.,» Ph,.,) With respect to Tp,,,.

(6) Set k =k + 1 and go to step (2).

3. Convergence analysis

In this section, we first introduce the relevant theorem of reference [24], where the authors construct
a simple and efficient adaptive finite element methods to ensure a reduction rate of data oscillation,
together with an error reduction based on a posteriori error estimators. In addition, we introduce the
internal node properties and mark the data oscillations. To derive the residual-type posterior error
estimates [21], we employ the lemmas as follows.

Lemma 3.1. Forallve H(Q), T, € T,T € T, there exists
IVlloaraa < ChZMvllor + ChY VI 7.

Here we state the following local perturbation property.

Lemma 3.2. For 7, € T, T € T}, let uy,,uy, € Ufjd, Viys Yhys Phys Py € Vi, we have
M7, Pns T) = m7,(Pry» T) <Chrllpn, — Piollars 3.1
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2.7, Wy s Yo T) = M7, Uiy, Vi, T) SC(hrllun, — upllor + hrllpn, — Pasllor

+11yn = Ynollawr)s (3.2)

1.7 Onys Prys T) = 13,75, Vnys Piy> T) SC(hrllun, — unyllo.r + hrllyn, — yi,llo.r
+11pn = Prollawr)s (3.3)
oscr, O = Ya» T) = 05¢7, 0, = Yar T) <Chillyn, = Yiylla7- (3.4)

Proof. We only give the proof of (3.1) because of the proofs of (3.1), (3.3)-(3.4) are similar. By the
definition of n, ¢, (uy, yn, T'), we deduce that

2.7 Wiy Yigs T) <007, (g Yoo T) + IV Omy = )] - Mlloarion
+ hrllun, pr, = Wny Pisllo,r
<27, (s Yoo T) + 1PNV Oy = ¥)] - Mllo g0
+ Chrllup, — up,llo.r + Chrllpn, — pullor- (3.5)

With the help of inverse estimates and Lemma 3.1, we infer that

VG, = yi)] - Wlloarion < Chz 2 llya, = Yiollawr- (3.6)
Therefore (3.2) follows from (3.5)-(3.6). O
By using the similar method with [24], we prove the following result.

Lemma 3.3. Let T, C T, for Ty, ‘7~'h~€ T. M, C T, denotes the set of elements which are marked from
Tw to T Then for w, € U, @i, € U, v, pp € Vi, n, P € V3 and any 6,6, € (0,11, we have

7. (Brs Ti) = (1 + &){niﬂ(ph, T3) — (1= 2717, (P, Rh)}

< C(1+6") igllps = pll, (3.7)
and
g, e 51 T2) = (1 O a3 T30 = A7, Gt s M)}
< C(1+ 67" (Rgllun = llg + h3llpw — ally + llyn — 32 (3.8)
and
Uij-h(f’h, P Tn) — (1 + 5){U§,n(Yh, P> Th) — ﬂni,ﬂ(uh,yh, Mh)}
< CC1+ ™)l = 7l + Rl = 5l + 1o = ), (3.9)
and
052 (v = Ya- T O T4) = 205¢2 G = ya- T 0 T) < 2Chllyn = 3l (3.10)

where 1 =1 — 2‘3, ho = ;ngx hr and R, denotes the set of elements which are refined from T, to T
€ hg
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Proof. We only give the proof of (3.7)-(3.8) and (3.10) owing to the proof of (3.9) can be prove with
(3.8) similarly. From (3.1) of Lemma 3.2, then combining with the Young’s inequality yield
T, 7. (Bis Ti) <C; 3. (i T3) + Chzllps = pallz
+Con; 7. (P Ti) + €87 hlip = Pilly - (3.11)
Note for T € R;, € 7, that T will be bisected at least one time, it holds that

D s on TV <27 (p, TP

T'eT
For T € 7,\R,, we obtain
M7, T = mr,(p, TY.
Thus we can conclude that
M7, (P T0)> =117, (P Ri) + 117, (P T\ Rp)
<17, (P T)* = (L= 2717, (pr, Ri). (3.12)

Hence, (3.7) follows from (3.11)-(3.12).
From Lemma 3.2 and the Young’s inequality with parameter §, we deduce that

15 7 Gins $ns Tn) <15 o sy, T) + Chi (i = wnll§ + 1155 = pallg)
+ CO11, . (s i, Ti) + €8~ h (i, = wnlly + 1175 = pally)
+ 1154 = yullz + C57M15n = yull. (3.13)

Given a marked element 77 € M,, let 7 = {T € 7, : T c T'}. For yp, € V, C V;, we derive
the jump [Vy,] = 0O on the interior sides of U7 7. Let b be the number of bisections, it implies
hy = |T|> < 27°T'))!/? < 27%2hy,, and then it holds that

Z 77;7*—}1 (Mh, Yhs T) < 2_b/27]%’7—h(uh, Yhs T’)
7-]16717*/

When T € 7,\ M,, we check that

ng’ﬂ(uh,yh, T)< niﬂ (un, Yn, T).

Thus we conclude that

7 7. W Yo Th) =137, W Yo M) + 17 2 (1t Yo TR\ M)

<175, s s Ti) = (1 = 272713 o (s yis M) (3.14)
And hence, (3.8) follows from (3.13):(3.14).
It is obviously that for T € 7, N 7}, such that

0s¢r,(Yn = Ya, T) = 0scq, (yn = ya, T). (3.15)

From (3.4) of Lemma 3.2 and the Young’s inequality, such that
0scq (Vn — ya, T) < 20s¢q,(yn — ya, T) + 2h‘}||)7h - yhllfﬂ. (3.16)
Brings (3.15) into (3.16), we conclude that (3.10) follows from summing over T € 7, N 7, for (3.16).
O
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One difficulty in the proof of the convergence is lack of the orthogonality, thus we have to prove the
quasi-orthogonality. We introduce the following fundamental relationships for 77, where 75, € T,
T C T, such that

ot = v, 15 = Nlee = w115 = lotw, = v, 15 = 20 =ty e, = ), (3.17)

1y = Pz = 1y = 9llE = h = Yo 17 = 2007 = Vi Yoy = Vs (3.18)

1P = Peall} = P = pullz = 11pw, = Pl = 26(P = Phiys Py = Pii)s (3.19)
where (y,u, p) are the solution of (2.6)-(2.8), (yy,, un,;, pn,) and (Yu,.,, Un,,, Pn,,) are the solution of
(2.11)-(2.13) with respect to 7, and 7,,,, respectively.

Lemma 3.4. For 7}, T,., € T and T}, C Ty,,,, such that

2 2 2
(1 - 5)”” - uhi+1”0 - ||I/t - uhillo + ||uh,' - uhm”o

< €57 (1 7, (Pis R + T2 o)Wy 7, W Vs Ri) + 17, Ois Pis R))) (3.20)
and
(L= Oy = Yz = 1y = Yllz = Uy, = Va3 = Sllee = w115 = 6llp = P, 115
< C5™ (117, (P> R + T o) (7, s Y Ri) + 1, s P Ri))) (3.21)
and

(1 =P = pu |2 = lp = P2 + pn — Phu, 12 = Oll = w115 = S1ly = Yo, Il
<Cs™! (77?,7,1[_ (P> R+ T Z(ho)(ni,rrhl_(uh,-, Vs Ri) + 77%,7,1[_ Vhi> Py Rh))) ; (3.22)

we follow the idea of [28] to introduce the quantity J*(h) that

J*(y = sup inf IS f —vill..

FeL2(@)Ifllo=1 "<V

Proof. For T},,, and from (2.8), we obtain

(auh,‘+1 = Yhi1 Phivis Vi — u/’li+1) < 05 v Vp € UZ;;I . (323)

For UZd C UZ;;l and from (3.23), such that

ally,,, — up I =(up,,, up,,, — up,) — (QUp, Up,, — Up,)
SOVhisr Phicy> Uney — Uny) — (@, Uy, — Up,)
=(Vhiar Phivy = YhiPhi» Wniy — Un) + (QUn; = Yo, Prys Un, — Un,)
=it Py = Pri)s Wiy — i) + (P Ohiy = Yi)s Uiy — U,
+ (Qup, = Y, Dig> Un; — Uny,,)
SC(Pny = Phi> Uniyy — Un) + COhiyy = Yigs Unyyy — Un,)
+ (Qun; = Yn, Py Un, = Ung,,)- (3.24)
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Next, we divide (3.24) into three parts to prove. Firstly, Let x;, be the L>—projection onto UZP then for
T €Ty NTy,,, we obtain
(ﬂ'hiuhm - uhi+1)|T =0.

Thus we infer that

(a’/uhi = Y Phi> Un; — uhm) S(auhi = Y Phis T Upy — uhi+1)
:(phi - ﬂ./’liphi’ﬂ./’li(uhiﬂ - uhi) - (uhi+l - u/’li))
<Cn1,7, (Phys Ri)llan, — v, llos (3.25)

we denote R, be the set of elements that are refined from 77, to 7},,,. It follows from the definition of
S, there exists

(Phivy = P Uniyy — Un) =S (St Uney — Ya) = S, (S wtn; = Ya)s Uns,, — Un,)
=(S8 1 S hi Uiy = Ya) = S g (S hiyUn; = Ya)s Unyyy — Un,)
+ (S, Shiyttn; = Ya) = S 1, (S pttn, = Ya), p,,, — n,)
=(S noy Uiy — Un)s S ey Uy, — Up,))
+ (S, Shittn; = Ya) = S 1,.(S ttn, = Ya), tn,,, — Un,)
<(S o S i tny = Ya) = S 5 (St = Ya), U,y — Up,)
+ s = Yailly- (3.26)

i+1

Let ¢ € Hy(Q) be the solution of the following problem

a(én, @) = Sy, Snttn, = Ya) = S;,.Snttn, = ya)sq)s Y qeV.

Thus we obtain that

||S;’kl;+1 (Shi+luhi - yd) - SZ,-(Shiuhi - yd)”%
=a(pn = Gni»S .., (S h Ui, — Ya) — S7,(S wttn, — ¥a))
+ (S py Un, = S nltpgs Gn; — Gn) + (S pyy Un, — S nltn;> ), (3.27)

we denote ¢, the standard finite element estimate of ¢, with respect to Vj,. It follows from Proposition
2.1 of [18] that for V,,, C V,

i+1

a(dn = bn> S ., (S iy tn; = Ya) = S 1,.(S nttn, — Ya)
<a(n = bn> S ., (S hy Ui, = Ya) = S5, (Snttn; = Ya)
+a(dn = us S, (S it — Ya) — S 1, (S nttn; = ¥a))
<CT hollS (S iyt — ya) = S j.(S n,un, — }’d)||o(||5 hir Wiy = S hilinlla
+ 1S, S ttn, = ya) = S (S ttn, = ya)la), (3.28)

and
(S pyoy un; — S nltnys dn, — 1)
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SCT RIS .,y utn; = S it llollS ., (S vy thny — Ya) = S 1.(S it — ya)llos

and

(S iy Un; = S U Bn)
<CUS niyyttn; = S wttnllollS .., (S vyt = Ya) = S .S ntt, = Ya)llo-

From Lemma 3.6 of [12], we obtain

WS hiv iy — S mttnlla < Crios, (Ui Yii> Rin),
IS ., (S ntt; = Ya) = S (S nutn; = Yolla < Cn3 7, Ois Pigs R)-

Then let ¢, € Hé (Q) be the solution of the following problem
a(q, en) = (Sn, Un, — Swttn;»q), Y qeV.
With the help of the standard duality argument, we infer that

2
||Shi+] Mh,' - Sh,'u/’lillo
:a(S hisi Uh; — Shiuhi’ $n — (phi)
<CI hollS noyttn; = S nttn|lallS 1y e, — S it llo,

(3.29)

(3.30)

(3.31)
(3.32)

(3.33)

where ¢y, is the standard finite element estimate of ¢, with respect to Vi, . Then combining with

(3.26)-(3.33), there holds that

(Phicr = Piis Uiy = ) <ynyy = Yuall + CT o)z, (s Y Ri)

+ 13,75, Vnis Phes Ritn, — v, Mlo-

One easily sees that

yn., — Yillo =S n tniy — S it llo

Sllshi+luhi+l - Shi+l
SC”M},I- _ uhi+| ||0 + Cj(h())(nz,(]—h,—(uhi’ yhi’ Rh) + ]73,7-/11. (yh,', p/’li’ Rh)).

uhl‘HO + ||S/‘l,'+1uhi - Shiuhillo

Hence, (3.20) follows from (3.17), (3.24), and (3.34)-(3.35).
In order to prove (3.21), we have to provide the following

2a(y = Yhivrs Yhis1 — yhi) == 2(up = Uniy Phiys Yhipy — yhi)
:2(u(p - p/’li+1)’ Yn — yhi+1) + z(phm(u - uhi+l)’ Yh — yhi+1)
S6”“ - uhi+| ||S + 6||p - phi+1 ||(2) + 6_1||yhi+l - yh,’”%'

Thus we conclude that (3.21) follows from (3.18), (3.25), and (3.35)-(3.36).
Now we will give the proof of (3.22).

WP = Prillo =S5, (S niv iy = Ya) = S 1, (St = Ya)llo

(3.34)

(3.35)

(3.36)
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SIS, S b iy = Ya) = S (S hiy iy = Ya)llo
+ ||S;;i+l(Sh,'+| uh,‘ - yd) - Szi(Sh,'uhiH - yd)”o
<Cllun, = tp,, llo + CI ho) 12,7, Wi Yiis Ri) + 13,75, Ois Piis Ri)).- (3.37)

It is similar to (3.36) yields

2a(p = Priys Py = Pii) == 2000 = up) = Ohiyy = Uiy Phist)s Phisy = Phi)
=2(u(p = Phii)s Phisy — Pii) + 2(Pn, (U = Upy,,)s Diiyy = Piy)
+ OV = V> Py = Pii)
<6llu = wp, |I5 + NP = P g + 6 NPny — Pl
+ 611y = Vi 1Ig- (3.38)

Hence, (3.22) follows from (3.19), (3.25), and (3.37)-(3.38). m|
For 73, € T, we denote Uﬁé, V), and the solution (yy,, uy,, py,) of (2.11)-(2.13) with respect to 77,.

Then we define the following notations that
2 2 2 2
e, = llu = upllg + 11y = yullz + 1P = pullzs
2 2 2 2
Eh,‘ = ||u/’l,‘ - uhi+]||0 + ||)’h,- - yh,’+1||a + ||ph,~ - ph,-+1||a,
) 2 2
777“,11, (a)) = 772,7‘,” (uh;a Yhys (,l)) + 773,7”,,1, (Yh," Ph;» (,L)),
We now proceed to prove the contraction of the Algorithm 2.1.

Theorem 3.1. Let (y,u, p) € Hy(Q) X Uaq X H)(Q) be the solution of (2.5)-(2.7) and (yp, un, p) €
Vi x U 1 X Vi be the solution of (2.10)-(2.12) generated by the adaptive finite element algorithm 2.1.
There exist y; > 0, v, > 0 and a € (0, 1] depending only on the shape of regularity of initial T}, b, Q
and the marking parameter 6 € (0, 1] such that
elzz,u,. + ’)/177%’771,41 (phm ’ 771”1) + 7277’2]711.+1 (Thm)
<a(ey, + Vi1 g, (Pu Ti) + V27, (T), (3.39)
where hy sufficiently small, and hy < 1.

Proof. By Theorem 2.1, Lemma 3.3 and Lemma 3.3 yields

¢, <Criz, (Th,), (3.40)
M, (T <UL+ O, (T3,) = A, (M)} + CQ+67)ER, (3.41)
M, P Ti) <A+ 00T 7, (P Ti) = (1= 2707 1 (P R}
+C(1 + 6, hgllpn, = pi, |16, (3.42)
(1 -20)e; | <€, — Ep + C5™ (i g, (Prs Ri) + T (o)t (Th), (3.43)

where R), denote the set of elements which are refined from 77, to 7;,,. Combining with the upper
bound of Theorem 2.1, then choosing parameters ¥, ¥,, we obtain

(1 - 25)6/21,~+1 + 5/177%,‘7,,”1 (phm > ﬂm) + 5/277'2@”1 (Thm)
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<y, +¥a(1 + )iy, (T3,) — Aty <Mh.>} + 7,2+ 67HE], -
— (1 +6)1 =27 = €6 Difr, (Ry) + 711+ 61)n1¢h (ph T )
+ 6™ T2 (ho)igz, (Th) + 31 (L + 6 D307 7, (Phiys Tt
+ 177, (Thd) + 1, (o Ti) + i, (T).
We choose
11 +6)A =27 —cs! >0,
7CR+6 = 1. (3.44)
Then we find that

(1 =26)e;., +71(1 = C(1 + 6 kg T, Phic> Tht) + (2 = C(L+ 67 kg )17¢h (T hiar)
<ep + F1((1+6) + C(L+ 8 O 7, (Phirs Ti) = (1, (Pas Mi) + 117, (M)
+ 721+ 8) + 1 C(L+ 67 )i + C6~ T (ho))itg, (T,
where ¢ = min{y,(1 + §,)(1 = 27Y2) — C57!,9,C(2 + 67")}. Then choosing B8 € (0, 1) and using the
marking strategy of Algorithm 2.1 and Theorem 2.1, we derive that
(1 -28)e;,, + 71 (1 = C(1+6 kg )7717,, (Phicrs i) + 2 = C(A + 6~ Hg g, Thi)
<(1 - CP)e;, + F1((1 +61) + C(L+6™Dhg) = (1 = Bz, (Pws Thy)
+ 721+ 8) + 71C(L + 67O + €6~ T (ho) = cb(1 = )itz (Th,).

One easily sees that

2 2 ~2 2 2 ~7
e/’li+1 + 71771,7,1”1 (phm ’ ﬂliﬂ) + 7’2777,11_“ (771i+1) < allehi + az}’l’h,fr,li (phi’ Thi) + 037277‘7“,11. ((]711')’

where
F1(1 = C(1 + 6 Hh))
. L ’ (3.45)
F2—C(1+ 670
b= e ’ (3.46)
_1-cop
o = E, (3.47)
1 _ —
v - F1((L+61) + C(1+67HR2) - co(l ﬁ)’ (3.48)
y1(1 = C(1 + 6 Hh3)
17,2 1 q2 _ —
o = 721 +6) + 1CL+ 6,5 + C6™ (o) = 01 = ) (3.49)

Yo —=C(1+6 1)h2

By choosing sufficiently small 6 < 1 and  such that @, € (0, 1). As long as (3.48)-(3.49) are slightly
deformed, and combining with (3.44), when hy < 1 and 6;, 6 small enough, we can conclude that

a;€(0,1) and a3€(0,1).

Choosing @ = max{a, @z, @3}, and then (3.39) complete the rest of the proof. O
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4. Quasi-optimality analysis

In this section, we consider the quasi-optimality for the adaptive finite element method. Firstly we
introduce some interpretation of the notations. For 77, 7,, 75, € T, with the assumption that #77, be
the number of elements in 7, we also set 7, @ 7}, be the smallest common conforming refinement of
T, and T, [12,26], such that

H (T, ®Thy) < #Tp, +#T 0, — #T 4, 4.1)
According to [20], a function approximation class is defined by
A =y, 1, p.ya, f) € Hy(Q) x LA(Q) X Hy(Q) x LA(Q)
X LX) : (v, u, p, Yas fls < +oo},

where
(v, u, p, ya, f)ls :=sup N* inf inf {lle = I
N>0 ThETN (ypun,p) Vi U X Vi
+ 1y = yallz + llp = pall; + 0sc3, (f. Tw)) + 0scy, (vn — Yo T2,
and

Ty, := (T3 € T : #75 — #773, < Nol.

A localized upper bound will be given in the following lemmas, which play an important role in
proving the qusi-optimality for an adaptive finite element method.

Lemma 4.1. For 73,9, € T, and T, C T, let R, be the set of refined elements from T}, to T Let
Y, up, pr) and 3y, iy, pp) be the solutions of (2.11)—(2.13) with respect to T, and T respectively.
Then there exists a constant C, depending on the shape regularity of initial grids Ty, and b such that

Nl — dnllg + llyn = FallZ + lpn = pallZ < Cn%-h(Rh), 4.2)
where
U%I(Rh) = U?,rr,, (P> Ri) + U%,ﬂl(uh’)’h, Rn) + 77%,7-,, Vns Pis Rin)-
Proof. From (3.26)-(3.27) and (3.34)-(3.35), we obtain
llwn = Iy < Crp, (Ra)- (4.3)
By using the results of Lemma 3.6 (see [12]), we derive that
yn = Fnlla =S nttn — S jitlla
<WSwun = S5 = Siun = Silla + 1S5un = S5 = Sitnlla
<Cno.q7;,(un, Y, Ri) + llup — itnllo.- (4.4)
Then, it holds that
pn = Palla =IS3,(S witn = ya) = S 5(S jitn = ya)lla
<UIS (S nttn = ya) = S (Snttn = Yallla + S 5(S nttn = ya) = S (S ity — ya)lla
<Cn3,7:, ks Prs Ri) + 11yn = hlla- (4.5)
And thus we conclude that (4.2) follows from (4.3)-(4.5). O
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In the following lemma, we list the error indicators on the coarse grids that must satisfy a Dorfler
property on the refinement one.

Lemma 4.2. Assume that the marking parameter 0 € (0, 6*), where

~ C
20+ R+ 1

*

For 77, (f'h eTand T C (f'h, let (yy, up, py) and (3, ity,, pr) be the solutions of (2.11)-(2.13) with respect
to T, and T, respectively. If

e% + osc%(ff}) < ,U[e%-h + osc(zrh(‘]‘h)], 4.6)
is satisfied for u := %(1 - 9%). Then, the set Ry, of elements which are refined from T, to T, satisfies the

Dofler property
N7, (Ra) = 07, (Th),

where

er, = llu—ully +1ly = yallz + llp = pallz,

2 2 2
oscr, () = oscz, (f, w) + oscz, (Vi — Ya, w),
for w C Ty, and e(zf , oscff (T7) similarly to define.
h h

Proof. From (4.6) and Theorem 2.1, we derive

(1= 2)C2, (Th) <1 = 240)(e2, + 0563, (T)

Segrh - 26% + osczﬂ Ty — ZOSC% (T7).
Applications of the triangle inequality yields

Nl = w2 < 2l = iapl3 + 2l — a3,
Iy = yall2 < 2lly = 5ullZ + 2llyn — Full2,
P = pall2 < 2llp = Bull* + 2lips — pall>-

Thus, from (4.2), we obtain
er - 2e?fh < 2Cn7 (Ry). 4.7)

From (3.10), for T € 75, N T, it is easy to see that
05¢, O = Ya> T N Th) = 205¢% 5 = Yas Tw N T1) < 2Chgip, (Ry)- (4.8)
According to Remark 2.1 of [12], there holds for T € R,
oscr,(T) < g (T). 4.9)
By adopting (4.7)-(4.9), there holds

(1 = 20)Cr2, (Th) <QC(1 + ) + Vi (Ry),
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(1 = 2w 77, (Th) <ni7, (Ry),
O (Th) <nz, (R,

where c
g = > and 6= (1-2wo".
C( +hy) +1)

The following Lemma is essential to prove the quasi-optimality.

Lemma 4.3. Let (y, u, p) and (7,, UZZI, Vs Yni» Un;» Pi;) be the solution of (2.6)-(2.8) and the sequence

of grids, finite element spaces and discrete solutions produced by Algorithm 2.1, respectively. Assume
that the marking parameter 6 satisfies the condition in Lemma 4.2, then the following estimate is valid

#My, < C(CF 1y, o yas DI, + 056, (Ti)) %), (4.10)

l:f(uay’ P,)’d, f) € ﬂx.
Proof. Let e := ,qul(anh_ + 0S02¢h4(7'h,,)), where C; shall be produced in (4.13). Due to (uy,y, p, ya, f) €
A, then there exists a 75, € T and (v, e, pe) € U™ X Vi XV, such that

#Th, — #T 5, < Clu,y, p,yas PV €, (4.11)
llut = uellg + 1y = yell2 + llp = pell’ + OSC(zr,,g(f, Tho) + OSCZThS(‘/e Y0 Th) < €. 4.12)

Let (y., u., p.) be the solution of (2.6)-(2.8) with respect 75, = 7;_@® T, which is the smallest common
refinement of 7, and 7,. Next, we first prove the following estimate

ezﬂ* + oscgfh* <C (egfhe + oscgfhs), (4.13)
where

2 2 2 2
ez, = llu—uellg + 11y = yelly + llp = pellz

oscfzrhg (Th) = oscgrhe fsTn) + osc,zrhE Oe = YasTh,)-
Combining with the Young’s inequality yield

(u—u,u,—u) =(u— e, — ) — (U — Ue, Uy — U)
<(u—ue, U, — U)
2 2
< = uelly + Nl — uellg. (4.14)

Note that there holds the similar result to a(y — y., y. — ¥¢) and a(p — p., p« — pe). Thus combining with
(3.17)-(3.19) and (4.14), we find that

6(llue — uclly + 11y — yel? + 1p = pell?) 2w — w.ll§ + Nl — uclly + 1y = y.II2
+ly. = yellz + Ip = palz + 1Ips = pell2. (4.15)
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From (3.10) with 73, = 7, = 7. and y, = y., J» = Y, such that
05z, s = Ya» Th.) = 2053, (Ve = Ya» Th) < Chilly. = yell2. (4.16)

ForT' € T, let 71 :={T € T}, : T € T'}. There holds

(.07
S = fili= 2 ([ - fm

TeT 1 TeT 7

2
f 5 (L.

TeT 7+ |T|

(ff>2
f r-

eT lT’

fy, 17
<[ £
—C”f - fT’”o,T'-

Hence,
oscr,, +2(f,Tw,) < Coscr, +2(f, Th,)- 4.17)

And thus we conclude that (4.13) follows from (4.15)-(4.17). Then combining with (4.12), we find that

2 2 2 2
ey, Toscy (Th) <Cileg, +oscy, (Th))

<C\€ = pley, +oscy (Th)) (4.18)
Note that R, which is the set of refinement elements from 77, to 75, , it satisfies the marking property

of Lemma 4.2 that
#My, <H#R, <#T), —#T ), < #Th, — Thy- (4.19)

Thus we find that (4.10) follows from (4.11) and (4.19). O
The following theorem describes the quasi-optimality of an adaptive finite element method.

Theorem 4.1. Let (y,u, p) and (T}, UZ;, Vs Vi Wny» Pi;) be the solution of (2.6)-(2.8). Where the
sequence of grids, finite element spaces, and discrete solutions produced by Algorithm 2.1, respectively.
Assume that T}, satisfies the condition (b) of Section 4 (see [3]). Let (u,y, p,ya, f) € A, then there
holds

L -4
#Th, = #T5, < Clw,y, p,yas i (€7, + 0scy, (Th)) ™ (4.20)
provided hy < 1.

Proof. According to Lemma 2.3 of [12], we derive that

BT — #T 5, < Z M, (4.21)

J=0
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Combining (4.21) with Lemma 4.3 leads to
i-1 i1
1
BT, — #Th, < Z M,,CC, Z(ei + o5z (Th) %, (4.22)
=0 =0 '
where 1
L _1
Co = Cy'l(u, . p,yas I
An application of Theorem 2.1, such that
&+ V7, (i Ti) + il (i) = €, + 05¢, (Th). (4.23)

Thus we conclude that (4.20) follows from (4.22)-(4.23). |
5. Numerical examples

In this section, we are going to use the following iterations to solve the bilinear optimal control
problem numerically.

Algorithm S5.1. It follows from linear optimal control problems, there exist similar algorithms in the
reference [20], we define the following Algorithm 5.1 based on the bilinear optimal control problem:

ayh, wi) + @Y wa) = (Fwn), Y wy €V, (5.1)
alqn pf) + W' pf @n) = OF = yaran)s Y qn € Vi (5.2)
(uty + yiphva—1f) >0, Y vj e UL, (5.3)

Given an initial control ug € UZd, then substitute it into (5.1) yields y,ﬂ. And then substitute y,i into (5.2)
vields p}l. At last, substitute p}l into (5.3) yields u,ll Repeat the above step, we can solve (y’;l, p’;l, uﬁ), for
k=1,2,---, it holds that

1 -
M]Z _ a( _ Phplfz + max (0, P]Z))’

k
where P, is the L*-projection from L*(Q) to U" and p;, = fg\gl)h

For ease of analysis the solution of bilinear optimal control problem we constructing examples as
follows.

Example 1. The first example is a bilinear optimal control problem, we set state equation on Q =
(0, 1)?, and a = 0.5. We take the exact solution as

p = sinmx; sinmx;,

1
ug = —max{p, 0} - p,

(04
Yo = —Ap+up -y,
f=-Ay+uy,
y =21°p.
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In Example 1, the state and co-state are approximated by the piecewise linear elements, while
piecewise constant elements are used to approximate the control. We compute Example 1 on an
adaptive grid and a uniform grid respectively.
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Figure 1. The profiles of the exact state (left) and the numerical state (right) on adaptively
refined grid with 6 = 0.3 and 21 adaptive loops for Example 1 generated by Algorithm 2.1.
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Figure 2. The profiles of the exact co-state variables (left) and the numerical co-state
variables (right) on adaptively refined grid with 6 = 0.3 and 21 adaptive loops for Example 1
generated by Algorithm 2.1.

In Figure 1, we plot the profiles of the exact state and the numerical state on adaptive refinement
grid with 6 = 0.3 and 21 adaptive loops. We plot the profiles of the co-exact state variables and the
co-numerical state variables on adaptive refinement grid with 6 = 0.3 and 21 adaptive loops in Figure
2 as well. Connecting with Figure 1 and Figure 2, we find that although the solution of Example 1
is smooth, larger gradients can be observed in certain areas. Accordingly, the adaptive finite element
method may obtain a much smaller error compared to the uniform refinement.

We show the comparisons of convergence history of the errors on adaptively grids with 8 = 0.3 and
uniformly refined grids with § = 1 in Figure 3. We can observe 7? is approximately parallel to the
line slop —1 which is the optimal convergence rate we expected by using linear finite elements. This
situation confirms the theoretic results in Section 4. But in this example, the solutions of the optimal
control are quite smooth. Here is little difference in the convergence history of the errors compared to
uniform refinement.
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Figure 3. The comparisons of convergence history of the estimates on uniformly refined
grids with 6 = 1 (left) and adaptively refined grids with 6 = 0.3 (right) for Example 1.

Example 2. In the second example, we choose a = 0.3 with the exact solutions on Q = (0, 1)?

1
u = —(=p +max(0, p)),
a

3 sin 7rx; sin 7xs, if s(x1, x) <0,
=, if 5(x1,x2) = 0,
100 = D2+ (o = D2, i s(xp, x0) <0,
Y7o, if s(xy.x) > 0,

where s(x1,x2) = (x; — 0.2)> + (x, — 0.6)> — 0.04.

Similarly, the state and co-state are approximated by the piecewise linear elements, while piecewise
constant elements are used to approximate the control. We compute Example 2 on an adaptive grid
and a uniform grid respectively.

-0.08 -

Figure 4. The profiles of the numerical state (left) and the numerical co-state (right) on
adaptively refined grids with 6 = 0.3 for Example 2.
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Figure 5. The comparisons of convergence history of the estimates on uniformly refined
grids with 6 = 1 (left) and adaptively refined grids with 6 = 0.3 (right) for Example 2.

In Figure 4, we plot the profiles of the numerical state and the numerical co-state on 21 adaptive
loops with 8 = 0.3 for Example 2, both the numerical state and the numerical co-state can be seen in
the singularities around the peak. Further, the grids are concentrated at the peak. In Figure 5, we show
the convergence history of the estimators. We can see n? is approximately parallel to slop —1. From
the figure, it is easy to see that the second-order convergence for the reduction of error estimators for
the adaptively refined grids. In Example refexm?2, the optimal control is not smooth so that there is
much difference in using either the uniform or adaptive grids to approximate the control.
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