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Abstract: Let f be a proper total k-coloring of a simple graph G from V(G) ∪ E(G) to {1, 2, . . . , k},
let C(u, f ) be the set of the colors assigned to the edges incident with u, and let nd(G) and ∆(G) denote
the number of all vertices of degree d and the maximum degree in G, respectively. We call f a (2)-
vertex distinguishing total k-coloring (k-(2)-vdc for short) if C(u, f ) , C(v, f ) and C(u, f ) ∪ { f (u)} ,
C(v, f ) ∪ { f (v)} for distinct vertices u, v ∈ V(G). The minimum number k of colors required for which
G admits a k-(2)-vdc is denoted by χ′′2s(G). In this paper, we show that a tree T with n2(T ) ≤ n1(T )
has χ′′2s(T ) = n1(T ) if and only if T is not a tree with D(T ) = 2, 3 or n1(T ) = ∆(T ), where D(T ) is the
diameter of tree T .
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1. Introduction

The problem of vertex distinguishing colorings can be traced to two articles [3] and [4]. Burris and
Schelp [3] introduced a proper edge k-coloring of a simple graph G is called a vertex distinguishing
edge k-coloring (k-vdec, or vdec for short) if for any two distinct vertices u and v of G, the set of the
colors assigned to the edges incident with u differs from the set of the colors assigned to the edges
incident with v. The minimum number of colors required for all vertex distinguishing colorings of G
is denoted by χ ′s(G). Let nd(G) denote the number of all vertices of degree d in G, or nd = nd(G) if
no confusion. Furthermore, Burris and Schelp presented the following conjecture: Let G be a simple
graph having no isolated edges and at most one isolated vertex, and let k be the smallest integer such
that (k

d) ≥ nd for all d with respect to δ(G) ≤ d ≤ ∆(G). Then k ≤ χ ′s(G) ≤ k + 1. The above Conjecture
is known for some families of graphs, including complete graphs, complete bipartite graphs and many
trees [3]. Later it has been proved for graphs of large maximum degree [1] and for G a union of
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cycles or a union of paths [2]. Therefore, the most challenging cases seem to occur when G has small
maximum degree which is at least three. In this paper we show some results on trees to confirm
positively Burris-Schelp Conjecture.

Graphs mentioned here are undirected, finite and simple, and graph colorings are proper (so we omit
the term “proper” hereafter). We use standard terminology and notation of graph theory, and introduce
a new total coloring with two vertex distinguishing constraints. Let f be a total coloring of a simple
graph G from V(G)∪ E(G) to {1, 2, . . . , k}, and let C(u, f ) be the set of the colors assigned to the edges
incident with u. If f holds simultaneously

(DC): C(w, f ) , C(z, f ) and C(w, f ) ∪ { f (w)} , C(z, f ) ∪ { f (z)} for distinct w, z ∈ V(G),

then we call call f a (2)-vertex distinguishing total k-coloring, and write k-(2)-vdc for short. The
minimum number k of colors required for which G admits a k-(2)-vdc is denoted by χ′′2s(G). Clearly,
an edge coloring obtained by removing the colors assigned to vertices from a k-(2)-vdc of G is just
a k-vdec of G, which implies that χ′s(G) ≤ χ′′2s(G). We say a color a is missing at a vertex u means
a < C(u, f ) ∪ { f (u)}. A leaf is a vertex of degree one, and a k-degree vertex is one of degree k at least
two. The set of neighbors of a vertex u of G is denoted by NG(u), or N(u) if no confusion; the degree
dG(u) of u is equal to |NG(u)|. D(G) stands for the diameter of G. The shorthand notation [m, n] stands
for an integer set {m,m + 1, . . . , n} with n > m ≥ 0. Let Pn be a path on n vertices. In the present work,
we will show the following:
Theorem 1. Let T be a tree with n2(T ) ≤ n1(T ) and |T | ≥ 3. Then χ ′′2s(T ) = n1(T ) + 2 if T � P3, P4 ;
χ ′′2s(T ) = n1(T ) + 1 if T � P3, P4 and n1(T ) = ∆(T ) or D(T ) = 3; and χ ′′2s(T ) = n1(T ) for otherwise.

2. Basic lemmas

Lemma 2. Let T be a tree with n2(T ) ≥ n1(T ). Then there exists a 2-degree vertex such that one of its
neighbors is either a leaf or a vertex of degree 2.

Proof. Suppose (reductio and absurdum) that each 2-degree vertex x is not adjacent to a leaf and has

its neighborhood N(x) = {x1, x2} such that dT (xi) ≥ 3 for i = 1, 2. Then we have n2 ≤
∆∑

d=3
nd by the

assumption. Applying the formula n1 = 2 +
∆∑

d=3
(d − 2)nd shown in [5], we have n1 ≥ 2 + nd for d ≥ 3,

and

n1 ≥ 2 + n3 + 2
∆∑

d=4

nd = 2 + 2
∆∑

d=3

nd − n3,

which shows that
∆∑

d=3
nd ≤

1
2 (n1 + n3) − 1. It immediately deduces that

n2 ≤

∆∑
d=3

nd ≤
1
2

(n1 + n3) − 1 ≤ n1 − 2,

which contradicts to the hypothesis. �
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Lemma 3. Let T be a tree with D(T ) = 3. Then χ ′′2s(T ) = n1(T ) + 2 for |V(T )| = 4, and χ ′′2s(T ) =

n1(T ) + 1 for |V(T )| ≥ 5.

Proof. Observe that each tree of diameter 3, also, is a double star DS m+1,n+1 obtained by joining two
centers of two complete bipartite graphs K1,m and K1,n. When n = m = 1, T is a path of length 3
with n1(T ) = n2(T ), and we can verify χ ′′2s(T ) = n1(T ) + 2 by simply assigning colors to the edges and
vertices of T . For m+n ≥ 3, let V(K1,m) = {s, s1, s2, . . . , sm} and E(K1,m) = {ss1, ss2, . . . , ssm}; V(K1,n) =

{t, t1, t2, . . . , tn} and E(K1,n) = {tt1, tt2, . . . , ttn}, where s and t are the centers. Then V(DS m+1,n+1) =

V(K1,m) ∪ V(K1,n) and E(DS m+1,n+1) = E(K1,m) ∪ E(K1,n) ∪ {st}. Suppose that f is a k-(2)-vdc of
DS m+1,n+1 such that k = χ ′′2s(DS m+1,n+1). Since C(si, f ) , C(s j, f ) and C(ti, f ) , C(t j, f ) for i , j,
C(si, f ) , C(tl, f ) for i , l, and C(s, f ) , C(t, f ), k ≥ m + n + 1. This k-(2)-vdc f can be exactly
defined by setting f (ssi) = i for i ∈ [1,m], and f (si) = i − 1 for i ∈ [2,m], f (s1) = m; f (s) = m + 2,
f (st) = m+1, f (t) = 1; f (tt j) = m+1+ j for i ∈ [1, n], and f (t j) = m+ j for i ∈ [2, n], f (t1) = m+n+1. �

Lemma 4. For n ≥ 2, a 2-star, denoted as K(2)
1,2n, is a tree on 1 + 2n vertices such that every leaf of K1,n

is joined a new vertex out of K1,n by an edge. Then χ ′′2s(K
(2)
1,2n) = n + 1.

Proof. Suppose that K1,n has its own vertex set V(K1,n) = {w,w1,w2, . . . ,wn} and edge set E(K1,n) =

{ww1,ww2, . . . ,wwn}. By the definition of a 2-star K(2)
1,2n, we have V(K(2)

1,2n) = V(K1,n)∪S , where S = {z1,
z2, . . . , zn} with S ∩ V(K1,n) = ∅, and edge set E(K(2)

1,2n) = E(K1,n) ∪ {w1z1, w2z2, . . . , wnzn}. Clearly,
n1(K(2)

1,2n) = n, each zi is a leaf of K(2)
1,2n for i ∈ [1, n]. It is clear that χ ′′2s(K

(2)
1,2n) ≥ n+1. It is straightforward

to define an (n + 1)-(2)-vdc f of K(2)
1,2n as follows: f (w) = n + 1; f (wwi) = i for i ∈ [1, n]; f (wizi) = i− 1

for i ∈ [2, n], and f (w1z1) = n; f (wi) = i + 1 for i ∈ [1, n − 1], and f (wn) = 1; f (zi) = i for i ∈ [3, n],
and f (z1) = f (z2) = n + 1. �

Lemma 5. Let T be a tree with n2(T ) ≤ n1(T ) and |T | ≥ 3. If ∆(T ) = n1(T ), then χ ′′2s(T ) = n1(T ) + 2
for ∆(T ) = 2, and χ ′′2s(T ) = n1(T ) + 1 for ∆(T ) ≥ 3.

Proof. Write ni = ni(T ) for i ∈ [δ,∆], where δ = δ(T ) and ∆ = ∆(T ). By a formula n1 = 2 +
∑

3≤d≤∆

(d −

2)nd in [5] and ∆ = n1, we have n∆ = 1 and nd = 0 for 3 ≤ d ≤ ∆− 1. Thus, T is called a spider having
its body w with dT (w) = ∆ and legs Pi = wwi,1wi,2 · · ·wi,ki for ki ≥ 1 and i ∈ [1,∆]. When ki = 2 for
i ∈ [1,∆], T = K(2)

1,2∆
is a 2-star. When ∆(T ) = 2, T is a path of length 2 or 3, hence it easily gets that

χ ′′2s(T ) = n1 + 2. For ∆(T ) ≥ 3, we show χ ′′2s(T ) = n1(T ) + 1 in the following. If T is a 2-star, we are
done by Lemma 4. By induction on the order of spiders, and assume that T is not a 2-star.

Observe that there exists some ki = 1 since T is not a 2-star and n2(T ) ≤ n1(T ). Without loss of
generality, set k1 = 1, then we have a tree T1 = T − w1,1 with n1(T1) = n1 − 1 and ∆(T1) = ∆ − 1.

When n2(T1) ≤ n1(T1), by induction hypothesis, T1 has a p1-(2)-vdc f with χ ′′2s(T1) = p1 = n1(T1)+

1. Then we can extend f to an (n1 + 1)-(2)-vdc g of T as follows: g(z) = f (z) for z ∈ (V(T ) \ {w1,1}) ∪
(E(T ) \ {ww1,1}), g(ww1,1) = p1 + 1, g(w1,1) ∈ [1, p1] \ { f (w)}.

When n1(T1) = n2(T1) − 1 = n2 − 1, we meet every k j ≤ 2 for j ∈ [2,∆]. In this case, T1 is a spider
with χ ′′2s(T1) = n1(T1) + 1 = n1, the lemma holds. For some ki ≥ 3 with ki , k1, we can take a tree
T2 = T1−wi,ki−1+wi,ki−2wi,ki , here wi,ki−2 , w. Clearly, n1(T2) = n2(T2) = n2−1, so T1 has a p2-(2)-vdc f ′

with χ ′′2s(T2) = p2 = n1(T2)+1 = n1(T1)+1 = n1 by induction hypothesis. We define a (n1 +1)-(2)-vdc
g ′ of T by setting g ′(z) = f ′(z) for z ∈ (V(T ) \ {w1,1,wi,ki−1})∪ (E(T ) \ {ww1,1,wi,ki−2wi,ki−1,wi,ki−1wi,ki});
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g ′(ww1,1) = p2 + 1, g ′(w1,1) ∈ [1, p2] \ { f ′(w)}; g ′(wi,ki−2wi,ki−1) = p2 + 1, g ′(wi,ki−1) ∈ [1, p2] \
{ f ′(wi,ki−2), f ′(wi,ki−2wi,ki), f ′(wi,ki)}; and g ′(wi,ki−1wi,ki) = f ′(wi,ki−2wi,ki).

This completes the proof. �

3. Proof of Theorem 1

Let ni = ni(T ) for i = 1, 2, and N(w) = NT (w) for w ∈ V(T ). If T is a path of length 2 or 3, then it
is not hard to prove that χ ′′(2)s(T ) = n1 + 2. According to Lemmas 3–5, we will show that χ ′′(2)s(T ) = n1

by induction on the order of trees. Assume that T is not a 2-star, and suppose that n2 ≤ n1, ∆(T ) < n1

and D(T ) ≥ 5 in the following discussion.
Case A. There exists a leaf v having a neighbor u with dT (u) ≥ 4. Let T ′ = T − v. Then n1(T ′) =

n1 − 1, n2(T ′) = n2 and D(T ′) = D(T ) ≥ 5. If ∆(T ′) = n1(T ′), then T ′ is a spider, which means that
dT ′(u) = ∆(T ′), and hence ∆(T ) = n1, a contradiction. Hence, ∆(T ′) < n1(T ′).

Case A.1. n1(T ′) ≥ n2(T ′). By induction hypothesis, there is a total coloring θT ′ : V(T ′)∪E(T ′)→
[1, b ′] such that χ ′′2s(T

′) = b ′ = n1(T ′) = n1 − 1. It is straightforward to define an n1-(2)-vdc
θ : V(T ) ∪ E(T ) → [1, b ′] ∪ {b ′ + 1} by setting θ(z) = θT ′(z) for z ∈ (V(T ) ∪ E(T )) \ {uv, v},
θ(uv) = b ′ + 1 and θ(v) = a, where the color a ∈ [1, b ′] is missing at u.

Case A.2. n1(T ′) = n2(T ′) − 1. By Lemma 2, T ′ has a 2-degree vertex x with its neighborhood
NT ′(x) = {x1, x2} having dT ′(x1) ≤ 2. Note that dT ′(x) = dT (x) and dT ′(x1) = dT (x1). We get a
tree T1 = T ′ − x + x1x2. Clearly, n1(T1) = n1(T ′) > ∆(T ′) = ∆(T1), n2(T1) = n2(T ′) − 1 and
D(T1) ≥ D(T ′) − 1 = D(T ) − 1. If D(T1) = 4, and n2(T1) = n2(T ′) − 1 = n1(T ′) = n1(T1), then we
have n1(T1) = ∆(T1) = ∆(T ′) < n1(T1), a contradiction. Hence D(T1) ≥ 5. By induction hypothesis,
T1 admits a (2)-vdc θT1 : V(T1) ∪ E(T1) → [1, b1] such that χ ′′2s(T1) = b1 = n1(T1) = n1 − 1. We
define a total coloring θ of T as: θ(z) = θT1(z) for z ∈ V(T ) ∪ E(T ) \ {v, uv, x, xx1, xx2}; θ(uv) = b1 + 1
and θ(v) = a, where the color a ∈ [1, b1] is missing at u; θ(xx2) = b1 + 1, θ(xx1) = θT1(x1x2), and
θ(x) ∈ [1, b1] \ {θT1(x1x2), θT1(x1), θT1(x2)}. It is not hard to check that θ holds (DC). Therefore, θ is a
desired n1-(2)-vdc.

Case B. There is a leaf v having a 3-degree neighbor u in T , and Case A does not appear.
Case B.1. v ′ is another leaf in the neighborhood N(u) = {v, v ′, u ′}, and T has a 2-degree vertex x

having its neighborhood {x1, x2} such that x1 is a leaf of T .
We have a tree T1 = T − {v, v ′, x} + x1x2. Clearly, n1(T1) = n1 − 1 and n2(T1) = n2 − 1. We shall

frist discuss two subcases D(T1) = 3 or 4 as below.
Case B.1.1. If D(T1) = 3, then T1 is one of two trees shown in Figure 1(a) and 1(b). So, n1 = 5,

D(T ) = 5. Then T admits a 5-(2)-vdc shown in Figure 1(c).

Figure 1. Diagram of Case B.1.1.
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Case B.1.2. If D(T1) = 4, let w0 be the center of T1. We consider dT1(w0) = 2. So, T1 is one of
Figure 2(a), 2(b) and 2(c), which implies the structural of T . To determine χ ′′2s(T ), we give a 5-(2)-vdc
of T by the graph shown in Figure 2(d).

Figure 2. D(T1) = 4 and dT1(w0) = 2.

When D(T1) = 4 and dT1(w0) ≥ 3, T is as one taken from Figure 3(a) and 3(b). We take a vertex
w ′ ∈ N(w0) \ {u, x2} such that dT1(w

′) ≤ dT1(z) for z ∈ N(w0) \ {u, x2}.
If dT1(w

′) = 3 (see Figure 3(a) or 3(b)), we take another tree T ′1 = T − {w ′,w1,w2}, where w1,w2 ∈

N(w ′). Notice that n1(T ′1) = n1 − 2, n2(T ′1) = n2, D(T ′1) = D(T ) and n1(T ′1) > ∆(T ′1) ≥ n2(T ′1). By
induction hypothesis, we get a (2)-vdc θT ′1

: V(T ′1) ∪ E(T ′1) → [1, b ′1] such that χ ′′(2)s(T
′
1) = b ′1 =

n1(T ′1). We can extend the total coloring θT ′1
to an n1-(2)-vdc θ of T as follows: θ(z) = θT ′1

(z) for
z ∈ V(T )∪E(T )\ {uv,w ′,w1,w2,w0w ′,w ′w1,w ′w2}; θ(uv) = b ′1 +1; and θ(w0w ′) = b ′1 +1, θ(w ′w1) =

θT ′1
(uv), θ(w1) = θ(w2) = θT ′1

(v), θ(w ′w2) = b ′1 + 2, and θ(w ′) ∈ [1, b ′1] \ {θT ′1
(v), θT ′1

(w0), θT ′1
(uv)}.

Figure 3. D(T1) = 4 and dT1(w0) ≥ 3.

If dT1(w
′) = 2 (see Figure 3(c)), then we get a tree T ′2 = T − {w ′,w ′′}, where w ′′ ∈ N(w ′) =

{w0,w ′′}. Hence, n1(T ′2) = n1 − 1, n2(T ′2) = n2 − 1, D(T ′2) = D(T ), n1(T ′2) > ∆(T ′2) ≥ n2(T ′2). By
induction hypothesis, there is a (2)-vdc θT ′2

: V(T ′2) ∪ E(T ′2) → [1, b ′2] such that χ ′′2s(T
′
2) = b ′2 =

n1(T ′2). Thereby, we define an n1-(2)-vdc θ of T in the way that θ(z) = θT ′2
(z) for z ∈ V(T ) ∪ E(T ) \

{uv,w ′,w ′′,w0w ′,w ′w ′′}; θ(uv) = b ′2 + 1; and θ(w0w ′) = b ′2 + 1, θ(w ′w ′′) = θT ′2
(uv), θ(w ′′) = θT ′2

(v),
and θ(w ′) ∈ [1, b ′2] \ {θT ′2

(v), θT ′2
(w0), θT ′2

(uv)}.
Case B.1.3. When D(T1) ≥ 5, by induction hypothesis, T1 has a (2)-vdc θT1 : V(T1)∪E(T1)→ S 1 =

[1, b1] such that χ ′′2s(T1) = b1 = n1(T1) = n1 − 1. Notice that u is a leaf of T1. So, we can extend θT1 to
a total coloring θ of T as follows: θ(z) = θT1(z) for z ∈ V(T ) ∪ E(T ) \ {v, v ′, u, uv, uv ′, x, xx1, xx2}, and
θ(uu ′) = θT1(u

′), θ(u ′) = b1 + 1, θ(uv ′) = θT1(uu ′), θ(v ′) = θ(v) = θT1(u), θ(uv) = b1 + 1, θ(u) ∈ S 1 \

{θT1(u), θT1(u
′), θT1(uu ′)}; θ(xx1) = θT1(x1x2), and θ(xx2) = b1+1; θ(x) ∈ S 1\{θT1(x1), θT1(x1x2), θT1(x2)}

such that C(x, θ)∪{θ(x)} , C(u ′, θ)∪{θ(u ′)}. Hence, according to (DC), θ is a desired n1-(2)-vdc of T .
Case B.2. T does not have a 2-degree vertex being adjacent to a leaf of T . Let P = w1w2 · · ·wm−1wm

be a longest path of T , where m is the diameter D(T ) of T . So, dT (w2) = 3 = dT (wm−1) by the hypothesis
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of Case B, thus, w2 is adjacent to two leaves w1,w ′1, and wm−1 is adjacent to two leaves wm,w ′m.
Case B.2.1. If n2 = 0, then we take a tree H1 = T − w1, and we get n1(H1) = n1 − 1 and n2(H1) =

n2 + 1 = 1. Notice that D(H1) = D(T ), n1(H1) ≥ 3 > n2(H1). By induction hypothesis, H1 admits a 2-
vdc θH1 : V(H1)∪E(H1)→ [1, a1] such that χ ′′2s(H1) = a1 = n1(H1). We define an n1-(2)-vdc θ of T as
follows: θ(z) = θH1(z) for z ∈ V(T )∪E(T )\{w1,w1w2}, and θ(w1w2) = a1 +1, θ(w1) ∈ [1, a1]\{θH1(w2)}.

Case B.2.2. When n2 ≥ 1 and dT (w3) = 2, we take a tree H2 = T − {w1,w ′1,w2}. Notice that w3

is a leaf of H2, n1(H2) = n1 − 1, n2(H2) = n2 − 1. If D(H2) = 3, then T is shown in Figure 4(a). It
is easy to show that χ ′′2s(T ) = n1 by assigning appropriately colors to the vertices and edges of T . If
D(H2) = 4, then T is one of Figure 4(b) and 4(c). Without loss of generality, T is Figure 4(b), so we
can select a tree H3 = T − w6 such that D(H3) = D(T ), n1(H3) = n1 − 1 ≥ 3, n2(H3) = n2 + 1 = 2.
Thereby, H3 has a (2)-vdc θH3 : V(H3)∪E(H3)→ [1, a3] such that χ ′′(2)s(H3) = a3 = n1(H3). We define
an n1-(2)-vdc θ of T as follows: θ(z) = θH3(z) for z ∈ V(T ) ∪ E(T ) \ {w6,w5w6}, and θ(w5w6) = a3 + 1,
θ(w6) ∈ [1, a3] \ {θH3(w5)}.

Figure 4. Diagram of Case B.2.2.

Case B.2.3. When n2 ≥ 1 and dT (w3) ≥ 3, let x be a 2-degree vertex of T having its own
neighborhood N(x) = {x1, x2} with dT (xi) ≥ 2 for i = 1, 2. Consider a tree H4 = T − {w1,w ′1, x} + x1x2.
Clearly, D(H4) ≥ D(T ) − 2 ≥ 3. If D(H4) = 3, then T must be one shown in Figure 5(a), hence
χ ′′2s(T ) = n1 by assigning appropriately colors to the vertices and edges of T .

If D(H4) = 4, then T is one of trees shown in Figure 5(b) and 5(c), say, T is shown in Figure 5(b). We
have a tree H5 = T−w1 such that D(H5) = D(T ), n1(H5) = n1−1 ≥ 3, n2(H5) = n2+1 = 2. By induction
hypothesis, there is a (2)-vdc θH5 : V(H5)∪ E(H5)→ [1, a5] with χ ′′2s(H5) = a5 = n1(H5) = n1 − 1, and
we can extend it to an n1-(2)-vdc θ of T by setting θ(z) = θH5(z) for z ∈ V(T ) ∪ E(T ) \ {w1,w1w2}, and
θ(w1w2) = a5 + 1, θ(w1) ∈ [1, a5] \ {θH5(w2)}.

Figure 5. Diagram of Case B.2.3.
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Case C. Both Case A and Case B are false. In other words, each leaf is adjacent to a 2-degree vertex
in T . Thereby, n1 = n2.

Case C.1. Each 2-degree vertex x has its neighborhood N(x) = {x1, x2} such that dT (x1) = 1 and
dT (x2) ≥ 3, and no two 2-degree vertices have a common neighbor. Let Q = p1 p2 · · · pm be a longest
path in T with m = D(T ). Then dT (p3) ≥ 3 and dT (pm−2) ≥ 3 since n2 = n1. Notice that dT (x) ≤ 2 for
x ∈ N(p3) \ {p2, p4} (resp. x ∈ N(pm−2) \ {pm−3, pm−1}) since x < V(Q), and furthermore this vertex x
is neither a leaf (Case B has been assumed to appear) nor a 2-degree vertex (by the assumption of this
subcase and n2 = n1). We confirm the latter subcase does not exist in the following.

Case C.2. Since Case C.1 does not exist, n2 = n1, n1 > ∆(T ) and D(T ) ≥ 5, there exists a subgraph
H having V(H) = {w, u} ∪ V ′ with r ≥ 2, V ′ = {yi, xi : i ∈ [1, r]} and E(H) = {wu, uyi, yixi : i ∈ [1, r]},
where dT (w) ≥ 3, moreover, every yi is a 2-degree vertex and every xi is a leaf for i ∈ [1, r]. Then we
consider a tree T1 = T − V ′.

If D(T1) = 1, then w is a leaf of T which contradicts to the hypothesis of Case C. If D(T1) = 2, then
T is a 2-star, which conflicts with D(T ) ≥ 5. If D(T1) = 3, then T1 is a path of length 3, and hence
n1 = ∆(T ), a contradiction. If D(T1) = 4, then dT (w) = 2 and n1 = n2 + 1, a contradiction.

For D(T1) ≥ 5, notice that n1(T1) = n1− r +1 and n2(T1) = n2− r, and u is a leaf of T1. By induction
hypothesis, T1 admits a (2)-vdc θT1 : V(T1) ∪ E(T1) → S ∗ = [1, b1] having χ ′′2s(T1) = b1 = n1(T1) =

n1 − (r − 1). We define a (2)-vdc θ of T as follows:
θ(z) = θT1(z) for z ∈ V(T1) ∪ E(T1) \ {u, uw};
θ(uyi) = b1 + i for i ∈ [1, r − 1], and θ(uyr) = θT1(uw);
θ(y jx j) = b1 + j − 1 for j ∈ [2, r], and θ(y1x1) = θT1(uw);
θ(w) = b1 + 1, θ(uw) = θT1(w); θ(xi) = θT1(u) for i ∈ [1, r]; and
θ(u) = a ∈ S ∗ \ {θT1(w), θT1(uw)}; θ(yi) = a ′ ∈ S ∗ \ {θT1(u), θT1(uw), a} for i ∈ [1, r].
Therefore, Theorem 1 follows from the principle of induction.

Corollary 6. Let G be a connected graph having cycles, p vertices and q edges. If n2(G) ≤ 2(q − p +

1) + n1(G), then χ ′′2s(G) ≤ 1 + 2(q − p + 1) + n1(G).

Proof. Let H be a spanning tree of G. Then we can construct another tree T of G by deleting each
edge uv ∈ E ′ = E(G) \ E(H), and adding two new vertices u ′, v ′ by joining u ′ with u and v ′ with v,
respectively. Clearly, n1(T ) = 2(q − p + 1) + n1(G), n2(T ) = n2(G), D(T ) ≥ 4 and ∆(T ) = ∆(G). On
the other hand, each k-(2)-vdc θ of G with k = χ ′′2s(G) corresponds to a total coloring ϕ of T by setting
ϕ(x) = θ(x) for x ∈ V(G) ∪ (E(G) \ E ′); ϕ(uu ′) = ϕ(vv ′) = θ(uv), ϕ(u ′) = θ(v) and ϕ(v ′) = θ(u) for
uv ∈ E ′. In general, this total coloring ϕ is not a (2)-vdc of T . Hence, max{ϕ(x) : x ∈ V(T ) ∪ R(T )} =

k ≤ χ ′′2s(T ). This corollary follows from Lemmas 3–5 and Theorem 1. �

Corollary 7. Let T be a spanning tree of a connected graph G, and G[E∗] be an induced graph over
the edge subset E∗ = E(G) \ E(T ). Then χ ′′2s(G) ≤ χ ′′2s(T ) + χ ′(G[E∗]), where χ ′(H) is the chromatic
index of a graph H.

4. Conclusions and further works

A k-vdtc of a graph G is a total coloring f : V(G) ∪ E(G) → [1, k] such that C(w, f ) ∪ { f (w)} ,
C(z, f ) ∪ { f (z)} for distinct w, z ∈ V(G), and χ ′′s (G) is the least number k of colors required for which
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G has a k-vdtc. For 2 ≤ m ≤ n, by Lemma 3, the difference χ ′′2s(DS m+1,n+1) − χ ′′s (DS m+1,n+1) =

m + n + 1 − (n + 1) = m can be as large as we expect.
For a k-(2)-vdc f of a graph G, let S i = { f (x) = i : x ∈ V(G) ∪ E(G)} for i ∈ [1, k]. We call

this coloring f to be an equitable k-(2)-vdc of G if two sizes of S i and S j differ at most one. Again,
the smallest number k of colors required for which G has an equitable k-(2)-vdc is denoted as χ ′′2es(G).
Clearly, χ ′′2s(G) ≤ χ ′′2es(G). We have shown that χ ′′2s(H) = χ ′′2es(H) for every 2-star or every double star
H. As further work we present a problem: Is there χ ′′2s(T ) = χ ′′2es(T ) for a tree T having D(T ) ≥ 4
and n1(T ) , ∆(T ) ? And we conjecture that: Let T be a tree with 2n2(T ) ≤ (n1(T ) + k − 1)2. Then
χ ′′2s(T ) ≤ n1(T ) + k.
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