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Abstract: Antibiotic resistance is one of the top 10 public health problems that most affects
humanity.In recent decades, plasmid-mediated antibiotic resistance (PMAR) has increased. However,
due to thelack of knowledge about the biology of plasmids, there are gaps in the role played by
themwithinantibiotic resistance. In this sense, properties that agree with the biological phenomenon
and have contributed to the understanding of PMAR have been discovered from mathematical
modeling. In thiswork, we focus on the role that the plasmid replication rate plays in the elimination or
spread of bacteriaboth sensitive and resistant to antibiotics. Qualitative analysis reveals the existence of
a free-bacteriaequilibrium point, a resistant equilibrium point, and two coexistence equilibrium points
(high and lowbacterial load). If each bacterium (sensitive or resistant) produces at most one new
bacterium, the infection will be controlled or eliminated. If each bacterium (sensitive or resistant)
produces morethan one bacteria, several scenarios of bacterial progression are presented that depend
on the plasmidreplication rate. The results suggest that plasmid replication is essential for the outcome
of bacterialinfection at the local level.
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1. Introduction

Just as vaccines have saved the lives of millions of children and contributed to the eradication of
diseases around the world, antibiotics have been effective in curing different types of infection caused
by bacteria. Currently, antibiotics are the medications most prescribed by doctors to treat diseases
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caused by bacteria, and although it has not been a century since Sir Alexander Fleming discovered
penicillin in 1928, there is already a global threat caused by the resistance of certain bacteria to first-
line antibiotics.

Bacteria can acquire antibiotic resistance by transferring genetic material. They can be classified
as vertical gene transfer (including spontaneous or acquired mutations) and horizontal gene transfer,
which can occur through the transformation, conjunction, or transduction of mobile genetic elements
that function as vehicles. Such elements include plasmids, transposons, integrons, and integrative
conjugative elements.

Plasmid-mediated resistance (due to the transfer of antibiotic resistance genes carried on plasmids)
is increasing worldwide. Bacterial plasmids are circular or linear extrachromosomal DNA molecules.
They carry antimicrobial resistance genes coding for proteins such as colistin, ESBL
(extended-spectrum β-lactamases), carbapenemases, fluoroquinolones, and aminoglycosides. This
resistance has resulted in a global epidemic [1, 2]. A plasmid is between 1 and 250 kb long (one
kilobase is 1000 base pairs of DNA or RNA). A cell can have from a single copy of a plasmid to a few
hundred copies [3]. Multi-drug resistance caused by plasmids has been reported for several bacterial
strains [4, 5].

Much are still unknown about the biology of plasmids. However, since they are associated with
antibiotic resistance, a considerable amount of research has been conducted to establish their role in
this process. Identification of the characteristics and properties of plasmids has contributed to our
understanding of the dynamics of the acquisition of antibiotic resistance [6]. In particular,
plasmid-mediated resistance has been studied by isolating E. coli strains in vitro, and interesting
results have been obtained from experiments on the replication, transfer, and propagation of plasmids,
which have implications in bacterial growth [7–10]. The results of research at the biological level can
be complemented or used as a basis for new studies. In this sense, we find mathematical modeling
mainly focuses on PMAR [11–14].

In particular, Ibarguen et al. [15] developed a model of the interactions between bacteria sensitive
and resistant to antibiotics. The model considers the acquisition of resistance due to plasmids. From
a qualitative analysis of this model, we obtained three steady states: (1) a bacteria-free state, E0,
(2) a state where only resistant bacteria are present, E1, and (3) a state where sensitive and resistant
bacteria coexist, E2. Additionally, a stability region was determined for each equilibrium that depends
on the values of parameters similar to basic reproductive numbers for sensitive and resistant bacteria.
Ibarguen et al. [16] modified the model to use a dynamic variable for the acquisition of resistance due
to plasmids. The results obtained from the qualitative analysis of this model were interesting because
in addition to the previously mentioned scenarios, there was a new scenario in which a limit cycle
emerges around a coexistence equilibrium (Hopf bifurcation). The limit cycle corresponds to the self-
regulation of bacterial growth, which could minimize the transmission of plasmids between bacteria.
In the previous model, the functional response for plasmid replication was key in the appearance of the
limit cycle. These results confirm self-regulation processes in the dynamics of bacterial growth [17].
Furthermore, different studies reveal that plasmids play a fundamental role in PMAR [18, 19].

In this work, we formulate and analyze a generalization of the model developed in [16], in which
the plasmid replication rate is defined using a C1-function.
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2. The model

The World Health Organization has declared antimicrobial resistance among the top 10 global
threats to public health. In this sense, the fact that aggravates the situation is the use of antibiotics for
treating humans and animals.The abovehas allowed the horizontal transmission of resistance genes,
driving the growing trend of PMAR. However, due to the lack of knowledge about the biology of the
plasmids, many gaps are related to their role in antimicrobial resistance. This has led to the
development of scientific production that reveals the importance of the transfer and replication of
plasmids in biological phenomena. Nevertheless, discovering the properties and factors of the
interaction dynamics of bacteria and plasmids is still a challenge. In particular, the form of plasmids
replication is not yet clear. The above motivated us to study the role played by plasmids replication in
the plamid-meadiated resistance. In [16, 20] we formulated mathematical models considering specific
functional responses for the plasmids growth rate. In the first one we supposed that plasmids growth
rate, G, is proportional to the resistant bacteria; that is, G(R, P) = σpR where σp is a constant plasmid
reproduction rate, and in the second one, we supposed that the plasmids replication rate follows a
generalized law of mass action, G(R, P) = σpPaRb where a, b ∈ R are constants. We obtained
consistent results with the biological phenomenon.

In this work, we develop a mathematical model that describes the interaction dynamics between
bacteria and plasmids in which the plasmid replication rate is an undefined function that satisfies the
common properties of the plasmid replication rate defined in [16, 20].

In this section, we formulate a model on bacterial resistance that describes the interaction of
susceptible bacteria, resistant bacteria and plasmids populations. Let us denote by S (t), and R(t) the
population sizes of susceptible, and resistant bacteria to antibiotics at time t, respectively; and p(t) the
number of plasmids at time t. As in [21], we assume that bacteria follow a logistic growth with
carrying capacity K. Let βs and βr the birth rate of susceptible and resistant bacteria, respectively.
Specific mutations that confer resistance to chemical control often have an inherent fitness cost which
may be manifested through reduced reproductive capacity or competitive ability [22]. In this work,
we quantify fitness cost as a reduction in the reproduction rate of the resistant strain, therefore βr ≤ βs.
Susceptible and resistant bacteria have per capita natural death rates µs, and µr, respectively.
Susceptible bacteria also die due to the action of the antibiotics, and we assume that the rate at which
they are killed by the antibiotic is equal to αS . Further, it is assumed that during treatment with
antibiotics, the process of bacterial conjugation for the transfer of resistant plasmids is conducted. In
this process, susceptible bacteria are reservoirand resistant bacteria are donorsof genetic material
which is represented by the term δPR, with δ the rate of transfer of resistant plasmids among bacteria.
Susceptible and resistant bacteria are eliminated by the host immune system at per capita rate γ. The
plasmids degrade at a constant rate µp. There is a symbiosis between plasmids and host cells.
Plasmids replicate autonomously in the bacterial cell and use them for their propagation. Plasmid
replication is a function of the plasmid and the host cell [23]. Since we are only interested in the
replication of resistant plasmids, we assume that plasmid replication rate is given by the functional
response G(R, p) where G : R2 → R+

0 is a C1 function. Under the abovementioned assumptions, we
obtain the following system of ordinary differential equations:

dS
dt

= βsS
(
1 −

S + R
K

)
− αS − δpS − γS − µsS
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dR
dt

= βrR
(
1 −

S + R
K

)
+ δpS − γR − µrR

dp
dt

= G(R, p) − µp p.

(2.1)

The Figure 1 shows the flow diagram of system (2.1). With the following change of variables
s = S/K and r = R/K the system (2.1) is reduced to

ds
dt

= βss[1 − (s + r)] − αs − δps − (γ + µs)s

dr
dt

= βrr[1 − (s + r)] + δps − (γ + µr)r

dp
dt

= g(r, p) − µp p, (2.2)

where g(r, p) = G(Kr, p).

S R p

(γ + µr)R µp p

βsS
(
1 + S +R

K

)
βrS

(
1 + S +R

K

)

αS + (γ + µs)S

δpS G(R, p)

Figure 1. The flow diagram of the system (2.1).

3. Invariant set

The matrix form of (2.2) is given by

dx
dt

= f (x) = Ax + h(x), (3.1)

where

x =


s
r
p

 , h(x) =


−βss (s + r) − δps
−βrr(s + r) + δps

g(r, p)

 , (3.2)

and

A =


βs

(
1 −

1
Rs

)
0 0

0 βr

(
1 −

1
Rr

)
0

0 0 −µp

 , (3.3)
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where
Rr =

βr

γ + µr
and Rs =

βs

α + γ + µs
. (3.4)

The parameter Rr defined in (3.4) is interpreted as the number of bacteria produced by the fraction
of resistant bacteria that evade the immune response, and Rs is interpreted as the number of bacteria
generated by the fraction of sensitive bacteria that survive the effects due to antibiotics and the immune
system response.

Since g ∈ C1(R2), then f ∈ C1(R3). Therefore, there exists an ε > 0 such that the initial value
problem (ivp) defined by (3.1) and x(0) = x0 ∈ R3, has a solution x(t) on the interval [0, ε]
(Fundamental theorem of existence and uniqueness, [24]). In addition, for a compact set Ω ⊂ E such
that

{y ∈ Rn : y = x(t) for some t ∈ [0, β)} ⊂ Ω,

it follows that ε = ∞. In consequence, the ivp has a solution x(t) for all t ≥ 0 (Corollary 2, page
91, [24]). Now, we will prove the existence of bounded solutions. To this end, we will use the results
developed by W. Karpińska in [25], about bounded solutions of dynamical systems, which establish
that under the following assumptions,

1. A ∈
(
R3

)
defined in (6) is a self-adjoint operator, and 0 is its eigenvalue, and

2. h : R × R3 → R3 defined in (3.2) is a Carathéodory function; that is,

(a) h is a map measurable with respect to the first variable.
(b) h is continuous with respect to the second one, and
(c) for any l ∈ R there exists a locally integrable function Ml : R → R that satisfies ‖h(t, x)‖ ≤

Ml(t) for ‖x‖ ≤ l.

The existence and uniqueness of bounded solutions on R of system (3.1) were obtained. Since A
is a diagonal matrix, the first item is satisfied. On the other hand, h(·, x) is constant function which
implies that h is measurable with respect to t. Since the function g is continuous with respect to x, then
h is continuous with respect to x. By adding the first two equations of (2.2) we obtain

ds
dt

+
dr
dt

= (βss + βrr)[1 − (s + r)] − αs − (γ + µs)s − (γ + µr)r

≤ (βss + βrr)[1 − (s + r)]
≤ β(s + r)[1 − (s + r)], (3.5)

where β = max (βs, βr). The solution of inequality (3.5) satisfies 0 ≤ s(t) + r(t) ≤ 1 for t ≥ 0. Now, for
t ∈ R we have

‖h(t, x)‖22 = (βss(t)(s(t) + r(t)) + δp(t)s(t))2 + (−βrr(t)(s(t) + r(t)) + δp(t)s(t))2 + (g(r(t), p(t)))2

= [(βss(t))2 + (βrr(t))2](s(t) + r(t))2 + 2(βss(t) − βrr(t))(s(t) + r(t))δp(t)s(t)
+2(δp(t)s(t))2 + (g(r(t), p(t)))2

≤ β2
s + β2

r + 2(βS + βr)δp(t)s(t) + 2(δp(t)s(t))2 + (g(r(t), p(t)))2

= M2
l (t), (3.6)

where
Ml(t) =

√
(βs + δp(t)s(t))2 + (βr + δp(t)s(t))2 + (g(r(t), p(t)))2. (3.7)
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Since g ∈ C1(R), then Ml is a locally integrable function. Thefere, the item 2 is satisfied. The above
implies the existence of an unique bounded solution of ivp defined by (3.1) and x(0) = x0. Let

K = { p̃ ∈ C1 : p̃(t) is a bounded solution of the third equation of (2.2)}.

The invariant set of system (2.2) is given by the following compact set

Ω =
{
(s, r, p) ∈ R3

+ : 0 ≤ s, r ≤ 1, 0 ≤ s + r ≤ 1, 0 ≤ p ≤ M
}
, (3.8)

where M = sup{|p̃(t)| : t ≥ 0}. The results of this section are summarized in the following lemma,
which assures that system (2.2) is well posed in the sense that solutions with initial conditions in Ω

remain there for all t ≥ 0.

Lemma 3.1. The set Ω defined in (3.8) is positively invariant with respect to system (2.2).

4. Equilibrium points

At biological level, there are inhibition mechanisms of the host cell that control the plasmid
replication rate, which allows reaching steady state conditions for the plasmid copy number [23]. The
plasmid replication rate and inhibition period directly affect one another [18]. Since the reciprocal of
the inhibition period is the degradation rate of plasmids, then a necessary condition for the existence
of equilibria is g(r, p) = µp p. Another necessary condition is that the previous equation has at least
one solution. For convenience, we suppose that the solution is a function of plasmids p∗ in terms of
resistant bacteria r. Plasmid is generally replicated on constant average per cell and cell cycle, which
implies that p∗ follows an exponential growth. This behavior has been experimentally verified in
several research works [18, 23]. Finally, since plasmids cannot replicate in the absence of resistant
bacteria, then we assume p∗(0) = 0. From the above, we obtain the following assumption.

C1 : the equation g(r, p) = µp p has unique non-negative solution p∗(r) which is a increasing convex
function that satisfies p∗(0) = 0.

In this section, we will determine the equilibrium points of system (2.2) under the condition C1.
The equilibria of system (2.2) are given by the solutions of the algebraic equations

Ax + h(x) = 0. (4.1)

Now, we will find the equilibrium points for which s = 0. In this case, the system (4.1) is reduced to

[βr(1 − r) − (γ + µr)]r = 0
g(r, p) = µp p. (4.2)

The condition C1, implies the existence of an unique solution p(r) of the second equation of (4.2) that
satisfies p(0) = 0. Solutions of the first equation of (4.2) are r = 0 and r = r1, where

r1 =
Rr − 1

Rr
. (4.3)

By substituting r = r1 in p∗(r), we obtain p1 = p∗(r1), which implies the exitence of the equilibrium
point x1 = (0, r1, p1)T . By substituting r = 0 we obtain the equilibrium x0 ≡ (0, 0, 0)T . The above
results are summarized in the following proposition.
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Proposition 4.1. If condition C1 is satisfied, then the systen (2.2) always has the equilibrium x0 ≡ 0 in
Ω, and if R1 > 1, in addition there exists an equilibrium point x1 = (0, r1, p1)T ∈ Ω.

Now, for s , 0 the system (4.1) is reduced to

βs

(
1 −

1
Rs

)
− βs(s + r) − δp = 0

βrr
[
1 −

1
Rr
− (s + r)

]
+ δps = 0

g(r, p) − µp p = 0. (4.4)

From the first equation of (4.4) we obtain

Rs − 1
Rs

= s + r +
δ

βs
p. (4.5)

From (4.5) is concluded that a necessary condition for the existence of plasmids, susceptible and
resistant bacteria is Rs > 1. Solving for s in (4.5) we obtain

s =
Rs − 1

Rs
−

(
r +

δ

βs
p
)
. (4.6)

Note that a necessary and sufficient condition such that s defined in (4.6) be positive is

r +
δ

βs
p <

Rs − 1
Rs

. (4.7)

By Substituting (4.6) in the second equation of (4.4) we obtain

βrr
(
1 −

1
Rr
− r

)
+ (δp − βrr)

[
Rs − 1

Rs
−

(
r +

δ

βs
p
)]

= 0. (4.8)

From (4.8) we obtain the following equation

p2 + b(r)p + c(r) = 0, (4.9)

where

b(r) =
βs − βr

δ

(
r − rnp

)
c(r) =

(
1
Rr
−

1
Rs

)
βsβr

δ2 r, (4.10)

being

rnp =

1 −
1
Rs

1 −
βr

βs

. (4.11)
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The solutions of (4.9) are given by

p±(r) = −
b(r)

2
±

√[
b(r)

2

]2

− c(r). (4.12)

Now, we will determine the conditions for the existence of coexistence equilibria. To this end,
we will analyze the requirements for which p± defined in (4.12) are positive, negative or complex
functions, considering the following cases Rs > Rr, Rs = Rr and Rs < Rr, and we will find the number
of positive solutions of the following equations

p+(r) = p∗(r) and p−(r) = p∗(r), (4.13)

in the interval (0, 1), where p∗(r) is the function of hypothesis C1 that satisfies p∗(0) = 0.

Condition Rs < Rr: In this case c(r) < 0, which implies that p± are real value functions. On the other
hand, the sign of b(r) depends on the value of rnp. In consequence:

1. If r < rnp, then b(r) < 0 which implies that p+ is a positive and increasing concave function
(p+(r) > 0), and p− is a negative and decreasing convex function (p−(r) < 0). Since p−(0) = 0
and p+(0) = −b(0) > 0, then the functions p− and p∗ intersect at r = 0 and the functions p+

and p∗ intersect at r+ ∈ (0, 1) if and only if p+(1) < p∗(1) (See Figure 2a). In consequence,
the equation p−(r) = p∗(r) does not havea positive solution, and the equation p+(r) = p∗(r)
only has one positive solution r+ if and only if p+(1) < p∗(1). Therefore, if Rs < Rr and
p+(1) < p∗(1) there exists an equilibrium point x+ = (s+, r+, p+) in the subset Ω1 ⊂ Ω given
by

Ω1 =
{
(s, r, p) ∈ R3

+ : 0 ≤ s + r ≤ 1, r < rnp, p ≤ M
}
.

2. If r = rnp, then b(r) = 0 which implies that p+(r) =
√
−c(r) is a positive and increasing

concave function, and p−(r) = −
√
−c(r) is a negative and decreasing convex function.

Following a procedure similar to the previous case, we conclude that if Rs < Rr and
p+(1) < p∗(1) there exists an equilibrium point x+ = (s+, r+, p+) in the subset Ω2 ⊂ Ω given
by

Ω2 =
{
(s, r, p) ∈ R3

+ : 0 ≤ s + r ≤ 1, r = rnp, p ≤ M
}
.

3. If r > rnp, then b(r) > 0. We verify that if Rs < Rr and p+(1) < p∗(1), there exits an
equilibrium point x+ = (s+, r+, p+) in the subset Ω3 ⊂ Ω given by

Ω3 =
{
(s, r, p) ∈ R3

+ : 0 ≤ s + r ≤ 1, r > rnp, p ≤ M
}
.

Condition Rs = Rr: In this case c(r) = 0, which implies that p± are reduced to real value functions

p±(r) = −
b(r)

2
±

∣∣∣∣∣b(r)
2

∣∣∣∣∣ . (4.14)

Newly,
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1. If r < rnp, then b(r) < 0 which implies that p+(r) = −b(r) is a positive and increasing linear
function, and p−(r) = 0. Since p−(0) = 0 and p+(0) = −b(0) > 0, then the functions p−

and p∗ intersect at r = 0 and the functions p+ and p∗ intersect at r+ ∈ (0, 1) if and only if
p+(1) < p∗(1). In consequence, the equation p−(r) = p∗(r) does not have positive solutions,
and the equation p+(r) = p∗(r) only has a positive solution r+ if and only if p+(1) < p∗(1).
Therefore, if Rs = Rr and p+(1) < p∗(1) there exists an equilibrium point x+ = (s+, r+, p+) in
the subset Ω1 ⊂ Ω given by

Ω1 =
{
(s, r, p) ∈ R3

+ : 0 ≤ s + r ≤ 1, r < rnp, p ≤ M
}
.

2. If r = rnp, then b(r) = 0 which implies that p+(r) = p−(r) = 0. In consequence, there are not
positive solutions of the equations p+(r) = p∗(r) and p−(r) = p∗(r). Therefore, there are not
coexistence equilibria.

3. If r > rnp, then b(r) > 0 which implies that p−(r) = −b(r) < 0, and p+(r) = 0. Therefore,
there are not coexistence equilibria.

Condition Rs > Rr: In this case c(r) > 0, which implies that p± could be real or complex value
functions. Therefore, the values of p± depend on of the sign of b(r) and the sign of[

b(r)
2

]2

− c(r) =

[
βs − βr

2δ

(
r − rnp

)]2

−

(
1
Rr
−

1
Rs

)
βsβr

δ2 r

=

(
βs − βr

2δ

)2

(r2 − 2k1r + r2
np), (4.15)

where

k1 = rnp + 2
(

1
Rr
−

1
Rs

)
βsβr

(βs − βr)2 .

Eq (4.15) is equivalent to [
b(r)

2

]2

− c(r) =

(
βs − βr

2δ

)2

(r − rr)(r − rl), (4.16)

where

rr = k1 +

√
k2

1 − r2
np

rl = k1 −

√
k2

1 − r2
np.

Observe that 0 < rl < rnp < rr . In consequence

[
b(r)

2

]2

− c(r)


> 0, r ∈ (0, rl) ∪ (rr,∞);
= 0, r = rl or r = rr ;
< 0, r ∈ (rl, rr).

Now, since the sign of b(r) depends on rnp we have the following options.

• For r ∈ (0, rl) ∪ (rr,∞) we have:
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1. If r < rnp, then b(r) < 0 which implies that p+ is a positive and increasing concave
function (p+(r) > 0), and p− is a positive and decreasing convex function (p−(r) < 0).
Since p−(0) = (βs−βr)rnp/(2δ) > 0 and p+(0) = 3(βs−βr)rnp/(2δ) > 0, then the functions
p− and p∗ intersect at positive root r− > 0 and the functions p+ and p∗ intersect at positive
root r+ > 0, which satisfy r− < r+ (See Figure 2b). In consequence, if p+(1) < p∗(1)
there are two coexistence equilibria x+ and x−, if p−(r−) < p∗(1) < p+(r+) there exists
an unique equilibrium x−, and if p∗(1) > p−(r−) there are nor equilibria. Therefore, if
Rs > Rr and p+(1) < p∗(1) there are two equilibrium points x+ and x− in the subset
Ω′1 ⊂ Ω1 given by

Ω′1 =
{
(s, r, p) ∈ R3

+ : 0 ≤ s + r ≤ 1, r < rl, p ≤ M
}
.

If Rs > Rr and p−(r−) < p∗(1) < p+(r+) there exists an unique equilibrium x− ∈ Ω′1.
2. If r = rnp, then b(r) = 0 which implies that p+(r) =

√
−c(r) is a positive and increasing

concave function, and p−(r) = −
√
−c(r) is a negative and decreasing convex function.

Following a procedure similar to the previous cases, we conclude that if Rs > Rr and
p+(1) < p∗(1) there exists an unique equilibrium point x+ in the subset Ω′1

⋂
Ω2 ⊂ Ω1.

3. If r > rnp, then b(r) > 0 which implies that p−(r) < 0, and p+(r) < 0. Therefore, there
are not coexistence equilibria.

• For r = rl or r = rr we have p±(r) = −b(r)/2. In consequence, if r < rnp, then b(r) < 0
which implies that p± is a positive and increasing linear function. Therefore, if Rs > Rr and
p±(1) < p∗(1) there is an unique equilibrium x+ in the subset Ω′′1

⋂
Ω1 ⊂ Ω1 given by

Ω
′′

1 =
{
(s, r, p) ∈ R3

+ : 0 ≤ s + r ≤ 1, r = rl, p ≤ M
}
.

We can verify, that if r ≥ rnp there are not coexistence equilibria.
• For r ∈ (rl, rr), is follows that p± are complex value functions. Therefore, there are not

coexistence equilibria.

The existence results of coexistence equilibrium points are summarized in the following proposition.

Proposition 4.2. By assuming that the functions p∗ defined in the hypothesis C1 and p+ defined
in (4.12) satisfy p+(1) < p∗(1), Rs > 1 and Rr > 1 we have the following results:

1. If Rs < Rr , there exists an equilibrium x+ ∈ Ω.
2. If Rs = Rr, there exists an equilibrium x+ ∈ Ω1.
3. If Rs > Rr then

• there are two equilibrium points x+ and x− in Ω′1 ⊂ Ω1.
• there exists an equilibrium point x+ in the subset Ω′1 ∩Ω2 ⊂ Ω1.
• there is an equilibrium x+ in the subset Ω′′1 ∩Ω1 ⊂ Ω1.

On the other hand, If Rs > Rr and p−(r−) < p∗(1) < p+(r+) there exists an unique equilibrium x− ∈ Ω′1.
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(b) Rs > Rr and r ∈ (0, rl) ∪ (rr,∞)

r

r

(a) Rs < Rr and r < rnp

10 r+

1r+

p+

p∗

p−

p+

p∗

p−

p p

r−0

Figure 2. (a) The equation p−(r) = p∗(r) does not have positive solutions, and the equation
p+(r) = p∗(r) only has a positive solution r+ if and only if p+(1) < p∗(1); (b) If p+(1) < p∗(1),
then the equation p−(r) = p∗(r) only has a positive solution r−, and the equation p+(r) = p∗(r)
only has a positive solution r+. If p−(1) < p∗(1) < p+(1), then p−(r) = p∗(r) only has a
positive solution r−, and the equation p+(r) = p∗(r) does not have positive solutions.

Figure 3 shows the existence region of the equilibria. The equilibrium x0 represents the state without
bacterial load, x1 represents the state of resistant bacteria, x+ represents the coexistence state with high
bacterial load, and x− represents the coexistence state with low bacterial load.

x+

Rs

1

Rr1

x0

x0, x+, x−

x0, x1, x+, x−

x0, x1, x+

x0, x1, x+

Figure 3. Existence region for equilibria of system (2.2).

5. Stability analysis

In this section, we determine the stability of the equilibrium points of the system (2.2). The
linearization of the system (2.2) around of an equilibrium point x̄ is given by x′ = J(x̄)x, where the
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Jacobian matrix J evaluated at x is given by

J(x) = A + Dh(x) = A +


−βs(2s + r) − δp −βss −δs
−βrr + +δp −βr(s + 2r) δs

0
∂g
∂r

∂g
∂p

 . (5.1)

The eigenvalues of J(0) are given by ∂g(0, 0)/∂p − µp, (γ + µr)(Rr − 1) and (α + γ + µs)(Rs − 1)
which are negative if and only if Rs < 1, Rr < 1 and ∂g(0, 0)/∂p < µp. In consequence, x0 is locally
asymptotically stable (l.a.s). Similarly, the eigenvalue of J(x1) are −βrr1, βs(1/Rr − 1/Rs − δp1/βs) and
∂g(r1, p1)/∂p− µp. In consequence, it is verified that x1 is l.a.s when Rs < (1 + δp1/(α+ γ+ µs))Rr and
∂g(r1, p1)/∂p < µp.

The Jacobian J evaluated x± is given by

J(x±) =


−βss± −βss± −δs±

−βrr± + δp± −
(
βrr± +

δp±s±

r±

)
δs±

0
∂g
∂r

∂g
∂p
− µp

 . (5.2)

The characteristic polynomial of J(x±) is given by

p(λ) = λ3 + a1λ
2 + a2λ + a3, (5.3)

where

a1 = −

(
∂g
∂p
− µp

)
+ βrr± +

δp±s±

r±
+ βss±

a2 = −

(
∂g
∂p
− µp

) (
βrr± +

δp±s±

r±
+ βss±

)
+

(
1 +

s±

r±

)
βss±δp± + δs±

∂g
∂r

a3 = −

(
∂g
∂p
− µp

) (
1 +

s±

r±

)
βss±δp± − δs±

∂g
∂r

(βss± + βrr± − δp±). (5.4)

The Routh-Hurwitz criterium establish that the roots of a polynomial p(λ) have negative real part if
and only if their coefficients satisfy D1 = a1 > 0, D2 = a1a2 − a3 and a3 > 0. Now, D3 is rewritten as

D2 = a1a2 − a3

=

(
∂g
∂p
− µp

)2 (
βrr± +

δp±s±

r±
+ βss±

)
−

(
∂g
∂p
− µp

) (
βrr± +

δp±s±

r±
+ βss±

)2

+

(
1 +

s±

r±

)
βss±δp±

(
βrr± +

δp±s±

r±
+ βss±

)
−

[
−

(
∂g
∂p
− µp

)
+

(
1 +

s±

r±

)
δp±

]
δs±

∂g
∂r
. (5.5)
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If
∂g
∂r

(r±, p±) < 0 and
∂g
∂p

(r±, p±) < µp, (5.6)

then a1 defined in (5.4) and D3 defined in (5.5) are positive, and since p± ≤ M then a3 defined in the
second equation of (4.1) satisfies

a3 > −

(
∂g
∂p
− µp

) (
1 +

s±

r±

)
βss±δp± − δs±

∂g
∂r

(βss± + βrr± − δM). (5.7)

From (5.7), for δ small enough we have δM � 1 which implies a3 > 0. Therefore, if (5.6) holds then
x+ and x− are l.a.s. The results about local stability are summarized in the following proposition.

Proposition 5.1. If Rs < 1, Rr < 1 and ∂g(0, 0)/∂p < µp, then x0 is l.a.s in Ω. If Rr > 1 and
Rs < (1 + δp1/(α + γ + µs))Rr and ∂g(r1, p1)/∂p < µp, then x1 is l.a.s in Ω. If g satisfies the conditions
(5.6), δ � 1 and under hypothesis of Proposition 4.2 it follows that x+ is l.a.s in Ω and x− is l.a.s in
Ω′1.

Empirically, the existence of a control system for plasmid replication that depends on the genetics,
molecular biology and physiology of both plasmids and host cells has been demonstrated. Much is
still unknown about the mechanisms underlying this theory. However, the first evidence that plasmids
control, at least partially, their own replication rate was the isolation of copy mutants, which have a
higher steady-state copy number than the wild-type parent. Under steady state conditions, the plasmid
concentration is constant and therefore the size of the plasmid population must double every time the
cell population doubles. This means that each plasmid molecule must, on average, replicate once per
cell and cell cycle. In our model, this property was analyzed by means of the gradient vector of the
function that defines the plasmids replication rate. Specifically, for the stability of the equilibria x0 and
x1 it is required that ∂g(0, 0)/∂p < µp and ∂g(r1, p1)/∂p < µp, respectively. For the equilibria x± is
required that g satisfies the conditions (5.6). As we can see, to control the replication of plasmids in
the cases of equilibrium points x0 and x1, it is necessary to limit the variation of the plasmid replication
rate with respect to plasmids. In the case of x±, in addition to the above, it is necessary that the plasmid
replication rate be decreasing with respect to resistant bacteria.

The global stability of x0 is presented in the following proposition

Proposition 5.2. If Rs ≤ 1 and Rr ≤ 1, then x0 is globally asymptotically stable in Ω defined in (3.8).

Proof. Since g ∈ C1(Ω), then there exists L ≥ 0 such that
δ

µpβr

∫ t

0
g(x(τ))dτ = L. The function V

defined by

V(x) =
1
βs

s +
1
βr

r +
δ

µpβr
p + L −

δ

µpβr

∫ t

0
g(x(τ))dτ,

satisfies V(x0) = 0 and V(x) ≥ 0 for all x ∈ Ω. The orbital derivative of V is given by

V̇ =
1
βs

ds
dt

+
1
βr

dr
dt

+
δ

µpβr

dp
dt
−

δ

µpβr

d
dt

(∫ t

0
g(x(τ))dτ

)
= (s + r) (1 − (s + r)) −

δps
βs

+
δps
βr
−
δp
βr
−

(
1
Rs

s +
1
Rr

r
)
.
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For Rs ≤ 1 and Rr ≤ 1 we obtain

V̇ ≤ (s + r) (1 − (s + r)) −
δps
βs

+
δps
βr
−
δp
βr
− (s + r)

= −(s + r)2 −
δps
βs
−
δp
βr

(1 − s)

< 0.

In consequence V̇(x) < 0 for all x ∈ Ω. Therefore, x0 is globally asymptotically stable in Ω. �

6. Hopf bifurcation

In the last section, we verified that the equilibria x± are l.a.s when the conditions defined in (5.6)
are satisfied. In this section, we will verify that if

∂g
∂r

(r±, p±) > 0 and
∂g
∂p

(r±, p±) < µp,

then there exists a Hopf bifurcation for a suitable parameter of system (2.2). In this case, a change
of stability of x+ or x− occur, and a limit cycle appears with amplitude and frequency depending on the
value of the bifurcation parameter. To this end, we will use the following version of the Hopf theorem

Theorem 6.1 (Hopf Theorem). Let n-dimensional autonomous system of differential equation given
by

ẋ = F(x, µ), (6.1)

which depends on the real parameter µ, and where F(x, u) is twice differentiable in both variables. We
suppose that

1. The system (6.1) possess an analytic family x(µ) of equilibrium points; that is F(x(µ), µ) = 0.
2. For certain value of µ, say µ0, the jacobian matrix J(x(µ0), µ0) = Fx (x(µ0), µ0) has two purely

imaginary eigenvalues λ±(µ0) = ±iβ and no other eigenvalue of J(x(µ0), µ0) is an integral multiple
of iβ.

3. If λ(µ) = α(µ) + iβ(µ) is the continuation of eigenvalue iβ, then α′(µ0) = d (Re(λ)(µ0)) /dµ , 0.

Under the above conditions there exists differentiable functions µ(ε) and T (ε) depending on a
parameter ε with µ0 and T (0) = 2πβ−1 such that there are nonconstant periodic solutions x(t, ε)
of (6.1) with period T (ε) which collapse into x(µ) as ε → 0.

See Schmidt [26] for a prove of Theorem 6.1. From (3.1) we observe that µ is one of the following
parameters βs, βr, α, δ, γ, σp, µs, µr, or µp, and F(x, µ) = A(µ)x + h(x, µ). In the Proposition 5.1 we
proved the existence of equilibriium x+ which depends of µ, and satisfies F(x+, µ) = 0. Consequently
the first item of the Theorem 6.1 is satisfied. For convenience we choose the bifurcation parameter
µ = βs, which implies x(µ) = x+(βs).

Now, we will prove that the Jacobian matrix at x+(βs) has a negative real eigenvalue and a pair of
eigenvalues on the imaginary axis. To this end, we define

ξ = βss + βrr +
δps

r
.
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In term of the parameter ξ, the constants a1, a2 and a3 defined in (5.4) are rewritten as

a1 = −

(
∂g
∂p
− µp

)
+ A

a2 = −

(
∂g
∂p
− µp

)
A +

(
1 +

s
r

)
βssδp − δs

∂g
∂r

a3 = −

(
∂g
∂p
− µp

) (
1 +

s
r

)
βssδp − δs

∂g
∂r

(
ξ − δp

(
1 +

s
r

))
.

Now, D2 in terms of ξ is given by
D2(ξ) = c1ξ

2 + c2ξ + c3, (6.2)

where

c1 = −

(
∂g
∂p
− µp

)
c2 =

(
∂g
∂p
− µp

)2

+

(
1 +

s
r

)
βssδp

c3 =

[
∂g
∂p
− µp −

(
1 +

s
r

)
δp

]
δs
∂g
∂r
.

Observe that D2(ξ) defined in (6.2) can be rewritten as D2(ξ) = (ξ − ξ+(βs))(ξ − ξ−(βs)) where

ξ±(βs) =
−c2(βs) ±

√
(c2(βs))2 − 4c1(βs)c3(βs)

2c1(βs)
. (6.3)

Observe that c2 > 0, if ∂g/∂p < µp then c1 > 0, in addition, if ∂g/∂r > 0 then c3 < 0, which implies
that ξ+ is the only positive solution of D2(ξ) = 0. If ∂g/∂p = µp, then c1 = 0 and c3 < 0, then the
solution of D2(ξ) = 0 is ξ = −c3/c2 > 0. In consequence, for ξ = ξ+(βs) or ξ = −c3(βs)/c2(βs) we
obtain D2(ξ) = 0 which implies a1(βs)a(βs) = a3(βs) for some βs = β0

s . By substituting the previous
equation in p1(λ) we obtain

λ3 + a1(β0
s)λ

2 + a2(β0
s)λ + a1(β0

s)a2(β0
s) = 0

(λ + a1(β0
s))(λ

2 + a2(β0
s)) = 0. (6.4)

From (6.4) we establish that the eigenvalues of J(x+) are −a1(β0
s) and λ±(β0

s) = ±
√
−a2(β0

s). Since
a1(β0

s) > 0 and a2(β0
s) > 0 then −a1(β0

s) is a negative real number and λ±(β0
s) = ±i

√
a2(β0

s) are imaginary
numbers which implies that the second item of the Theorem 6.1 is satisfied.

Since s, r and p implicitly depend on all parameters of mathematical model (2.2), then the
constants a1, a2 and a3 defined in (5.4) implicitly depend on the same parameters. In consequence, the
calculation of the crossing speed is cumbersome, no matter which bifurcation parameter is chosen.
From Lemma 8.1 (appendix), it is verified the existence of an unique function v : R7 → R such that
βs = v(βr, α, δ, γ, µs, µr, µp). On the other hand, since the eigenvalues of Jacobian matrix defined
in (5.2) are given by −a1(β0

s) and λ±(β0
s) = ±iβ(β0

s) where β(β0
s) =

√
a2(β0

s), then using the canonical
form theory of Jordan (See Hirsch and Smale [27]) we obtain

J(x(β0
s), β

0
s) = DF(x(β0

s), β
0
s) ∼


0 −β0 0
β0 0 0
0 0 −a0

1

 ,
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with β0 = β(β0
s) and a0

1 = a1(β0
s). Suppose that for βs ≈ β

0
s we have

λ+ = ᾱ(βs) + iβ(βs)
λ− = ᾱ(βs) − iβ(βs),

being ᾱ(β0
s) = 0 and β(β0

s) = β0. Since we wish to calculate

ᾱ′(βs) =
d

dβs
[Re(λ(βs))]|βs=β

0
s
.

which is the crossing speed of the eigenvalues λ±(βs) in the imaginary axis. For βs ≈ β0
s the

characteristic polynomial associated with the Jacobian matrix

Jβs = DF(x(βs), βs) =


ᾱ(βs) −β(βs) 0
β(βs) ᾱ(βs) 0

0 0 −a1(βs)

 , (6.5)

is

Pβs(λ) = det(λI − Jβs)
= λ3 + L1(βs)λ2 + L2(βs)λ + L3(βs),

where

L1(βs) = a1(βs) − 2ᾱ(βs)
L2(βs) = −2ᾱ(βs)a1(βs) + ᾱ(βs)2 + β(βs)2

L3(βs) = a1(βs)[ᾱ(βs)2 + β(βs)2]. (6.6)

Since the coefficients L1, L2 and L3 must satisfy the same conditions that the coefficients a1, a2 and a3

of the characteristic equation of J(x(σp)); that is, L3(βs)−L1(βs)L2(βs) = 0. Substituting (6.6) in above
equation we obtain the followin equation

2ᾱ(µ)[(a1(µ) + ᾱ(µ))2 + β(µ)2] = 0. (6.7)

For ᾱ(µ) , 0, then (6.7) is rewritten as

(a1(µ) + ᾱ(µ))2 + β(µ)2 = 0. (6.8)

Applying implicit differentiation in (6.8) with respect to βs we obtain

ᾱ′(β0
s) = = −

[
β(βs)

a1(βs) + ᾱ(βs)
dβ
dβs

+
d a1

dβs

]
= −

1
2(a1(βs) + ᾱ(βs))

[(
β(βs)2 + a1(βs)2

)′
+
ᾱ(βs)
a1(βs)

(a1(βs)2)′
]
. (6.9)

Evaluating (6.9) in βs = β0
s we obtain

ᾱ′(β0
s) = −

1
2a0

1

(
β(βs)2 + a1(βs)2

)′
(β0

s)
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= −

 β0

2a0
1

√
a2(β0

s)
a′2(β0

s) + a′1(β0
s)


= −

[
1

2a0
1

a′2(β0
s) + a′1(β0

s)
]

= −
1

2a0
1

(
1 +

s
r

)
β0

s sδp

, 0. (6.10)

In consequence, there exits a a Hopf bifurcation to the system (2.2) in the endemic equilibrium x(βs) =

x+. Similar way, we verify the existence of a Hopf bifurcation around x−.

7. Discussion

Currently, plasmid-mediated resistance is a threat to humanity. One of the key factors in tackling
this challenge is to understand the replication dynamics of resistance plasmids. However, the lack of
knowledge about the biology of plasmids makes this task difficult. In this regard, efforts by researchers
in different fields have clarified some aspects of plasmids. The replication rate has been modeled as
a Holling type II functional response [28]. However, it is still unclear which functional responses
best fit the relevant rates. In this work, we studied the functional response of plasmid replication on
antibiotic resistance. Thus, we modeled the competitive interaction between plasmids, sensitive and
resistant bacteria with a system of three nonlinear ordinary differential equations. We used a function
g ∈ C1(R2) for the plasmid replication rate.

We proved the existence of bounded solutions of system (2.2) in the set Ω defined in (3.8).
Qualitative analysis was made under hypothesis C1; the equation g(r, p) = µp p has unique
non-negative solution p∗(r) which is a increasing convex function that satisfies p∗(0) = 0. The
system (2.2) always has the bacteria-free equilibrium, x0 ≡ 0 ∈ Ω, if Rr > 1 there exists a resistant
bacteria equilibrium x1 ∈ Ω where Rr represents the number of bacteria produced by the fraction of
resistant bacteria that evade the immune response, the existence results of coexistence equilibrium
points, x±, are summarized in the Proposition 4.2. This proposition explicitly determines the regions
of existence of x±. For example, if Rs > Rr then the equilibria x+ and x− coexist in the subset Ω′1 ⊂ Ω,
where Rs represents the number of bacteria generated by the fraction of sensitive bacteria that survive
the effects due to antibiotics and the immune system response, x+ and x− are associated with high and
low bacterial load, respectively. If Rs < 1, Rr < 1 and ∂g(0, 0)/∂p < µp, then x0 is l.a.s. In addition,
we proved that x0 is globally asymptotically stable when Rs ≤ 1 and Rr ≤ 1. In consequence, if each
bacterium (sensitive or resistant) produces at most one new bacteria, then the infection will be
controlled or eliminated. If Rr > 1, Rs < (1 + δp1/(α + γ + µs))Rr and ∂g(r1, p1)/∂p < µp, then x1 is
l.a.s in Ω. In this scenario, the infection is caused only by resistant bacteria. For δ � 1 and under
hypothesis of Proposition 4.2 we proved that x+ is l.a.s in Ω and x− is l.a.s in Ω′1. Furthermore, we
verified the existence of a Hopf bifurcation when βs � 1, ∂g(r+, p+)/∂p < µp and ∂g(r+, p+)/∂r > 0.
In this cases, when x+ loses its stability, a stable limit cycle appears. The growth of plasmids,
sensitive and resistant bacteria have an oscillatory behavior with initial period T = 2πβ−1

S .
The analysis of the model shows three possible scenarios in the outcome of the infection; bacterial

progression is cleared, persists only with resistant bacteria, or persists with both of them. The only
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equilibrium point in the region

U1 = Ω ×
{
(Rs,Rr) ∈ R2 : 0 < Rs ≤ 1, 0 < Rr ≤ 1

}
,

is x0. Since x0 is globally asymptotically stable in U1, then regardless of the initial conditions or the
plasmid replication rate, the bacterial progression is always eliminated in U1. The region

U2 = Ω ×
{
(Rs,Rr) ∈ R2 : 0 < Rs ≤ 1,Rr > 1

}
,

contains the equilibria x0 and x1. The point x0 is unstable and x1 is l.a.s when tha plasmid replication
rate satisfies ∂g(rr, p1)/∂p < µp. Therefore, in the subregion W1 ⊂ U2 defined by

W1 = Ω ×

{
(Rs,Rr) ∈ R2 : 0 < Rs ≤ 1,Rr > 1,

∂g
∂p

(r1, p1) < µp

}
,

x0 is unstable and x1 is l.a.s, which implies that the infection tends to spread only with resistant bacteria.
For Rs > 1 and Rr > 1 there are several regions. In the region

U3 = Ω ×

{
(Rs,Rr) ∈ R2 : Rs > 1,Rr > 1,Rs < Rr, p+(1) < p+(1),Rs <

(
1 +

δp1

(α + γ + µs)

)
Rr,

∂g
∂p

(rr, p1) < µp

}
,

the equilibrium x0 is unstable, x+ and x1 are l.a.s. In consequence, U3 is a region of bi-stability in
which infection progresses with resistant bacteria or with high levels of both bacterial populations. In
the region

U4 = Ω ×

{
(Rs,Rr) ∈ R2 : Rs > 1,Rr > 1,Rs < Rr, p+(1) > p+(1),Rs <

(
1 +

δp1

(α + γ + µs)

)
Rr,

∂g
∂p

(rr, p1) < µp

}
,

the equilibrium x0 is unstable x1 is l.a.s and x+ does not exist. Then, in U4 the bacterial progression is
only with resistant bacteria. In the regions

U5 = Ω ×

{
(Rs,Rr) ∈ R2 : Rs > 1,Rr > 1,Rs < Rr, p+(1) < p+(1),Rs >

(
1 +

δp1

(α + γ + µs)

)
Rr or

∂g
∂p

(rr, p1) > µp

}
U6 = Ω ×

{
(Rs,Rr) ∈ R2 : Rs > 1,Rr > 1,Rs = Rr

}
U7 = (Ω′1 ∩Ω2) ×

{
(Rs,Rr) ∈ R2 : Rs > 1,Rr > 1,Rs > Rr

}
U8 = (Ω′1 ∩Ω1) ×

{
(Rs,Rr) ∈ R2 : Rs > 1,Rr > 1,Rs > Rr

}
,

the equilibria x0 and x1 are unstable x+ is l.a.s. Then, in the regions U5 − U8 the infection progresses
with high levels of both bacterial populations. In the region

U9 = Ω′1 ×
{
(Rs,Rr) ∈ R2 : Rs > 1,Rr > 1,Rs > Rr

}
,

the equilibria x0 and x1 are unstable, x+ and x− are l.a.s, which means that the infection progresses with
high and low levels of both bacterial populations. In the region

U10 = Ω′1 ×

{
(Rs,Rr) ∈ R2 : Rs > 1,Rr > 1,

∂g
∂p

(r+, p+) < µp,
∂g
∂r

(r+, p+) > 0
}
,

the equilibrium x0 and x+ are unstable, and there are limit cycles.
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The results of the analysis of the model (2.2) confirm that the form of replication of bacterial
plasmids plays a fundamental role in PMAR. Under hypothesis C1 and additional conditions of ∂g/∂p
and ∂g/∂r we obtained results similar to those presented in [16]. However, since the number of
equilibrium solutions of (2.2) depends on the number of solutions of the equations defined in (4.13)
we can modify C1 to obtain new scenarios on the set of equilibrium points. For the following
hypothesis

C2 : the equation g(r, p) = µp p has unique non-negative solution p∗(r) such that the equations p+(r) =

p∗(r) and p−(r) = p∗(r) have n and m solutions in (0, 1), respectively.

we have the following existence results for the coexistence equilibria.

Proposition 7.1. By assuming that the hypothesis C2 is satisfied, Rs > 1 and Rr > 1 we have the
following results:

1. If Rs < Rr, then there are n coexistence equilibria x+
1 , . . . , x

+
n ∈ Ω.

2. If Rs = Rr, there are n coexistence equilibria x+
1 , . . . , x

+
n ∈ Ω1.

3. If Rs > Rr, then

• there are n + m coexistence equilibria x+
1 , . . . , x

+
n and x−1 , . . . , x

−
m in Ω′1 ⊂ Ω1.

• there are n coexistence equilibria x+
1 , . . . , x

+
n ∈ Ω′1 ∩Ω2 ⊂ Ω1.

• there are n coexistence equilibria x+
1 , . . . , x

+
n ∈ Ω′′1 ∩Ω1 ⊂ Ω1.

Proof. The same procedure carried out to prove the Proposition 4.2. �

The stability results for the coexistence equilibria of Proposition 7.1 are summarized in the
following proposition.

Proposition 7.2. If g satisfies the conditions (5.6), δ � 1 and under hypothesis of Proposition 7.1 it
follows that x+

1 , . . . , x
+
n are l.a.s in Ω and x−1 , . . . , x

−
m are l.a.s in Ω′1.

Proof. The same procedure carried out to prove the Proposition 5.1. �

Now, under following hypothesis,

C3 : the equation g(r, p) = µp p has unique non-negative solution p∗(r) such that the equations p±(r) =

p∗(r) have an infinite countable number of equilibrium solutions {ri}
∞
i=1 ∈ (0, 1).

It is follows the next proposition.

Proposition 7.3. By assuming that the hypothesis C3 is satisfied, Rs > 1 and Rr > 1, then there are
an infinite countable number of non isolated equilibrium points {xi}

∞
i=1 ⊂ Ω and a isolated equilibrium

point x̄ ∈ Ω of system (2.2) such that xi → x̄ when i→ ∞. In addition,

1. If Rs < Rr, then {xi}
∞
i=1 ∈ Ω and x̄ ∈ Ω.

2. If Rs = Rr, then {xi}
∞
i=1 ∈ Ω1 and x̄ ∈ Ω1.

3. If Rs > Rr, then

• {xi}
∞
i=1 ∈ Ω′1 ⊂ Ω1 and x̄ ∈ Ω′1 ⊂ Ω1.

• {xi}
∞
i=1 ∈ Ω′1 ∩Ω2 ⊂ Ω1 and x̄ ∈ Ω′1 ∩Ω2 ⊂ Ω1.

• {xi}
∞
i=1 ∈ Ω′′1 ∩Ω1 ⊂ Ω1 and x̄ ∈ Ω′′1 ∩Ω1 ⊂ Ω1.
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Proof. If we assume that the Eq (4.13) has an infinite countable set of solutions {ri}
∞
i=1 ∈ (0, 1), then

there exits r̄ ∈ [0, 1] such that ri → r̄ when i → ∞. Therefore, the system (2.2) have an infinite
countable set of equilibrium solutions {xi}

∞
i=1 such that xi → x̄ when i → ∞, where x̄ is an equilibrium

point of system (2.2). �

Following a similar idea, we could obtain continuous curves of non-isolated equilibria of (2.2).

8. Conclusions

The elimination of the bacterial population is the most relevant scenario to the host. In this regard,
the qualitative analysis reveals that to reach this objective in a neighborhood of x0, N(x0), it is necessary
that the surviving bacteria of both the effect of antibiotic and the immune response do not generate
new bacteria, and the variation of the plasmid replication rate respect to plasmids would be less than
its degradation rate. While eliminating the bacterial population in Ω, it is required only that each
bacterium mentioned above generates at most one new bacterium. Here, the plasmid replication rate
plays no role. These results suggest that within the host plasmid replication produces local effects on
the outcome of infection. Now, when each surviving bacterium generates more than one bacterium,
different types of bacterial spread occur, and although the effect of plasmid replication remains local,
the plasmid replication rate is essential to determine the type of spread.
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Appendix

Lemma 8.1. There exists an unique function v : R7 → R that satisfies βs = v(βr, α, δ, γ, µs, µr, µp).

Proof. Let D2(z, βS ) = a2(z, βs)a1(z, βs)−a3(z, βs) where z = (βr, α, δ, γ, µs, µr, µp), then we had verified
that D2(z0, β

0
s) = 0 where z0 is the vector corresponding to the parameter β0

s . In addition, from (5.5) we
verify

∂D2

∂βs

(
z0, β

0
s

)
=

[
∂g
∂p
− µp −

(
βrr +

δps
r

+ β0
s s

)]2

s +

(
βrr +

δps
r

+ β0
s s

)
(δp − βrr − β0

s s)s

+

(
1 +

s
r

)
β0

s sδps.

Observe that ∂D2

(
z0, β

0
s

)
/∂βs , 0 for β0

s � 1. In consequence, the Implicit function theorem implies
the existence of an open ball U ∈ R7 containing z0 and an interval V ⊂ R containing β0

s such that there
is an unique function βs = v(z) defined for z ∈ U and βs ∈ V which satisfies F(x(β0

s), β
0
s) = 0, where F

is the right side of the system (2.2) [29]. �
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