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1. Introduction

Imai and Iséki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras [5, 6].
Neggers and Kim introduced the notion of d-algebras which is another useful generalization of BCK-
algebras, and they investigated several relations between d-algebras and BCK-algebras [10]. Allen et
al. [1] developed a theory of companion d-algebras in sufficient detail to demonstrate considerable
parallelism with the theory of BCK-algebras as well as obtaining a collection of results of a novel type.
Allen et al. [2] introduced the notion of deformation in d/BCK-algebras. Using such deformations they
constructed d-algebras from BCK-algebras in such a manner as to maintain control over properties of
the deformed BCK-algebras via the nature of the deformation employed, and observed that certain
BCK-algebras cannot be deformed at all, leading to the notion of a rigid d-algebra, and consequently
of a rigid BCK-algebra as well. Kim et al. [7] explored properties of the set of d-units of a d-algebra.
Moreover, they discussed the notions of a d-integral domain and a left-injectivity.

Since the notion of a d-algebra was defined simply by deleting two complicated axioms from a
BCK-algebra, d-algebras became a wider class than the class of BCK-algebras. The following question
arises: Can a d-algebra X which is not a BCK-algebra be a union of its subsets Uα which satisfy the
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two complicated BCK-axioms, i.e., (Uα ∪ {0}, ∗, 0) forms a BCK-algebra? In the sense of this concept,
we introduce the notion of a BCK-neighborhood system of a d-algebra. In this paper, we introduce 3
different cases of the BCK-neighborhood system in different d-algebras.

In this paper, we introduce BCK-neighborhood systems in d-algebras as measures of distance of
these algebras from BCK-algebras. We find examples of various cases and situations related to the
general theory, as well as a complicated analytical example of one of particular interest in the theory
of pseudo-BCK-algebras. It appears also that a digraph theory may play a constructive role in this case
as it dose in the theory of BCK-algebras.

There are many algebraic structures which are generalizations of BCK-algebras in the literature,
e.g., BCH-algebras, BCI-algebras, BE-algebras, BF-algebras, etc.. If we use the notion of the BCK-
neighborhood system to such algebras, then we can develop the theory of BCK-algebras and general
algebraic structures also. There will be some interesting results.

2. Preliminaries

A d-algebra [9, 10] is a non-empty set X with a constant 0 and a binary operation “ ∗ ” satisfying
the axioms:

(D1) x ∗ x = 0,
(D2) 0 ∗ x = 0,
(D3) x ∗ y = 0 and y ∗ x = 0 imply x = y, for all x, y ∈ X.

A d-algebra X is said to be edge if x ∗ 0 = x for all x ∈ X.
For brevity, we also call X a d-algebra. In X we can define a binary relation “ ≤ ” by x ≤ y if and

only if x ∗ y = 0. A non-empty subset I of a d-algebra X is a d-subalgebra of X if x, y ∈ I implies
x ∗ y ∈ I.

A BCK-algebra [3, 4, 8] is a d-algebra (X, ∗, 0) satisfying the following additional axioms:

(D4) ((x ∗ y) ∗ (x ∗ z) ∗ (z ∗ y) = 0,
(D5) (x ∗ (x ∗ y)) ∗ y = 0, for all x, y, z ∈ X.

3. BCK-neighborhood systems

There are many d-algebras which are not BCK-algebras. Among them, we can find some d-algebras
which can be divided into its subsets satisfying all BCK-axioms. We formulate this concept as below:

Definition 3.1. Let (X, ∗, 0) be a d-algebra. A family {Uα}α∈Σ of subsets of X is said to be a BCK-
neighborhood system of X if

(N1) ∪
α∈Σ

Uα = X,
(N2) ∀α ∈ Σ, ∀x, y ∈ Uα, (x ∗ (x ∗ y)) ∗ y = 0,
(N3) ∀α ∈ Σ, ∀x, y, z ∈ Uα, ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0.

Such examples of BCK-neighborhood systems can be found in Examples 5.4 and 6.4 below.

Proposition 3.2. Let (X, ∗, 0) be an edge d-algebra. If Σ := X and Ux := {x}, ∀x ∈ X, then
N0 := {Ux|x ∈ X} is a BCK-neighborhood system of X.
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Proof. Straightforward. �

By Proposition 3.2, we have the following corollary.

Corollary 3.3. Every edge d-algebra X permits a BCK-neighborhood system.

Example 3.4. Let {Uα}α∈Σ be a BCK-neighborhood system of X where Σ := {0} and U0 := X. Then
X is a BCK-algebra.

Let X be a non-empty set and “≤” be a binary relation on X. A system (X,≤) is said to be a quasi
ordered set if ≤ is reflexive and transitive.

Proposition 3.5. Let N := {Uα}α∈Σ be a BCK-neighborhood system of X and let M := {Vβ}β∈T be a
system of subsets of X such that

(i) ∪
β∈T

Vβ = X,

(ii) ∀ Vβ ∈ M, ∃Uα ∈ N such that Vβ ⊆ Uα.

Then M is also a BCK-neighborhood system of X.

Proof. (N1) By (i), we have ∪
β∈T

Vβ = X.

(N2) If x, y ∈ Vβ (β ∈ T ), then there exists Uα ∈ N such that Vβ ⊆ Uα. Hence x, y ∈ Uα. Since {Uα}α∈Σ

is a BCK-neighborhood system of X, we have (x ∗ (x ∗ y)) ∗ y = 0.
(N3) If x, y, z ∈ Vβ (β ∈ T ), then there exists Uα ∈ N such that Vβ ⊆ Uα. Hence x, y, z ∈ Uα. Since
{Uα}α∈Σ is a BCK-neighborhood system of X, we have ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0. Hence M is a
BCK-neighborhood system of X. �

In Proposition 3.5, we denote it by M ≤ N. We call M a sub-BCK-neighborhood system of N. We
denote the set of all BCK-neighborhood systems of X by BCK(X).

Proposition 3.6. (BCK(X),≤) is a quasi ordered set. The BCK-neighborhood system N0 in
Proposition 3.2 is the unique minimal BCK-neighborhood system of BCK(X).

Proof. Clearly, (BCK(X),≤) is a quasi ordered set. Let N be any BCK-neighborhood system of
BCK(X). We show that N0 ≤ N. The first two conditions hold trivially. Since N0 = {{x}|x ∈ X}, we
have Vβ = {β}, for any Vβ ∈ N0. Since N is a BCK-neighborhood system of X, there exists Uα in N
such that β ∈ Uα. Hence Vβ ⊆ Uα. Therefore N0 ≤ N. It completes the proof.

4. Constructions of BCK-neighborhood systems

In this section, we construct the BCK-neighborhood systems using analytic methods. We give a
main assumption that X := [0,∞) is a set of all positive real numbers, and “∗” is a binary operation
defined on X as follows: For any x, y ∈ X,

x ∗ y :=
{

0 if x ≤ y,
2x
π

tan−1(ln x
y ) if y < x.

Proposition 4.1. (X, ∗, 0) is an edge d-algebra.
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Proof. Clearly, we have x∗ x = 0 = 0∗ x for any x ∈ X. We claim that if x∗y = 0, then x ≤ y. In fact,
if we assume that x ∗ y = 0 and x > y for some x, y ∈ X. Then 2x

π
tan−1(ln x

y ) = x ∗ y = 0. It follows that
either x = 0 or tan−1(ln x

y ) = 0, i.e., ln x
y = 0. Therefore either x = 0 or y = x, which is a contradiction

to y < x. Assume that x ∗ y = 0 = y ∗ x for any x, y ∈ X. Then, by claim, we obtain x ≤ y and y ≤ x.
Therefore x = y. Thus (X, ∗, 0) is a d-algebra. For any x ∈ X, we have x ∗ 0 = 2x

π
tan−1(ln x

0 ) = 2x
π
π
2 = x.

Hence (X, ∗, 0) is an edge d-algebra.

We want to find a BCK-neighborhood system {Uα}α∈Σ based on Proposition 4.1. By analytic method,
we search to find such an Uα.

Proposition 4.2. Let x ∈ X with x > 0 and y = 1
λ

x (λ > 1). Then x ∗ y ≤ x.

Proof. For such x and y in X, we have

x ∗ y =
2x
π

tan−1(ln
x
y

)

=
2x
π

tan−1(ln
x

1
λ

x
)

=
2x
π

tan−1(ln λ)

=
2x
π

tan−1(τ) [λ = eτ, τ > 0]

≤
2x
π

π

2
= x

Since x ∗ y ≤ x, we obtain

x ∗ (x ∗ y) =
2x
π

tan−1(ln
x

x ∗ y
). (4.1)

Lemma 4.3. Let x ∈ X with x > 0 and y = 1
λ

x (λ > 1). Then

x ∗ (x ∗ y) ≥ 0. (4.2)

Proof. If x ∗ y = 0, then x ∗ (x ∗ y) = x ∗ 0 = x ≥ 0. If x ∗ y , 0, then x
x∗y ≥ 1, since

x ∗ y ≤ x. It follows that ln( x
x∗y ) ≥ ln 1 = 0, and hence tan−1(ln x

x∗y ) ≥ tan−1 0 = 0. This shows
that x ∗ (x ∗ y) = 2x

π
tan−1(ln x

x∗y ) ≥ 2x
π

tan−1 0 = 0. �

Theorem 4.4. Let x ∈ X with x > 0 and let y = 1
λ

x (λ > 1). Then the condition x ∗ (x ∗ y) ≤ y is
equivalent to the following inequality.

ln π − ln 2 − ln(tan−1 τ) ≤ tan(
π

2λ
). (4.3)
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Proof. Since y = 1
λ

x, by (1), we have

x ∗ (x ∗ y) ≤ y ⇔
2x
π

tan−1(ln
x

x ∗ y
) ≤ y

⇔ tan−1(ln
x

x ∗ y
) ≤

πy
2x

⇔ ln
x

x ∗ y
≤ tan(

πy
2x

)

⇔ ln
x

x ∗ y
≤ tan(

π

2λ
)

We compute ln x
x∗y as follows:

ln
x

x ∗ y
= ln x − ln(x ∗ y)

= ln x − ln(
2x
π

tan−1(τ))

= ln x − ln
2
π
− ln x − ln(tan−1(τ))

= ln π − ln 2 − ln(tan−1(τ))

where λ = eτ, τ > 0 as in Proposition 4.2. Hence the condition x ∗ (x ∗ y) ≤ y is equivalent to the
inequality (3).

Remark. Consider (3). If we let λ := 1 in (3), then tan( π
2λ ) = tan π

2 = ∞. Hence the inequality (3)
holds. If we let τ → ∞, since λ = eτ and τ > 0, we have λ → ∞ and so tan(π

λ
) = 0. On the while,

ln π − ln 2 − ln(tan−1 τ) = ln π − ln 2 − ln(π2 ) = 0. Therefore the inequality (3) holds.

Theorem 4.5. Let x ∈ X with x > 0 and let y = 1
λ

x (λ > 1). Then there exists λ0 such that if λ ≤ λ0,
then (x ∗ (x ∗ y)) ∗ y = (x ∗ (x ∗ 1

λ
x)) ∗ 1

λ
x = 0.

Proof. If we let α := ln π − ln 2 − ln(tan−1 τ) and β := tan( π
2λ ), then, by using L’Hôpital’s rule, we

obtain
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lim
λ→∞

α

β
= lim
λ→∞

ln π − ln 2 − ln (tan−1 τ)
tan( π

2λ )

= lim
λ→∞

ln π
2 − ln (tan−1(ln (λ))

tan( π
2λ )

= lim
λ→∞

−1
tan−1(ln λ) ·

1
1+(ln λ)2 ·

1
λ

sec2( π
2λ )(−π2 ·

1
λ2 )

= lim
λ→∞

2λ2

tan−1(ln λ)[1 + (ln λ)2] · sec2( π
2λ ) · λ · π

= lim
λ→∞

(
2

π · tan−1(ln λ) sec2( π
2λ )

) · (
λ

1 + (ln λ)2 )

= lim
λ→∞

(
2

π tan−1(ln λ) sec2( π
2λ )

) · ( lim
λ→∞

λ

1 + (ln λ)2 )

=
2

π · π2 · 1
lim
λ→∞

λ

1 + (ln λ)2

=
4
π2 lim

λ→∞

1
2(ln λ) · 1

λ

=
2
π2 lim

λ→∞

λ

ln λ

=
2
π2 lim

λ→∞

1
1
λ

= ∞.

It follows that there exists λ0 ∈ X such that if λ > λ0, then α > β, i.e., ∃λ0 such that λ > λ0 implies
x ∗ (x ∗ y) > y. This shows that λ ≤ λ0 implies x ∗ (x ∗ y) ≤ y. Therefore there exists λ0 ∈ X such that

λ ≤ λ0 implies (x ∗ (x ∗ y)) ∗ y = (x ∗ (x ∗
1
λ

x)) ∗
1
λ

x = 0. (4.4)

Remark. It is a problem to determine λ0 exactly. A partial answer is that if we take τ := 0.824, then
λ = eτ = e0.824 + 2.2796. Let λ0 := 2.2796.

We construct a BCK-neighborhood system A = {Ux|x ∈ X}, where Ux := [ x
√
λ0
,
√
λ0x]. Here we

use the real number λ0 which is obtained from Theorem 4.5.

Lemma 4.6. If a, b ∈ Ux = [ x
√
λ0
,
√
λ0x], then (a ∗ (a ∗ b)) ∗ b = 0.

Proof. If a ≤ b, then (a ∗ (a ∗ b)) ∗ b = (a ∗ 0) ∗ b = a ∗ b = 0 by Proposition 4.1. If a > b, then there
exists λ > 1 such that b = a

λ
. Since a, b ∈ Ux, we have x

√
λ0
≤ b ≤ a ≤

√
λ0x and so

b
a
≥

1
√
λ0

x
√
λ0x

=
1
λ0
,

i.e., a
λ

= b ≥ 1
λ0

a. Hence λ ≤ λ0. By applying Theorem 4.5, we prove that (a ∗ (a ∗ b)) ∗ b = 0. �
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Given x, y, z ∈ X with y ≤ x ≤ z in X, we have the following:

x ∗ y =
2x
π

tan−1(ln
x
y

) and z ∗ y =
2z
π

tan−1(ln
z
y

).

Lemma 4.7. If y ≤ x ≤ z, then x ∗ y ≤ z ∗ y.

Proof. If y ≤ x ≤ z, then ln( x
y ) ≤ ln( z

y ), and hence tan−1(ln x
y ) ≤ tan−1(ln z

y ). Since x ≤ z, we obtain
x ∗ y = 2x

π
tan−1(ln x

y ) ≤ 2z
π

tan−1(ln z
y ) = z ∗ y. It completes the proof. �

Lemma 4.8. If z ≤ y ≤ x, then x ∗ y ≤ x ∗ z.

Proof. The proof is similar to Lemma 4.7, and we omit it. �

Let y ≤ z ≤ x in X. By Lemma 4.8, we obtain x ∗ z ≤ x ∗ y. It follows that

(x ∗ y) ∗ (x ∗ z) =
2(x ∗ y)

π
tan−1(ln

x ∗ y
x ∗ z

) (4.5)

and
z ∗ y =

2z
π

tan−1(ln
z
y

). (4.6)

In order to satisfy the condition (N3), we need to show that (5) ≤ (6), i.e.,

2(x ∗ y)
π

tan−1(ln
x ∗ y
x ∗ z

) ≤
2z
π

tan−1(ln
z
y

)

⇔
tan−1(ln x∗y

x∗z )

tan−1(ln z
y )
≤

z
x ∗ y

⇔
(x ∗ y) tan−1(ln x∗y

x∗z )

z tan−1(ln z
y )

≤ 1

If y = z or x = z in y ≤ z ≤ x, then the condition ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0 holds trivially. We
may assume y < z < x. Let y := αx, z := βx, where α < β, β = λα < 1. Then 1 ≤ λ ≤ 1

α
. Therefore,

we have

z
y

=
βx
αx

=
β

α
=
λα

α
= λ, (4.7)

and hence

x ∗ y
x ∗ z

=

2x
π

tan−1(ln x
y )

2x
π

tan−1(ln x
z )

=
tan−1(ln x

αx )

tan−1(ln x
βx )

=
tan−1(ln α)

tan−1(ln λα)

(4.8)
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and

x ∗ y
z

=

2x
π

tan−1(ln x
αx )

λαx

=
2 tan−1(− ln α)

πλα

=
−2 tan−1(ln α)

πλα
.

(4.9)

Note that 1
tan−1(ln λ) ≥

2
π
, since tan−1(ln λ) ≤ π

2 . If we let

A :=
(x ∗ y) tan−1(ln x∗y

x∗z )

z tan−1(ln z
y )

,

then

A =
−2 tan−1(lnα) tan−1[ln tan−1(ln α)

tan−1(ln λα) ]

πλα tan−1(ln λ)
(4.10)

≥ −
2
π

1
λα

2
π

tan−1(lnα) tan−1[ln
tan−1(ln α)

tan−1(ln λα)
]

=
1
λ

[
4
π2α

tan−1(ln
1
α

) tan−1[ln
tan−1(ln α)

tan−1(ln λα)
]] (4.11)

By formula (10), we see that A is a function of λ and so we replace A by A(λ).
Note that if A(λ) = 0, then

tan−1(lnα) tan−1[ln
tan−1(ln α)

tan−1(ln λα)
] = 0.

It follows that either tan−1(lnα) = 0 or tan−1[ln tan−1(ln α)
tan−1(ln λα) ] = 0, and hence either α = 1 or λ = 1. Since

λα < 1, we conclude λ + 1 is an approximate solution of A(λ) = 0. We denote such a solution by λ1.
Pick α near zero and β = λα near 1. Then we simplify the bracket expression of (11) to the

following:

4
π2α

tan−1(ln
1
α

) tan−1(ln
tan−1(ln α)

tan−1(ln λα)
)

+
4
π2α

π

2
tan−1(ln (

−π
2

0
)) =

2
πα
·
π

2
=

1
α
.

Hence A(λ) ≥ 1
λ

1
α

= 1
β
> 1. Take λ so that 1

α
> λ, say λα := 1 − ε for some ε > 0. Then λ = 1−ε

α
< 1

α
.

Hence A(λ) > 1 is possible for some λ.
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Let λ := e in A(λ). Then we get

A(e) =
−2 tan−1(ln α) · tan−1(ln ( tan−1(ln α)

tan−1(ln αe) ))

παe · tan−1(ln e)

=
−2 tan−1(ln α) · tan−1(ln ( tan−1(ln α)

tan−1(ln α+1) ))

παe · tan−1(1)

=
−8
π2αe

· tan−1(ln α) · tan−1(ln (
tan−1(ln α)

tan−1(ln α + 1)
))

(4.12)

Since λ = e and 1 < λ < 1
α
, we have 0 < α < 1

λ
= 1

e < 1 and so ln α < 0. Hence we get

tan−1(ln α) < 0. (4.13)

Since y = tan−1 x is a monotone increasing function, we obtain tan−1(ln α) < tan−1(ln α+ 1) and hence
tan−1(ln α)

tan−1(ln α+1) < 1. If we take a logarithm, then ln ( tan−1(ln α)
tan−1(ln α+1) ) < 0. Therefore we get

tan−1(ln
tan−1(ln α)

tan−1(ln α + 1)
) < 0. (4.14)

By (12)–(14), we obtain

A(e) = −
8

π2αe
tan−1(ln α) tan−1(ln

tan−1(ln α)
tan−1(ln α + 1)

)

≥ −
8
π2e

tan−1(ln e) tan−1(ln
tan−1(ln e)

tan−1(ln e + 1)
)

= −
8
π2e

π

4
tan−1(ln

tan−1 1
tan−1 2

)

≥ −
8
π2e

(
π

4
)2 = −

1
2e
.

From the observation, we see that A(λ) is a continuous function and A(λ) > 1 is possible for
some λ. Moreover, we showed that A(e) ≥ − 1

2e . Hence there exists λ2 such that A(λ2) = 1. Let
λ3 ∈ X such that λ2 < λ3 < λ1 and let Ûa := [ a

√
λ3
, a
√
λ3] where a ∈ X. The largest spread is

y = a
√
λ3
, z = a

√
λ3(1 − ε), x = a

√
λ3 for some ε > 0. This shows that Ûa satisfies the conditions (N2)

and (N3). Therefore we have the following theorem.

Theorem 4.9. Let λ1 be a solution of A(λ) = 0 as in (10) and let λ2 be a solution of A(λ) = 1. Given
λ3 ∈ X such that λ2 < λ3 < λ1, define a set Ûa := [ 1

√
λ3
, a
√
λ3] where a ∈ X. Then the conditions

(N2), (N3) hold on Ûa.

Now, we show that A = {Ûa|a ∈ X} forms a BCK-neighborhood system on (X, ∗).
Given x, y, z ∈ X, we have 6 cases: (i) x ≤ y ≤ z, (ii) x ≤ z ≤ y, (iii) y ≤ x ≤ z, (iv) z ≤ x ≤ y, (v)

z ≤ y ≤ x, (vi) y ≤ z ≤ x. If x ∗ y = 0, i.e., cases (i), (ii), (iv), then the condition (N3) holds, since (X, ∗)
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is an edge d-algebra. For the case (iii), we have x∗z = 0, and hence (x∗y)∗(x∗z) = (x∗y)∗0 = x∗y ≤ z∗y
by Lemma 4.7. Hence we obtain ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0. We consider (v) z ≤ y ≤ x. Since
z ∗ y = 0, by Lemma 4.8, we obtain ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = ((x ∗ y) ∗ (x ∗ z)) ∗ 0 = (x ∗ y) ∗ (x ∗ z) = 0.
Finally, we consider the case (vi) y ≤ z ≤ x. It was already proved by Theorem 4.9. We summarize:

Theorem 4.10. Let λ1 be a solution of A(λ) = 0 as in (10) and let λ2 be a solution of A(λ) = 1. Given
λ3 ∈ X such that λ2 < λ3 < λ1, define a set Ûa := [ 1

√
λ3
, a
√
λ3] where a ∈ X. Then A = {Ûa|a ∈ X}

forms a BCK-neighborhood system on (X, ∗).

5. Another construction

Theorem 5.1. X := [0,∞) be a set. Define a binary operation “ ∗ ” on X by

(i) x ∗ x = 0 = 0 ∗ x,
(ii) if x , 0, x , y, we define x ∗ y := ϕ(x, y) and ϕ(x, y) ≥ x + y, where ϕ : X × X → X is a map,

(iii) x ∗ 0 = x

for all x, y ∈ X. Then (X, ∗, 0) is an edge d-algebra.

Proof. It is enough to show the anti-symmetry law holds. Assume that there exist a, b ∈ X such that
a ∗ b = 0 = b ∗ a, a , b. If a , 0, then 0 = a ∗ b = ϕ(a, b) ≥ a + b ≥ a > 0, a contradiction. If b , 0,
then 0 = b ∗ a = ϕ(b, a) ≥ b + a ≥ b > 0, a contradiction. If a = 0, then 0 = b ∗ a = b ∗ 0 = b, a
contradiction. Similarly, if b = 0, then 0 = a ∗ b = a ∗ 0 = a, a contradiction. �

We construct a BCK-neighborhood system on the d-algebra (X, ∗) as in Theorem 5.1.

Theorem 5.2. Let (X, ∗, 0) be an edge d-algebra as in Theorem 5.1. Define a set Ux by

Ux :=
{
{x, 0} if x , 0,
{0} if x = 0

for any x ∈ X. Then A := {Ux|x ∈ X} is a BCK-neighborhood system of X.

Proof. (N1) ∪A = ∪
x∈X

Ux = ∪
x∈X
{x, 0} = ∪

x∈X
{x} = X.

(N2) For any x, y ∈ Uα with α , 0, we have 3 cases: (i) x = y = α; (ii) x = α, y = 0; (iii) x = 0, y = α.
If x = y = α, then (x ∗ (x ∗ y)) ∗ y = (α ∗ (α ∗ α)) ∗ α = (α ∗ 0) ∗ α = α ∗ α = 0, since (X, ∗, 0) is an
edge d-algebra. If x = α, y = 0, then (x ∗ (x ∗ y)) ∗ y = (α ∗ (α ∗ 0)) ∗ 0 = α ∗ (α ∗ 0) = α ∗ α = 0. If
x = 0, y = α, then (x ∗ (x ∗ y)) ∗ y = (0 ∗ (0 ∗ α)) ∗ α = 0.
(N3) Given x, y, z ∈ Uα = {0, α} with α , 0, we have 8 cases. We consider one case, and the other cases
are similar, and so we omit it. If x = α, y = z = 0, then ((x∗y)∗(x∗z))∗(z∗y) = ((α∗0)((α∗0))∗(0∗0) =

((α ∗ 0) ∗ (α ∗ 0)) ∗ (0 ∗ 0) = (α ∗ α) ∗ 0 = 0. Hence A := {Ux|x ∈ X} is a BCK-neighborhood system
of X. �

Proposition 5.3. Let (X, ∗, 0) be an edge d-algebra as in Theorem 5.1. Let A := {Ux|x ∈ X}, where

Ux :=
{
{x, 0} if x , 0
{0} if x = 0.

Then A := {Ux|x ∈ X} is a unique maximal BCK-neighborhood system of X, i.e., if B is a BCK-
neighborhood system of X such that A ⊆ B, then A = B.
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Proof. Assume that there exists a BCK-neighborhood system B of X such that A ( B. Then
B contains a neighborhood U such that |U | ≥ 3. Let x, y, 0 ∈ U such that x , y, x , 0 , y. Then
x ∗ (x ∗ y) = x ∗ ϕ(x, y). Since ϕ(x, y) ≥ x + y > x, we have x , ϕ(x, y). Hence we obtain

x ∗ (x ∗ y) = x ∗ ϕ(x, y) = ϕ(x, ϕ(x, y)) ≥ x + ϕ(x, y)
≥ x + x + y = 2x + y.

Since x , y, we get x ∗ (x ∗ y) , y. Hence we obtain

(x ∗ (x ∗ y)) ∗ y =ϕ(x ∗ (x ∗ y), y) ≥ x ∗ (x ∗ y) + y

≥ 2x + y + y = 2(x + y) > 0.

This shows that (x ∗ (x ∗ y)) ∗ y = 0 does not hold for x , y in U. Hence B is not a BCK-neighborhood
system of X, a contradiction. Therefore A is a unique maximal BCK-neighborhood system of (X, ∗, 0).

�

Example 5.4. Let X := [0,∞) be a set. Define a binary operation “∗” on X by x ∗ x = 0 ∗ x = 0,
x ∗ 0 = x, and x ∗ y := x + y if x , y and x , 0 for all x, y ∈ X, where + is the usual addition of real
numbers. Then it is easy to see that (X, ∗, 0) is an edge d-algebra. Given x ∈ X, if we define Ux := {x, 0}
and A := {Ux | x ∈ X}, then A is a BCK-neighborhood system of (X, ∗, 0).

Theorem 5.5. Let (X, ∗, 0) be a d-algebra. Let A := {Uα|α ∈ Λ} be a BCK-neighborhood system
of X. If we define a class of sets

Â := {Ûα|∃ Uα1 , · · · ,Uαn ∈ A such that Ûα = Uα1 ∩ · · · ∩ Uαn , ∅},

then Â is a BCK-neighborhood system of X.

Proof. (N1). Given x ∈ X, since A is a BCK-neighborhood of X, there exists Uα ∈ A such that
x ∈ Uα. Let Ûα := Uα∩Uα. Then Ûα , ∅ and Ûα ∈ Â . Hence x ∈ ∪

α∈Λ
Ûα ⊆ ∪{Ûα|Ûα ∈ Â }. Therefore

X = ∪{Ûα|Ûα ∈ Â }.
(N2) and (N3). Given Ûα ∈ Â , there exist Uα1 , · · · ,Uαn ∈ Â such that Ûα = Uα1∩Uα2∩· · ·Uαn , ∅.

If x, y, z ∈ Ûα, then x, y, z ∈ Uαi for all i = 1, · · · ,m. Since A is a BCK-neighborhood system of X, we
get (x ∗ (x ∗ y)) ∗ y = 0 and ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0 for all i = 1, · · · ,m, and hence the equations
hold for Ûα. Hence Â is a BCK-neighborhood system.

6. Prism d-algebras

Proposition 6.1. Let (X′,→) be a digraph and let 0 < X′. Let 0 → x for any x ∈ X′, and let
X := X′ ∪ {0}. Define a binary operation “ ∗ ” on X by

(i) x ∗ x = 0 = 0 ∗ x,
(ii) x ∗ 0 = x,

(iii) x ∗ y = 0, y ∗ x = y if x→ y,
(iv) x ∗ y = x, y ∗ x = y if there is no arrow between x and y
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for any x, y ∈ X Then (X, ∗, 0) is an edge d-algebra.

Proof. It is enough to show that “ ≤ ” is anti-symmetry. Assume that there exist x, y ∈ X such that
x ∗ y = 0 = y ∗ x, x , y. If one of x, y is zero, say x = 0, y , 0, then 0 = y ∗ x = y ∗ 0 = y by (ii), which
is a contradiction. Assume x , 0 , y. If x→ y, then we have x ∗ y = 0, y ∗ x = y by using (iii). It leads
to 0 = y ∗ x = y, a contradiction. Similarly, if y → x, then it leads to x = 0, a contradiction. If there is
no arrow between x and y, then we have x ∗ y = x, y ∗ x = y by (iv). Since x ∗ y = 0 = y ∗ x, we obtain
x = 0 = y, which is a contradiction. Hence (X, ∗, 0) is an edge d-algebra. �

Example 6.2. Consider a digraph (X′ := {a, b, c, d},→) with the following digraph:

b • −−−−−→ • cx y
a • ←−−−−− • d.

Adjoin 0 to X′ so that 0 → α for all α ∈ X′. Let X := X′ ∪ {0}. By Proposition 6.1, we obtain an edge
d-algebra (X, ∗, 0) as follows:

∗ 0 a b c d
0 0 0 0 0 0
a a 0 0 a a
b b b 0 0 b
c c c c 0 0
d d 0 d d 0

In Example 6.2, we call such an algebra (X, ∗, 0) a prism d-algebra of order 4.

Theorem 6.3. Every prism d-algebra (X, ∗, 0) has a BCK-neighborhood system.

Proof. We consider two cases: (i) X is a finite set; (ii) X is an infinite set. Case (i): |X| < ∞.
We consider two cases. Subcase (i)-1: |X| = 2n (n ∈ N). Let X := {x1, x2, · · · , x2n−1, x2n} such that
x1 → x2 → x3 → · · · → x2n−1 → x2n → x1 and 0→ xi for all i = 1, · · · , 2n. Let N1 := {0, x1, x2},N3 :=
{0, x3, x4}, · · · ,N2n−1 := {0, x2n−1, x2n}. Then X = N1 ∪ · · · ∪ N2n−1. Since 0→ x2i+1 → x2i+2, we have

∗ 0 x2i+1 x2i+2

0 0 0 0
x2i+1 x2i+1 0 0
x2i+2 x2i+2 x2i+2 0

Then it is easy to see that (N2i+1, ∗, 0) is a BCK-algebra, and so the conditions (N2) and (N3) of
Definition 3.1 hold for N2i+1. Then {N1, · · · ,N2n−1} is a BCK-neighborhood system. Subcase (i)-2:
|X| = 2n + 1 (n ∈ N). Let X := {x1, x2, · · · , x2n, x2n+1} such that x1 → x2 → x3 → · · · → x2n → x2n+1 →

x1 and 0→ xi for all i = 1, · · · , 2n + 1. Let N2 := {0, x1, x2},N4 := {0, x3, x4}, · · · ,N2n := {0, x2n−1, x2n}

and N2n+1 := {0, x2n+1}. Then X = N2 ∪ · · · ∪N2n ∪N2n+1. It is already shown that N2i is a BCK-algebra.
Since 0→ x2n+1, we have

∗ 0 x2i+1

0 0 0
x2i+1 x2i+1 0

AIMS Mathematics Volume 6, Issue 9, 9422–9435.



9434

Then (N2n+1, ∗, 0) is a BCK-algebra. Hence {N2,N4, · · · ,N2n,N2n+1} is a BCK-neighborhood system
of X.
Case (ii): |X| = ∞. Assume X = {xn|n ∈ N} such that x1 → x2 → · · · → xn → xn+1 → · · · and 0 → xi

for all i ∈ N. Let N2i−1 := {0, x2i−1, x2i} (i = 1, 2, · · · ). Then X = ∪N2i−1 and N2i−1 is a BCK-algebra.
Therefore X has a BCK-neighborhood system. �

Example 6.4. In Example 6.2, we take N1 := {0, a, b}, N2 := {0, c, d}. Then (Ni, ∗, 0) is a BCK-
algebra (i = 1, 2) and X = N1 ∪ N2. Then {N1,N2} is a BCK-neighborhood system of X. Also (X, ∗, 0)
in Example 6.2 is not a BCK-algebra, since ((b ∗ d) ∗ (b ∗ c)) ∗ (c ∗ d) = (b ∗ 0) ∗ 0 = b , 0.

Remark 6.5. There exists a BCK-neighborhood system A := {Ni|i ∈ Λ} such that there exist
N1,N2 ∈ A such that |N1 ∩ N2| ≥ 2.

Example 6.6. Let X := {0, a, b, c, d, e} be a set satisfying the conditions: a→ b→ c→ d → e→ a
and 0→ x for all x ∈ X. Then we obtain the following table:

∗ 0 a b c d e
0 0 0 0 0 0 0
a a 0 0 a a a
b b b 0 0 b b
c c c c 0 0 c
d d d d d 0 0
e e 0 e e e 0

by applying Proposition 6.1, and we get (X, ∗, 0) is an edge d-algebra. If we take N1 := {0, a, b},N2 :=
{0, c, d}, and N3 := {0, d, e}, then X = N1 ∪ N2 ∪ N3. We see that Ni (i = 1, 2, 3) are BCK-algebras and
|N2 ∩ N3| = 2.

7. Conclusions and future works

As part of the development of a general theory of groupoids (binary systems) a fundamental problem
would be to try to determine how much a certain groupoid approximates a certain known type of
interest, e.g., a group, a commutative group, a semigroup, etc.. Among these types a very significant
type is that of BCK-algebra which may be very closely related to Boolean algebras, partially ordered
sets with minimal element 0, and other subclasses. One way of dealing with providing an answer is
to consider using the block product (X,�) = (X, ∗)�(X, •) of groupoids. It was shown that the block
product of strong d-algebras is a strong d-algebra. It is also true that the block product of groups is not a
group, but a groupoid which has properties in common with groups and are objects worth investigating
in this way. BCK-algebras can be studied using the same tool. Another approach to deal with this
question which is also promising is the following stated for example for groups (not yet done): Given
a groupoid (X, ∗), a group neighborhood system {(Xα, ∗α, eα)}α∈∧ has the property that ∪α∈∧Xα = X
and if x, y, z ∈ Xα, (x ∗ y) ∗ z = x ∗ (y ∗ z), and x ∈ Xα implies that there is an element x−1

α ∈ Xα

such that x ∗α x−1
α = x−1

α ∗α x = eα. Obviously, if there is a group neighborhood system containing
only one element then the groupoid (X, ∗) is a group. There will be a detailed investigation of group
neighborhood systems.
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In the development of a theory of this nature for a class of groupoids, our first choice has been
the class of BCK-algebras. In order to obtain a “strickter” system with a better chance of obtaining
sufficiently interesting results, we took the groupoid (X, ∗) to be a d-algebra (i.e., already somewhat
close to a BCK-algebra) and we let 0α = 0β = 0 for all α, β ∈

∧
, for a “better fit” of the BCK-

algebras Xα in the BCK-neighborhood system, where it is obvious that if the system is a sigleton
{(X, ∗1, 01)}∧={1}, then (X, ∗) = (X, ∗1, 01) = (X, ∗, 0) is a BCK-algebra. As far as applications of these
results, it is known that BCK-algebras as algebras of logic [4] already play a role in the design of both
hardware networks and software algorithms. It is necessary to allow a more flexible approach to deal
with groupoids (e.g., d-algebras) which have BCK-neighborhood systems of low cardinality.

From a purely theoretical viewpoint, it is clear that these “neighborhood systems” approaches are
of interest on their own as well as resulting in more general information becoming available for deeper
understanding of the structure principles governing the class/variety of groupoids (X, ∗) for arbitrary
sets X and arbitrary products x ∗ y on these sets.
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