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1. Introduction

Bladder cancer is ninth most diagnosed and widespread disease in medical science see Gurung [1].
Among various cancers around the globe 3% is the bladder cancer see Riester et al. [2]. Moreover,
it is sixth and seventeenth most prevalent disease among men and women see Bray et al. [3]. There
are lot of types and infection percentage as we can find that bladder-transitional cell carcinoma in
the patients of bladder cancer are about 90%, bladder-squame cell carcinoma is greater than 5%, and
bladder-squame cell carcinoma is less than 2% see Kim et al. [4], according to pathological histology.
In the first diagnostic patient with bladder cancer, 70% to 85% has quasi bladder cancer and about
15% − 30% suffers from cancer of bladder muscle-invasive see Witjes et al. [5].

Exponential, Rayleigh, Weibull, log-normal, and gamma distributions were often utilised to model
biomedical data for more details see Zhu et al. [6]. Medical science researchers have shown significant
interest in the study of the survival of patients, particularly cancer patients see Aghamolaey et al. [7].
A fitting for parametric model often has importance to the survival study because it offers a succinct
explanation of the behaviour of failure times and the danger feature which does not exist with the
non-parametric models, see Wahed [8] for more details. Because the associated hazard rate does not
behave constantly over time, the Weibull model is more robust than the Cox semi-parametric model,
as mentioned in Zhu et al. [6].

Without a doubt, the parametric models mentioned above are extensively employed in survival
research. Regrettably, these models still have certain shortcomings. The next part provides a succinct
review of the drawbacks of earlier parametric models.

There are very common distributions that are used in modelling lifetime experiments. As an
example of these distributions is the exponential which is very common used in life testing, also as
we can say that there is another famous distribution which is the, Rayleigh, distributions and also
the most efficient distribution in modelling lifetime data and engineering data which is called the
Weibull distribution. These distributions are still the most usually applied parameter distributions,
as we mentioned earlier. As it is known these distributions are not versatile enough to accommodate
data types with high complexity. Here we speak about the issues of those well-known models. In
nearly, all medical conditions, as an example each of the following the neck, bladder, breast cancer,
and other types of cancer, their hazard rate is seen to have uni-modal or modified uni-modal form.
The hazard rate of many cancer infections such as neck, cancer and also bladder cancer as well as
breast cancer following to the surgery has been shown to be uni-modal. We refer to Efron [9] for
neck cancer, Lee and Wang [10] for bladder cancer and Demicheli [11] for breast cancer, for the most
accurate information. In the very early stages, The risk of cancer recurrence begins low and gradually
increases after a final duration of time, before it hits a plateau until it decreases. Alot of examples for
the unimodal form could be found by the hazard rates of certain new viruses infection, which rises from
low levels in the early viruses until hitting a plateau and decreases, see Malki [12]. The exponential,
Rayleigh and Weibull distributions may not be an acceptable choice for modelling such results.

We sometimes use the Kaplan-Meier product limit estimator, as it is considered as an efficient and
versatile methods of modelling lifetime results. For more information and extensive reading about this
method please see Miller [13], however this approach is also ineffective. Other methods with semi-
parameters like proportional hazard modelling need to be taken into account as in Cox [14], which
may not be possible. Meanwhile a host of parametric techniques to integrate a broad spectrum of
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trends in survival data have been implemented. In the classical Weibull distribution, several of the
parametric models suggested also provided a form parameter for additional potential danger forms.
Among these, a tool used by Kalbfeisch [15] might be ineffective when dealing with incomplete or any
type of censored data, because , it entails the calculating of heavy integrals such as gamma function
integrals which is very hard to be evaluated even with advanced programs and statistical packages.
Medical experts are continuing probing underneath the premises above for new distributions that model
lifetime data with uni-modal hazard function. A concerted progress has been put and continues to
expand rapidly in this regard; For more information and extra details we can refer to Ahmad et al. [16].

In this sense, researchers are still inspired to aim for new distribution families. As a result, we were
interested in introducing a new novel and superior lifetime family that may be called (NLT-X). The
suggested family of distributions is very versatile and ideally tailored to patients with bladder cancer.

The remain parts of this manuscript is ordered and outlined as we can find in: Section 2 introduces
the steps and the suggested process to present the proposed model using the T-X family methodology.
Section 3 defines a specific sub-model of the proposed family and provides the density, cumulative and
hazard functions. Section 4 discusses the classical method of estimation of model parameters known as
the MLE. Section 5 addresses the origins and essence of the bladder cancer results and the TTT plots for
bladder cancer patients. Criteria for model selection and the values of information criteria that decide
the superiority of the model against other competitive models are presented in Section 6. Section 7
demonstrates the significance of the new family in a real-life application of medical research compared
to more generalized families of distributions namely EW distributions and Ku-W distribution that have
the exponential, Weibull and Rayleigh distributions as special cases, using the Akaike information
criteria (AIC) and Bayesian Information criteria (BIC). At last, Section 8 provides those final remarks
and the concluded results from the paper associated with the major findings . For more elaboration on
the deficiencies of these distributions, one can see that for :

The exponential distribution hazard function (hf) is given as follows

h(x; γ) = γ, x > 0, γ > 0, (1.1)

which is constant, it is obvious from Eq (1.1) that the exponential distribution can only model data for
lifetimes utilizing constant hf. Also for Rayleigh distribution with

h(x; γ) = 2γx, x > 0, γ > 0. (1.2)

We could see that Rayleigh distribution can only model real-life data with increasing hf.
Finally for the Weibull model which is one of the most common families that model lifetime data

that give both exponential and Rayleigh distribution characteristics, with hf is defined by

h(x;α, γ) = αγxα−1, x > 0, α > 0, γ > 0. (1.3)

By referring to Eq (1.3), we can see immediately how useful the Weibull distribution is for modelling
lifespan data, with hazard functions that are monotonically growing, constant, or decreasing, relying on
the values assigned for shape parameter α. This two-parameter model, however, is inapplicable when
the hazard shape is unimodal or bathtub. By fixing the value of γ = 1 and by using various values of
α, Figure 1 depicts the hazard function of the Weibull distribution.

AIMS Mathematics Volume 6, Issue 9, 9262–9276.



9265

0.0 0.5 1.0 1.5 2.0

0.
0

0.
5

1.
0

1.
5

2.
0

x

h(
x)

α=0.8
α=1
α=1.2

Figure 1. The above plots describe the Weibull’s distribution behaviour for the hazard rate
function.

2. Development of the proposed model

Let us assume that we have a random variable noted as T and the corresponding probability density
function (PDF) is v (t), and the corresponding cumulative distribution function (CDF) is W [F (x)], such
that T ∈ [m, n] for −∞ ≤ m < n < ∞. Then the CDF of the distribution must satisfy the following
conditions:

1). W [F (x)] ∈ [m, n] ,
2). W [F (x)] must be able to be differentiated and is monotonous.
3). W [F (x)]→ m as x→ −∞ and W [F (x)]→ n as x→ ∞.

We can get the new CDF’s form of the T-X family of distributions see Alzaatreh et al. [17], as follows

G (x) =

∫ W[F(x)]

m
v(t) dt, x ∈ R, (2.1)

where, W [F (x)] encloses the above conditions. We will get the corresponding PDF to Eq (2.1)

g (x) =

{
∂

∂x
W [F (x)]

}
v {W [F (x)]} , x ∈ R.

Many authors prefer dealing with the T-X family methodology due to its effectiveness, as some new
distribution groups have been presented in the literature see [16] for more reading about this method.

Now the proposed family is added. Let T ∼ exp(1), so the CDF have the form as below

V (t) = 1 − e−t, t ≥ 0. (2.2)

We can find the PDF for Eq (2.2) as below

v (t) = e−t, t > 0. (2.3)
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So if v (t) have the form as Eq (2.3) and assuming W [F (x)] = − log
(

1−F(x)
eF(x)

)θ
in Eq (2.1), we get the

new CDF of the NLT-X family as follows:

G (x; θ, ξ) = 1 −
(
1 − F (x)

eF(x)

)θ
, x ∈ R. (2.4)

We can find PDF for Eq (2.4) as below,

g (x; θ, ξ) =
θ f (x) (1 − F(x; ξ))θ−1

eθF(x) {2 − F (x)} , x ∈ R. (2.5)

The following are the most important motives for the functional use of NLT-X distributions:

• A very easy way to improve current distributions.
• Improving the features and flexibility of current distributions.
• Introducing the expanded baseline distribution variant of closed distribution function form.
• In order to fit data in the healthcare along with other fields.
• One additional important reason for this technique is to add merely an additional parameter only

and it can fits a lot of data that many other distribution even with more number of parameters
can’t fit.

3. Model description

The importance of this portion of the paper comes from that, we introduce a new lifetime Weibull
distribution from the proposed family, which is considered as a special sub-model dubbed the (NLT-
W). Let F (x; ξ) refers to Weibull distribution CDF that may have the form, F(x; ξ) = 1 − e−γxα , x ≥
0, α, γ > 0, where ξ = (α, γ). The NLT-W model’s CDF , PDF and hf, respectively are as below.

G(x;α, θ, γ) = 1 −
e−γθxα

eθ(1−e−γxa )
, x ≥ 0, α, θ, γ > 0. (3.1)

g(x;α, θ, γ) =
αθγxα−1e−γθxα(1 + e−γxα)

eθ(1−e−γxa )
, x > 0, (3.2)

and

h (x;α, θ, γ) = αθγxα−1
(
1 + e−γxα

)
, x > 0. (3.3)

Graphs of the NLT-W distribution density function are seen in Figure 2 for various model parameter
values. Beside this the graphs of the hf are displayed in Figures 3 and 4.
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Figure 2. Different plots for NLT-W distribution density function.
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Figure 3. The NLT-W distribution’s increasing and decreasing hazard functions.
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Figure 4. Uni-modal hazard function of the NLT-W distribution.

AIMS Mathematics Volume 6, Issue 9, 9262–9276.



9268

4. Classical method of estimation (MLEs)

Here we analyse the NLT-W distribution’s maximum likelihood estimators (MLEs). Now let us
assume that x1, x2, ..., xn, represent a randomly generated sample. This one follows the distribution’s
PDF in Eq (3.2) with parameters α, θ and γ. By taking the log function for the likelihood function
corresponding to Eq (3.2), we will consider the likelihood as L, so we will have the following form for
it.

log L (xi, α, θ, γ) = n logα + n log θ + n log γ + (α − 1)
n∑

i=1

log xi − γθ

n∑
i=1

xαi

+

n∑
i=1

log
(
1 + e−γxαi

)
− θ

n∑
i=1

(
1 − e−γxαi

)
. (4.1)

We can find a solution for Eq (4.1) by maximizing it either explicitly or by finding a solution for
nonlinear equations of the distribution model that we can get it from the differentiation of Eq (4.1).
Here we obtained the MLEs by combining the fitness function in R with the “BFGS” technique. After
that we differentiate Eq (4.1) to get the first derivative of parameters. Partial derivatives of Eq (4.1) are
denoted by the three equations below:

∂
∂α

log L (xi, α, θ, γ) = n
α

+
n∑

i=1
log xi − γθ

n∑
i=1

(
log xi

)
xαi − γθ

n∑
i=1

(
log xi

)
xαi e−γxαi

− γ
n∑

i=1

(
(log xi)xαi e−γxαi

)
1+e−γxαi

,
(4.2)

∂

∂θ
log L (xi, α, θ, γ) =

n
θ
− γ

n∑
i=1

xαi −
n∑

i=1

(
1 − e−γxαi

)
, (4.3)

and

∂

∂γ
log L (xi, α, θ, γ) =

n
γ
− θ

n∑
i=1

xαi − θ
n∑

i=1

xαi e−γxαi −

n∑
i=0

xαi(
1 + e−γxαi

) . (4.4)

Setting Eqs (4.2)–(4.4), equal to zero and numerically resolving, simultaneously generates MLEs of
(α, θ, γ). From Eqs (4.2)–(4.4), as we see the above equations can’t solved mathematically but can
be solved numerically. Therefore, computer software algorithm methods as an example the Newton-
Raphson algorithms may be utilised to get a solution to the MLEs that is unique.

Among the most key aspects of the likelihood function for any distribution function is that the
estimates of the parameters conducted from the MLEs is to be maximum in order to make sure of
that concern. We make the plots for the log- likelihood function as we can see in Figures 5–7 and by
studying the plots of the log- likelihood function and the data, we can see that Figures 5–7 confirm that
the estimates conducted from the MLEs for the proposed model parameters are global maximum, not
local maximum for all model’s parameters.
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Figure 5. The graph above is for log-likelihood as a function of α.
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Figure 6. The graph above is for log-likelihood as a function of γ.
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Figure 7. The The graph above is log-likelihood as a function of θ.
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5. The real data analysis

In this part of the paper we apply a real data set. These data are used in this analysis. The data
indicates recovery periods for 128 cancer patients (in months). These relapse periods are a subset
of results from a bladder cancer analysis which are just meant to explain it. Table 1 describes the
descriptive measures of the results:

Table 1. Descriptive statistics for the lifetime experiment used in the application.

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0080 0.3348 0.6650 0.9535 1.1990 7.9050

As seen in Figure 8, the probability of survival falls as time goes. The total time test (TTT) graph
is a critical graphical technique for determining whether or not the data may be fitted to a certain
distribution. The TTT plot is used to examine the data’s behaviour and determine if the hazard function
is monotonic or non-monotonic. The hf can be constant or increasing, decreasing or even a u-shaped.
The hf is constant when the TTT graph is straight diagonal, decrease when the TTT graph is convex
and increase when it is concave , also can have u-shaped if the TTT graph is convex and then changed
concave. And at last if the TTT graph is first concave and then changed to convex then the hf will have
a uni-modal plot.
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Figure 8. The above figure sketches the Kaplan Meier survival plot of the bladder cancer
patients data.

For more elaborations and reading one can refer to Aarset et al. [18]. The graph of TTT plot is
located in Figure 9, and by referring to the graph of it we can see that the data under consideration
provides uni-modal shaped hf.
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Figure 9. The TTT plot of the bladder cancer patients data.

6. Model selection criteria

The selection of models for specific data is one of the basic tasks of scientific study in choosing
the best model that outperforms other candidates. Several statistical methods are used to determine
the fitness of the distributions to any kind of data. These methods determines which distribution is the
most fit candidate to the data under consideration. The most often utilised criteria are as follows: The
AIC and BIC, the model with the fewest values may be considered as the most suitable fit for the real
data set. These methods are determined with the following formulas:

• In order to compute the AIC we can use the following equation,

AIC = 2k − 2`.

and

• In order to compute the BIC we can use the following equation,

BIC = k log (n) − 2`,

` is defined as the log-likelihood function’s value under the MLE, k refers to the suggested model’s
parameter count and n is the sample size. We take the AIC and BIC tests to demonstrate that the
distribution presented is the most right fit for the data. For more reading about the AIC and BIC
see [19–25].

7. Results and discussion

This section is devoted for finding the results of the data analysis for remission times of bladder
cancer patients see [26, 27]. In order to find whether or not the used data fits the proposed model we
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made a fitting test to the data and we deduced that the data fits this the proposed model, and also we
made a comparison between the new distribution and the Weibull, EW and Kumaraswamy Weibull
Ku-W models. Competitor distributions’ CDFs are:

• Weibull distribution

G (x;α, γ) = 1 − eγxα , x ≥ 0, a, α, γ > 0.

• EW distribution

G (x; a, α, γ) =
(
1 − e−γxα

)a
, x ≥ 0, a, α, γ > 0.

• Ku-W distribution

G (x;α, γ, a, b) = 1 −
[
1 −

(
1 − e−γxα

)a]b
, x ≥ 0, α, γ, a, b > 0.

Table 2 provides MLEs with standard errors of competing models for the bladder cancer results.
Whereas AIC and BIC values are tabulated in Table 3. Regarding to 3, it is obvious that our proposed
model the NLT-W model outperforms all its competitors, as we can see its AIC and BIC values are the
smallest. we used optim() R-function with method = “BFGS”.

Table 2. This table contains the values of the estimates of the parameters using the MLEs and
its standard error (in parentheses) of the competing models for the bladder cancer patients
data.

Dist. α̂ γ̂ θ̂ â b̂
NLT-W 1.181

(0.0863)
0.512
(0.3630)

1.172
(0.7412)

Weibull 1.046
(0.0677)

1.029
(0.0955)

EW 1.172
(0.7412)

0.512
(0.3630)

1.181
(0.0863)

Ku-W 0.471
(0.5788)

1.368
(0.9657)

3.875
(5.8529)

2.894
(3.1197)

Table 3. The discrimination measures of the competing models for the bladder cancer
patients data.

Dist. AIC BIC

NLT-W 244.919 253.475
Weibull 247.330 255.035
EW 246.159 254.715
Ku-W 245.146 254.550
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Figures 10 and 11 illustrate the empirical CDF and Kaplan Meier survival graphs for the NLT-
W distribution, respectively. These plots demonstrate that the NLT-W model was very efficient and
adequate in fitting the application data quite well. Similarly, non-parametric estimates are often used
for assessing the quality of a particular parametric model. To check the adequacy of our proposed
NLT-W model, we plot the survivor functions based on the competitive and our proposed parametric
model and the Kaplan-Meier method, superimposed on the same graph. The Kaplan-Meier estimates
as a function of time should be close to the survivor function if the parametric model performs better.
Also the graph in Figure 12 assures our numerical results as we can see that the proposed outperforms
all competitive distributions.
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Figure 10. This figure discusses the fitting of the CDF to the real data set for the bladder
cancer.
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Figure 11. The Kaplan-Meier survival plot of the NLT-W distribution for the bladder cancer
data.
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Figure 12. Diagnostic plot based on data set for the bladder cancer, as we can see NLT-W
outperforms all of its competitive models.

8. Concluding Remarks

In this paper we have presented new novel distribution namely the new NLT-W to avoid the
deficiencies of the other competitive models. Such as two-parameter Weibull model only accommodate
simple monotonous hazard shapes and unable to accommodate the unimodal type of hazard function,
that is essential for bio-medical research. On the other hand, the latest Weibull concept extension have
a uni-modal hazard rate plot. In order to present the proposed model superiority in fitting bio-medical
lifetimes we made a comparison between the proposed model and the most famous competitors such as
the extension of the Weibull and Kumaraswamy distributions which are known with their efficiencies in
modelling lifetime data. We used them as competitive models for the remission periods of patient data
on bladder cancer. We made a comparison between the above models and our new proposed model
and it was the shown that the later model best fits the data. Based on the AIC and BIC, indicating that
the NLT-W distribution is a very a excellent and viable choice for bladder cancer data modelling and
other health science data.
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