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1. Introduction

In recent years, a useful extension has been proposed from the classical calculus by permitting
derivatives and integrals of arbitrary orders is known as fractional calculus. It emerged from a
celebrated logical conversation between Leibniz and L’Hopital in 1695 and was enhanced by different
scientists like Laplace, Abel, Euler, Riemann, and Liouville [1]. Approaches based on the fractional
calculus and fractional differential equations has been widely applied in diffusion equation, polymer
physics, medical sciences, bioengineering mathematics, turbulence, fluid flow through porous media
and in the model problems of nanoscale flow [2—12]. The concept of this new calculus was applied in
several distinguished areas previously with excellent developments in the frame of novel approaches
and posted scholarly papers, see [13-26].

Various notable generalized fractional integral operators such as the Riemann-Liouville, Hadamard,
Caputo, Marichev-Saigo-Maeda, Riez, the Gaussian hypergeometric operators and so on, are helpful
for researchers to recognize real world phenomena. Therefore, the Caputo, Riemann-Liouville and
Hadamard were the most used fractional operators having singular kernels. It is remarkable that all
the above mentioned operators are the particular cases of the operators investigated by Jarad et al.
[27]. The utilities are currently working on weighted generalized fractional operators. Inspired by the
consequences in the above mentioned papers, we introduce a new weighted framework of generalized
proportional Hadamard fractional integral operator. Also, some new characteristics of the aforesaid
operator are apprehended to explore new ideas, amplify the fractional operators and acquire fractional
integral inequalities via generalized fractional operators (see Remark 2 below).

Recently, by employing the fractional integral operators, several researchers have established a bulk
of fractional integral inequalities and their variant forms with fertile applications (see [28—34]). These
sorts of speculations have remarkable use in fractional differential/difference equations and fractional
Schrédinger equations [35].

Our intention is to establish a more general form for the most appealing and noteworthy
Pdélya-Szego-Chebyshev type inequalities [36, 37] and certain related variants via weighted
generalized proportional Hadamard fractional integral that could be increasingly practicable and, also,
more appropriate than the existing ones.

In 1882, Chebyshev pondered the noted result [36]:

m

m m
~ 1 ~ 1 ~ 1
P(f.2) = f F®)gxdx - ( f Fydx)( f g(x)dx), (1.1)
M —m m—m T — M
m m

m

for integrable functions f and g on [17;,7,] and both the functions are simultaneously increasing or
decreasing for the same values of X in [y, 77;], that is,

(fx) - F))EX) - 2(»)) >0

for any x,y € [n,12].

Butt et al. [38], Rashid et al. [39] and Set et al. [40] established the fractional integral inequalities
via generalized fractional integral operator having Raina’s function, generalized K-fractional integral
and Katugampola fractional integral inequalities similar to the variant (1.1). For more recent literature,
(see [41-51]).
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The intensively studied Griiss inequality [52] for two integrable functions f and g on [1;,7,] is
presented as follows:

Q-q9)(S-9)

P(f,8) < (1.2)

where the integrable functions f and g satisfy ¢ < f < Qand s < f < S for all x € [1;,7,] and for

some ¢, 5,Q, S € R.
The Pdlya-Szeg6 type inequality [37] can be stated as follows:

Fx)dx, [ F2(x)dx
”{ lf < (,/Q—‘SJr 6%)2. (1.3)
(f Fooamax) ”

m

Bl —

The constant ;ll is best feasible in (1.3) make the experience it cannot get replaced by a smaller
constant.  With the aid of the Pdélya-Szego inequality, Dragomir and Diamond [53] derived the
inequality

2

-q)(S - f f
P(f,2) Ffx)dx | g(x)dx
| | 4(772 —m)? \/CISQ

holds for all x € [1;,7,] if the mappings f and & defined on [1;,7,] satisfies ¢ < f(x) < Q and
s < g(x) < 8. Here we should emphasize that, inequalities (1.1) and (1.3) are a remarkable instrument
for reconnoitering plentiful scientific regions of investigation encompassing probability theory,
statistical analysis, physics, meteorology, chaos and henceforth. Nisar et al. [54] proposed the
weighted fractional integral inequalities of (1.1) and (1.3) within the weighted generalized fractional
integral operator. Shen et al. [55] introduced the time scale version similar to (1.1) and (1.3),
respectively. Ntouyas et al. [42] are the ones who contemplated the fractional version of (1.1) and
(1.3) via Riemann-Liouville fractional integral operator. For more recent literature, we refer to the
readers [56—-63] and the references cited therein.

The motivation for this paper is twofold. First, we introduce a novel framework named weighted
generalized proportional Hadamard fractional integral operator, then current operator employed to on
the Pdlya-Szego-Chebyshev and certain related inequalities for exploring the analogous versions of
(1.1) and (1.3). The study is enriched by giving remarkable cases of our results which are not
computed yet. Interestingly, particular cases are designed for Hadamard fractional integral,
generalized proportional Hadamard fractional integral and weighted Hadamard fractional integral
inequalities. It is worth mentioning that these operators have the ability to recapture several
generalizations in the literature by considering suitable assumptions of @ and ¢.

2. Prelude

This section demonstrates some essential preliminaries, definitions and fractional operators which
will be utilized in this paper.

AIMS Mathematics Volume 6, Issue 9, 9154-9176.



9157

Definition 2.1. ( [27]) Let @ # 0 bea mapping defined on [n,7,], g is a differentiable strictly
increasing function on [n;,7,]. The space x2(11,1m2), 1 < p < oo is the space of all Lebesgue
measurable functions f defined on [7;, 7] for which || f Il,», where

m

1Al = ( f Iw(X)f(X)ng’(X)dX)F, l<p<oo (2.1)
m
and
Iflly, =ess  sup |@X)f(x)| < co. (2.2)
1N1<X<172

Remark 1. Clearly we see that f € x5 (n;,m) = @(X)f(X)(&'(x))"/? € L,(n;,1m) for 1 < p < o0 and
fexam.m) = @X)f(X) € Lo(1,12).

Now, we show a novel fractional integral operator which is known as the weighted generalized
proportional Hadamard fractional integral operator as follows.

Definition 2.2. ( [29]) Let f € x2[1, ) and @ # 0 be a function on [1, o). Then the left and right-
sided weighted generalized proportional Hadamard fractional integral operator of order ¢ > 0 are
described as:

o' (Pl (03] Fg)m(e)

wn fx) = dg, 23
aon f(X) 2 T(p) n (n g)l—so p ®, m <X (2.3)
and
-1 ~ L n ey 7
M3 fx) = o '(x) [ expl-(In3)] f(p)w(e) 6. x <. 24

¢TI J  (In gyl ¢

where ¢ € (0, 1] is the proportionality index, ¢ € C,R(p) > 0 and I'(x) = fow ¢* e ?dg is the
Gamma function.

Remark 2. Some particular fractional operators are the special cases of (2.5) and (2.6).
I. Setting @w(x) = 1 in Definition 2.2, then we get the generalized proportional Hadamard fractional
operator introduced by Rahman et al. [62] stated as follows:

(st;@f‘(x) — 1 f‘eXp["Dle(ln g)] f(¢)d¢ m < x (2.5)
" ¢"I'(p) (%)= ¢ 7 '
m
and

U -1 I\ ~

by 1 exp[“-(In {)1 f(¢)

H ~ ;0 — i X d , . 2.6

S0 = —E s f (moe ¢ X< (2.6)
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II. Setting ¢ = 1 in Definition 2.2, then we get the weighted Hadamard fractional operators stated
as follows:

o' ® ([ f@)a(@)dd

o3 f0 = , 2.7
== ) J gy M =0
and
- mo.
30 f(x) = @ ) f(¢)w(¢)d¢, X < 1. (2.8)

Fe) J (i)™

II. Setting w(x) = 1 and ¢ = 1 in Definition 2.2, then we get the Hadamard fractional operator
proposed by Samko et al. [18] and Kilbas et al. [19], respectively, stated as follows:

L[ f@)ds
730 fx) = —, M <X (2.9)
7 T)J g(in3)"™ 1
and
1 @
T3pFx) = J($)dé (2.10)

L) J g(ind)™"

Remark 3. (Semi-group property) For ¢, > 0,¢ € (0,1] with I < p < oo and let f € y2(n1,1m2).
Then

(H3ew H3e)F = (2389 f. @.11)

This section consists of some novel Pdlya-Szegd type inequalities regarding the generalized
proportional Hadamard fractional operators which are also utilized to obtain Chebyshev type integral
inequalities and related variants. Throughout the present investigation, for the consequences related to
(1.1) and (1.3), it is assumed that all functions are integrable in the Riemann sense.

Theorem 2.3. Let two positive integrable functions f and g defined on [11,, o). Assume that there exist
four integrable functions vy, v,, v and vy defined on [n,, o) such that

(A) 0<vi)<fO <)  and 0 <ws(f) < ZO) < wu(0), (2.12)
forall € € [n,,x] (x> 1), m € Rj. Then, the inequality

w3 (vsva 2 B35 w0287} (%)

(HSE9( (13 + vauy) f3)(X))

holds for all ¢ € (0, 1], p € C and R(p) > 0 with @ > 0.

1
< — 2.1
<7 (2.13)
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Proof. By means of given hypothesis, we obtain

@sz(f) and vl(f)g{@
&) — wvs(0) va(0) — &(0)

(€ € [, x] (x> m)). (2.14)

Thus, we have

(vz(f)+v1(€))f(f) fz(f) vi(Ova()

= o . (2.15)
us(0)  va(0)/8(6) — g(0) u3(€)v4({f)
which imply that
W1(Ow3(0) + va (O (D) F(OF(E) 2 Us(O)va(0) FA(6) + L1 (OVADZ* (L) (2.16)
Here, taking product each side of the above inequality by the following term wrl(go) BXE[ )(1:1;)] 20 (¢ e
In %

[71,Xx]) (x > 17;) and integrating the resulting inequality with respect to £ on [1;, X], we have

1 fexp[“" (In3)] w(f)(vl(f)w(f)+vz(£’)v4(€))f(f)g(5)
¢TI (9) (In%)'™? 4

fexp[‘”—(ln la(OusOuO O ,, fexp[‘”—(ln a3 OunOF© ,,
go%’F(gO) soﬁf’F(sO)

(In x)l P £ In x) P £
(2.17)
Multiplying both sides of the above equation by @~!(x) and employing Definition 2.2, we have
3090 (vivs + vaua) F8HX) > D309 (vav, 2% 307010287} (%). (2.18)
Taking into account the arithmetic-geometric mean inequality, we have
Zjﬁﬁfg{(vlw + vavs) fE)(X) = 2 \/;{3#’ v3us f2}(X) H309 (011,82 (x), (2.19)
which leads to the inequality (2.13). This completes the proof. O
Corollary 1. Let two positive integrable functions f and § defined on [n,, o) such that
0<g<f(O)<Q and 0<s5<3l<S, (2.20)

forall € € [n;,x] (x> 1), m1 € Rj with @ > 0. Then, the inequality holds:

ARV [E R i e (X) 1 sq QS
—( 4 / (2.21)
(B350 fahx))® =1Was \J sq

Remark 4. Under all assumptions of Theorem 2.3 and Corollary 1:
(1) If we take @w(x) = ¢ = 1, then we get the result similar to Lemma 2.1 (by taking « = 1) of [64].
(2) If we take @w(x) = ¢ = 1, then we get the result similar to Corollary 1 (by taking xk = 1) of [64].
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Theorem 2.4. Let two positive integrable functions f and g defined on [1,, 00) such that the assumption
(A) satisfying (2.12). Then, for all €, ¢ € [1:,X] (X > m1), m1 € R}, the inequality

3 vsua) B30 1) + 230 v} B35 (3 (x)

(Z357{ F) %) B3 (132} (%) + 329 (0 F1 0 H 30 {048} (%))

holds for all ¢ € (0,1], 9,y € C and R(p), R() > 0 with w > 0.

1
< - 222
=7 (2.22)

Proof. By means of assumption (2.12), we have

(vz(t’)_@) (@_v](é’))>O
vs(¢9) &) g@) wvig))

which imply that

>0 and

(€, ¢ € [m,x] (x> 1)), (2.23)

(2.24)

(Ul(f) N vz(f))f(f) S A0 L 1w
va(@)  v3(9)/8(d) ~ BH@)  us(Pua(e)

Conducting product each side of the inequality (2.24) by v (¢)v2(¢)8*(¢), we get
vi(O) f(OUs($)Z(9) + 2 (O F(Oa(PF(@) = v3(P)va() () + v1(OVa(O)Z*(9). (2.25)
Here, taking product each side of the above inequality by the following term

1 exp[‘%l(ln DI exp[‘%l(ln %)] T(O)w ()
T (L) (In3)""(In3)"™ lg

(fvgb € [UI’X]’ X > T]])

and integrating the resulting inequality with respect to € and ¢ on [71, X]. Then, multiplying both sides
of the inequality by @2(x) and employing Definition 2.2, we obtain

H3e9 4, fix) H3ev

H s H xpss

vsB) (%) + 380w, FHx) K3 wagh(x)
P + H359{w v} %) D3892°) (). (2.26)

m

By employing the arithmetic-geometric mean inequality, we have
w3 o Al Z30 g0 + T35 o)) 535 (vagh )

>2 \/ A3 v v HIP () + B30 om0 Z350 @2 ), (2.27)

which leads to the desired inequality (2.22). Hence the proof is complete. O

Corollary 2. Let two positive integrable functions f and & defined on [n;, o) satisfying (2.20). Then
forall €,¢ € [, x] (x> m), m1 € R}, the inequality

B3I I I G @™ 1 ( @, (@‘)2 28)
(EIA® T @)’ “4Nas  \as

holds for all ¢ € (0,1], 9,y € C, R(p), R() > 0 with @w > 0 and I(X) is the identity mapping.
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Remark 5. Under all assumptions of Theorem 2.4 and Corollary 2:
(1) If we take @w(x) = ¢ = 1, then we get the result similar to Lemma 2.2 (by taking « = 1) of [64].
(2) If we take @w(x) = ¢ = 1, then we get the result similar to Corollary 2 (by taking xk = 1) of [64].

Theorem 2.5. Under the assumption of Theorem 2.4, then for all X > n, and €, ¢ € [n,X]. Then, the
inequality

IV TR L LA ML T (2.29)
U3 U1

—WTII Wfll

holds for all ¢ € (0,1], 9,y € C and R(p), R() > 0 with w > 0.

Proof. By means of assumption (2.12), we have

: f el T (0D w00,
¢'I'(p) (In%)"™ ¢

_ fexp[L(ln lauf0z) (2.30)
90&’1“(50)

(In%)'™ tus(0)
Multiplying both sides of the above equation by @' (x) and employing of Definition 2.2, we have

HIE Pl < H3efS /g 28 ). (2.31)
U3

_Wﬂl

By similar argument, we have

1 fexp (£ (1 3)] TP i
¢'TW) (In3)"™ 4

o1 fexp[“’—(ln )w(¢)v4(¢)f(¢)g(¢)
T (Y)

. 2.32
(In X)1 v Pvi(9) @ (232

Multiplying both sides of the above equation by @ !(x) and employing Definition 2.2, we have
131100 < 235 8 o, (2.33)
1
Taking product of the inequalities (2.31) and (2.33) side by side, then we obtain the desired inequality

(2.29). O

Corollary 3. Let two positive integrable functions f and & defined on [n;, o) satisfying (2.20). Then
forall €,¢ € [, x] (x> m), m1 € R}, the inequality

SIPI® IS ® Qs
(A3 fR0 R0 falx)® s
holds for all ¢ € (0,1], 9,y € C and R(p), R(W) > 0 with @ > 0.

(2.34)
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Remark 6. Under all assumptions of Theorem 2.5 and Corollary 3:

(1) If we take @w(x) = ¢ = 1, then we get the result similar to Lemma 2.3 (by taking « = 1) of [64].
(2) If we take @w(x) = ¢ = 1, then we get the result similar to Corollary 3 (by taking xk = 1) of [64].

Our next result is the Chebyshev type integral inequality within the weighted generalized
proportional Hadamard fractional integral operator defined in (2.3), with the aid of Pélya-Szego type

inequality established in Theorem 2.3.

Theorem 2.6. Let two positive integrable functions f and g defined on [1,, o) such that the assumption

(A) satisfying (2.12). Then, for all €, ¢ € [n:,X] (X > m1), m1 € R, the inequality
| 3601 F2h00 23TV + I TR0 3TN0
=3I M3 B0 — M3 P D380 (g Hx)

< [0 (F w1, ) + Ua( s v, 02)0)

1
X|T1(Z, 3, va)(X) + Ta(Z, v3, 1) (X)|*,

where
7 ._ (;{Sfﬁp{(vl + UZ)fz}(X)f Hxe:o [ Pl HXeV [ F
Tl(f’ Ul,Uz)(X) = 4535;(){1111}2}()() w'\sm {f}(x)w\sm {f}(X)
and
- RIS 2169 RN
To(f, v, v)(X) = , — D3I D3I f1x)
2 f Ui, Uy 453;’;#’{1}11}2}(){) n {f} n {f}

holds for all ¢ € (0,11, p,¥ € C and R(p), RW) > 0 with @ > 0.
Proof. For €, ¢ € [n1,x] with X > n;, we define A(¢, ¢) as
AL, ) = (f(O) = F(@))E©) - &),
or, equivalently,
AL, 9) = F(ORO) + f($)E@) - F(OZ(P) — F(PEO.

Taking product each side of the above inequality by the following term

1 exp[%l(ln DI exp[%l(ln g)] T(O)w ()
T ()T () (In3)""(In3)"™ lg

(€7¢ € [UI’X]’ X > r]l)

and integrating the resulting inequality with respect to ¢ and ¢ on [7, X], then we have

X X e-1 In% el In2
PO (W) (In$)™"(In )™ Y

m m

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

AIMS Mathematics Volume 6, Issue 9, 9154-9176.



9163

1 r [ explS(n H]expl(n D] o(f)a(g) »
__ 0)g(t)dtd
(p&""‘//r(go)r(lﬁ)ff (lnz)l p(ln§)1 v &p f( ) ( ) ¢

1 r(explE(nHlexp[£-(In3)] w(f)w«p)
- dtd
e f f [(@®)g(p)dtdp

(In¥)"" K’(1nX)‘ ¥

exp[ £+ (In )] expl £ (In 3)] w(f)w(cp)
¢ dtd
ﬁo+¢]—‘(80)]—‘(¢/) ff (lnx)l *(In X)l " f(O&(@)dtdg

expl £+ (In $)] exp[ £+ (In 3)] w(f)w( 6 -
T o T(O)T(W) O)ded 2.40
QDW‘”F(@)FW) ff (In 12)1 ?(In %)l n f@g)dedp.  (2.40)

Multiplying both sides of the above equation by @ 2(x) and employing Definition 2.2, we have

@2 (X) f f exp[ L(In )lexp —(ln 3l w<€)w(¢)A(€ St

eI (P (Y) (ln 5 (In 3™ lg

= H39{flx) Z;sz;”{ bx) + B3 Fakx) 300 THx)
= H3e9{ L) T3 g x) — D380 B389 (3. (2.41)

Thanks to the weighted Cauchy-Schwartz integral inequality for double integrals in (2.41), we can
write that

AL, $)dtde

D f f expl £ (In $)] expl £ (10 3)] gr(0)ar(g)
T (W) (In%)'"(In 1)1 v te

‘2(x) f fexp[ (ln ] exp[—(lnx)] w(O)w(d)
{)dtd
so"*wf(go)r(w) (In%)"™(In %" ¢ Sty

m m

o2 —1 Dlexp[“-(In 3)]
(X) f fexp (In ¥)]exp[£* (In )N w(Ow() P)dtds

TP W) (In%)'(In X)‘ - ¢

1

FOfpyatds|

2o f f expl 2 (In D1 expl 5 (0 ] (b w(9)
o T(P) () (In%)'"™(In3)" te

g2 (0)dtdg

2(X) ffeXp[Ll(ln X) ]exp —(ln X)] w(O)w(d) _,
sop+wF(ga)F(¢/) (In%)"(In )" lg

g (p)dlde

w(X) ff CXP[ (11’1 X)] exp[ (ln X)] w(O)w(p) _,
T T () (ln 5)'(In X)‘ B lg
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202(x) f f expl £ (In )] expl £ (In 3)]
T ()W)

m o m

(In$)"™(In )" lg

In view of Definition 2.2, we get

@ (X) f f exp[ £ (In D] exp[ £ (I )] () ()
(In%)"(In %)" t¢

() (Y)

m m

< [ZQ’S%“’{F}(X) AIENTHX) + DI D30Ty = 2 389 ) K38

| H3 @0 BTI0 + HI N0 BT - 2235 81

Applying Theorem 2.3 and setting v3(X) = v4(X) = g(x) = 1, we find

e (X357 (w1 + ) )
Hepip [ 72 w V11
W\Sr]] {f }(X) S 4 ;];iwszl;f@{vlvz}(x)

This implies that

H3e{ F2Hx) — H3E9(F 0 B30 Flx)
(HSA@ + o) PH) o 7o Hgy 7
4 T35 v (x) o S 10 5 3571

= 11(f, v1, v2)(X)

and

A3 F2Hx) — M3 F 0 B3 Fix)
S (TR Y [C) PR

AT o)) oI 5 3510
= 12(f, v1, v2)(X).

t

Analogously, setting v;(x) = v,(x) = f(x) = 1, we find
730927} x) = T30} K36V ) < T1(8, s, va)(X)
and

3098 x) — Z30(a) 0 D382} (%) < T2(3, v3, va)(X).

AL, ¢)d€d¢‘

l 3
2O e(orapratas

{f}<x>];

(2|

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)

(2.47)

(2.48)

A combination of (2.42)—(2.48), we get the immediate consequence (2.35). This completes the

proof of (2.35).

O
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Remark 7. If we take @w(x) = ¢ = 1 in Theorem 2.6, then we get the result similar to Theorem 1 (by
taking k = 1) of [64].

The following lemma play a vital role for generating new outcomes by employing weighted
generalized proportional Hadamard fractional integral operator

Lemma 2.7. ( [65]) Leto >0, 6, > 0, > 0and 0 # 0. Then

6, -4 6, — 6,
e < (_K o+ —KHZ/QI), for any k > 0.

! 0,

Theorem 2.8. For 6, > 6, > 0, 6, # 0 and let an integrable function f defined on [n,, ©). Moreover,
assume that there exist two integrable functions vy, v, defined on [n;, 00) such that

v1(0) < f(0) < vy(0), Vi € RS (2.49)

Then, the inequality

0 2
(c1) H3E9{(vy = )7 (%) + H—TKWW‘ 3891 fi(x)

) 6,-61)/6) H
< = : (2 1)/61 \5:';159{ 2}(X)+ 1

(c2) H3e0((f - ) oo+ 52 % oo A3} (%)

i eI,

0 ~ 0
< g ”Tsﬁl‘”{f}(XHl@—l Ay (2.50)

holds for all ¢ € (0,1], p € C and R(p) > 0 with @ > 0.

Proof. By means of Lemma 2.7 and utilizing the assumption (2.49), for 8, > 6, > 0, 6; # 0, for any
k > 0, it follows that

(2.51)

(va(0) = fO) < g_jsz—em. 0 - 0y + 0

Taking product each side of the above inequality by the following non-negative term
| explSn )]
¥?T(p) ( ?) -9
[71, x], we have

w(f) (¢ € [m,x], x > n;) and integrating the resulting inequality with respect to £ on

| f expl G- (10 D] ar(0)(ws(() - f(f))"l
©*T(p) (1n{)1 g ¢

3 Z_?K(Oz—Hl)/Bl exp[ (hl X)] w(f)(vz(f) (5)) f exp[ (11’1 X) w(f)
el J - (In g)l g ¢ goﬁor(go) (In X)1 T
(2.52)
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Multiplying both sides of the above equation by @~!(x) and employing of Definition 2.2, we have

He0 0y — )7 )(®)

02 (0,-00)/0, Hovo: 0 (- oo F 0 =0y 24
< H_TK(HZ 01)/6) gdﬁ;%’{vz}(x)e—fk(@ /6 _ Eoﬁ;@{f}(w + 191 2 EJ?’;;K’{[}(X), (2.53)

which leads to inequality (c;). Inequality (c,) can be proved by similar argument. O

Theorem 2.9. For 6, > 6, > 0,0, # 0 and under the assumptions of Theorem 2.3. Then, the
inequalities

: 2 N 0 (- H oo ~ H oo .
(c3) A3 (w2 = 7 (va — P }x) + 9_?'((92 W10 H3E0u fYx) + T30 (028} x)|
0r .. o v A 0 -6, % 4.
< Q—TK“’Z WIS ) (x) + H3E0{ fahw)| + —— ; 2k M3V (T)(x),
‘ 0 . N
(ca) 369wy = @) L3 (vs - 2)7 }(x)

9 — ™~ H~o: ~ ~Q: ~0 ~.

o KIS a0 BRI + 35 a0 B L)

9 _ H~o: H~o: T ~ ~o: B

< Q_TK(HZ 91)/91[;{\%&0{1}2}@) g\jﬁilﬁ{u‘l}(x) + gof;f"’{f}(x) 7;\5‘,‘;;‘”{g}(x)]
0 =0 %y |

+ 1‘91 2 o L’i‘sﬁ;*’“{f}(x)ﬂ?ﬁ;‘”{f}(x),

oo 0o A 0 vl B oot
(cs) A3EA(f = v) (3 — v3)" }(x) + H—ZK“’Z W10 [ H3E9 s FYx) H367 (012} (%)
1

0 o F Hevo: -6, & :
< KO HSE TR0 B35 sl 0] + Tk BT,
91 m m 61 m
Hewrors & ) o~ &
(ce) oI = v G IAE - vs) )

02 _ ~0: ~0: ~©: Ho: ~
R N A U N A T R A I CIAN A HICS]
1

¢ - ~Q; ~Q; ~OO[ £ QW=
< RIS )0 B35 sl + T T35 g
1

0—-60, 2 : -
A ST BT, .54

holds for all ¢ € (0, 1], p,¢ € C and R(p), R(Y) > 0 with w > 0.

Proof. The inequalities (c3) — (c¢) can be deduced by utilizing Lemma 2.7 and the following
assumptions:

(a(0) = F(O)(wa(O) - 3(0)),

(c3) o =

(cs) o = (0= f(O)vid) - &),

(cs) o = (f(O-vi(O)EE©) - vs(D),

(ce) o = (f(O-vi(O)&P) - vs(9). (2.55)
O
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Remark 8. Under all assumptions of Theorem 2.8 and Theorem 2.9:
(1) If we take @w(x) = ¢ = 1, then we get the result similar to Theorem 15 of [66].
(2) If we take @w(x) = ¢ = 1, then we get the result similar to Theorem 22 of [66].

3. Particular cases

In the sequel, we derive the certain novel estimates via weighted generalized proportional Hadamard
fractional and generalized Hadamard fractonal integral operator as follows.
I. Setting ¢ = ¢ and considering Theorem 2.6, then we get a new result for weighted generalized
proportional Hadamard fractional integral operator.

Corollary 4. Let two positive integrable functions f and g defined on [n;, c0) such that the assumption
(A) satisfying (2.12). Then, for all € € [n;,x] (X > 1), 11 € Ry, the inequality
SN0 TITI0 — BII0 5350180
~ 1
< P(fs v, v2)(®). Y@, v, v) (X)),
where

. @+ )P0 s A2
Y(f, v, v12)(X) := T oronl ) (2302 fHx))

holds for all ¢ € (0,1], 9 € C and R(p) > 0 with @ > 0.

II. Considering the assertion (2.20) and Theorem 2.6, then we get a new result for weighted
generalized proportional Hadamard fractional integral operator.

Corollary 5. Let two positive integrable functions f and g defined on [n;, o). Then, the inequality

HIE PRI TS5 TN — 30 A0 350 ) o)
(S= Q=D 3inio| F1yn Hooip =
< — = w@‘/”&’ wc‘%!@ ,
Worise I 1) o 38 {g}(X)'
holds for all ¢ € (0,1], 9 € C and R(p) > 0 with @ > 0.

I1. Setting ¢ = 1, then we get a new result for generalized proportional Hadamard fractional integral
operator.

Corollary 6. Suppose all assumptions of Theorem 2.8 be satisfied. Then, the inequality

() K = P00+ 0 5 o)
< O (1)) + PR 2 (7))
(c) A — v 0 + Z_fsz—wl BRI ITNEY)
< 9—?/602—"')/91 A3 + 019;19%3? AT (), 3.1)

holds for all p € C and R(p) > 0 with @ > 0.
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IV. Setting ¢ = 1, then we get a new result for generalized proportional Hadamard fractional integral
operator.

Corollary 7. For 6, > 6, > 0, 8, # 0 and under the assumptions of Theorem 2.3. Then, the inequalities

(c3) 30 (s = ) (v = B 00 + z—jﬂ”z-‘”wl [ 730 (s 100 + 7135 (a2} )]
< Z—jw—wl A|3p a0 + X35 FRlo| + 919;19% RIATATENN
(cs) 30 (2 = N IS (s - )7 )00
+Z—?K(02_9‘)/01[Z;Sf,’l{vz}(X) A3 20 + 30 a0 B39 (Fl))
< g—fsz“’”/el[fli‘s?;{vz}(x) 730 ) + 230 (A0 230 (2 ))
+ A 1 170 23 ),
(c5) I~ v (@ - va) 0 + Z—fﬂ@z-ﬂ”/‘h [ 7435 {03 7100 235 {30

02 (oot Heor | Fx N 00— 6, 24
< oK SR T3 sl 0] + == T T,

(co) H30 ((F = u) )0 S (3 — v) 7 ()

[z ] < ;
+9—TK<92‘9”/91[?;’Szl{vs}(x) A3 A1) + 23 () 238 {21 0]

%
< H—TK(Hz—Hl)/Hl[Z;Sf;I{UI}(X) ;{S%{lﬂ}(x) + Z;Sm{ }(X) ;{3% {g}(x)]

0, —6, %
=k I T G AT, (3.2)
1
holds for all ¢ € (0,1], 9,y € C and R(p), R(Y) > 0 with w > 0.

Example 3.1. Letn; > 1,¢,9 > 0, p1,q1 > 1 having p;' + ¢;' = 1, and @ # 0 be a function defined
on [0, ). Let f be an integrable function defined on [1, c0) and Z;’Sﬁfg" f be the weighted generalized
proportional Hadamard fractional integral operator. Then we have

1369 Fo| < E[(F o @), 10

— w_l(x)( ‘pxl_pl )1/[71
T T\ + pi) - 2pig
XTI ((9 = Dpr + 1 (p1 + ¢ = 2pi9) nx)[|(F o @), .

and Y(p,Xx) = f e’y?~1dy is the incomplete gamma function [68].
0
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Proof. In view of Definition 2.2 and applying modulus property that

o lx) [Pl (In )] |fpyo @) w0
#T©)J  (In ) ¢

2

ESSCE

for ¢ > 1.
By the virtue of the noted Holder inequality, we have

X

& (%) ( f explpi(£(1n 3))]

o (1 X)P1-9)
¢’I(p) ) ¢ (In})

Upr o~
d¢) ||(f°w)¢||L](1,x)'

ENAICIE

Substituting v = In (g) Then elaborated computations represents

w-_l(x)( (le_pl )1/[’1
eI \(@ + p1) = 2p1p
X117 ((p = Dp1 + 1, (1 + ¢ = 2pi@) nx)||[(Fo )|, , o

ENATCS I

4. Applications

In the sequel we demonstrate a new methodology for establishing the four bounded mappings and
employ them to show certain bounds of Chebyshev type weighted generalized proportional Hadamard
fractional integral inequalities of two unknown mappings.

Consider a unit step function y be defined as

1, x>0,

x(x) =
0, x>0.

and assuming a Heaviside unit step function y,, (x) defined by
I, x>n,
X (X) = x(X =11) =
0, x< n.

The main characteristic of the unit step function are its frequent use in the differential equations
and piece-wise continuous functions when sum of pieces defined by the series of functions. Assume
that a piece-wise continuous function v(£) defined on [77;, 7| can be presented a follows:

UI(X) = hl(sxo(x) - le(x)) + hZ(le(X) - sz(x)) + h3(SX3(X) - SXz(X)) + ...t hq+lsxq(x)
= hysy, + (o = h)sy, (X) + (13 = M) sy, (X) + .. + (Bger — hy)sx, (X)
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q
= > (hi1 = h)sy (), (4.1)

i=0

where hy, h; € R(j=0,1,...,qg)and 7 = Xp < X; < X5 < ... <X; <X, = 7. Analogously, we define the
mappings v, v and vy as follows

q

na(X) = ) (Hir = Hisg (%),
l;()

vs(X) = ) (et — )8 (%),
i=0

q
wX) = ) (R = R)sq (), 4.2)
i=0

where ro =Ry =Hy=0and r;,R;,H; e R(j=0,1,...,9).

Suppose an integrable function f defined on [77;, 7] satisfying assumption (2.12), (4.1) and (4.2),
respectively, then we have h;,; < f(x) < Hj; forevery x € (x;,X;41) (L = 0,1, ..., g). Specifically, g = 4,
the time theory of f presented in (4.1).

The weighted generalized proportional Hadamard fractional integral of f on [1;, 7] can be described
as follows:

q
AINT) = ) W AN, (4.3)

where

P IRT Rl (e L QUL
IR ) J o (InGH'Y ¢

(1=0,1,2,...0) (4.4)

Proposition 1. Let two integrable functions f and g defined on [n,, 7" satisfying the assumptions
(2.12), (4.1) and (4.2), respectively. Then, the inequality

q q
(D rei R B2 AW D s Hin H355%,, 13 NT))
1=0

<

N
I
= I

q
D" (rerhiy + RiaHi )(HSE9 F2)T))° (4.5)

1=0
holds for all ¢ € (0,1], p € C and R(p) > 0 with @ > 0.

Proof. By employing Definition 2.2, we have

q
A3 PNT) = ) R B3R PN
1=0
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q
HIEa@NT) = ) i Hi H3E%, AFNT) (4.6)
1=0
and
~ q . ~
537;;“’{(111113 +wnu)fENT) = Z(’”z+1hz+1 + R1+1H1+1)Z;3f[§1+1{ gHT). 4.7)

=0

Using the fact of Lemma 2.3, inequalities (4.6) and (4.7), the desired inequality (4.5) is established.
O

Proposition 2. Let two positive integrable functions f and & defined on [m, 7] such that the
assumption (A) satisfying (2.12). Then, the inequality

q o q .
EE) FeiRi 39T + E)hmHm 2’3%"”{?2}('7)

1
7 — 7 . 7 — 7 . ; < 1 (4.8)
(3 b GIANT) 2 e BIRIT) + 3 Hia BT 2 Rea B35 18HT)
holds for all ¢ € (0,1], 9,y € C and R(p), R(¥) > 0.
Proof. The proof is simple by following (4.1), (4.2) and Theorem 2.4.
O

Remark 9. The accuracy of the approximated estimates (4.5) and (4.8) depends on the value of g € N.
5. Conclusions

This paper proposes a new generalized fractional integral operator. The novel investigation is used
to generate novel weighted fractional operators in the Hadamard and generalized proportional
Hadamard fractional operator, which effectively alleviates the adverse effect of weight function @ and
proportionality index ¢. Utilizing the weighted generalized proportional Hadamard fractional operator
technique, we derived the analogous versions of the weighted Pdlya-Szegd-Chebyshev and certain
associated type inequalities that improve the accuracy and efficiency of the proposed technique.
Contemplating the Remark 2, several existing results can be identified in the literature. It is important
to note that our generalizations are refinements of the results obtained by [69]. Some innovative
particular cases constructed by this method are tested and analyzed for statistical theory, fractional
Schrédinger equation [35]. The results show that the method proposed in this paper can stably and
efficiently generate integral inequalities for convexity with better operators’ performance, thus
providing a reliable guarantee for its application in control theory [67].
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