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Abstract: This paper deals with the existence of positive radial solutions of the p-Laplace equation
−∆p u = K(|x|) f (u) , x ∈ Ω ,

∂u
∂n = 0 , x ∈ ∂Ω,

lim|x|→∞ u(x) = 0 ,

where Ω = {x ∈ RN : |x| > r0}, N ≥ 2, 1 < p < N, K : [r0, ∞) → R+ is continuous and
0 <

∫ ∞
r0

rN−1K(r) dr < ∞, f ∈ C(R+, R+). Under the inequality conditions related to the asymptotic
behaviour of f (u)/up−1 at 0 and infinity, the existence results of positive radial solutions are obtained.
The discussion is based on the fixed point index theory in cones.
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1. Introduction

Boundary value problems with p-Laplace operator ∆p u = div(|∇u|p−2∇u) arise in many different
areas of applied mathematics and physics, such as non-Newtonian fluids, reaction-diffusion problems,
non-linear elasticity, etc. But little is known about the p-Laplace operator cases (p , 2) compared to
the vast amount of knowledge for the Laplace operator (p = 2). In this paper, we discuss the existence
of positive radial solution for the p-Laplace boundary value problem (BVP)

−∆p u = K(|x|) f (u) , x ∈ Ω ,

∂u
∂n = 0 , x ∈ ∂Ω,

lim|x|→∞ u(x) = 0 ,

(1.1)
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in the exterior domain Ω = {x ∈ RN : |x| > r0}, where N ≥ 2, r0 > 0, 1 < p < N, ∂u
∂n is the outward

normal derivative of u on ∂Ω, K : [r0, ∞) → R+ is a coefficient function, f : R+ → R is a nonlinear
function. Throughout this paper, we assume that the following conditions hold:

(A1) K ∈ C([r0, ∞), R+) and 0 <
∫ ∞

r0
rN−1 K(r) dr < ∞;

(A2) f ∈ C(R+, R+);

For the special case of p = 2, namely the Laplace boundary value problem
−∆ u = K(|x|) f (u) , x ∈ Ω ,

∂u
∂n = 0 , x ∈ ∂Ω,

lim|x|→∞ u(x) = 0 ,

(1.2)

the existence of positive radial solutions has been discussed by many authors, see [1–7]. The authors
of references[1–6] obtained some existence results by using upper and lower solutions method, priori
estimates technique and fixed point index theory. In [7], the present author built an eigenvalue criteria
of existing positive radial solutions. The eigenvalue criterion is related to the principle eigenvalue λ1

of the corresponding radially symmetric Laplace eigenvalue problem (EVP)
−∆u = λK(|x|) u, x ∈ Ω,

∂u
∂n = 0, x ∈ ∂Ω,

u = u(|x|), lim|x|→∞ u(|x|) = 0.

(1.3)

Specifically, if f satisfies one of the following eigenvalue conditions:

(H1) f 0 < λ1, f∞ > λ1;

(H2) f∞ < λ1, f0 > λ1,

the BVP(1.2) has a classical positive radial solution, where

f0 = lim inf
u→0+

f (u)
u

, f 0 = lim sup
u→0+

f (u)
u

,

f∞ = lim inf
u→∞

f (u)
u

, f∞ = lim sup
u→∞

f (u)
u

.

See [7, Theorem 1.1]. This criterion first appeared in a boundary value problem of second-order
ordinary differential equations, and built by Zhaoli Liu and Fuyi Li in [8]. Then it was extended to
general boundary value problems of ordinary differential equations, See [9,10]. In [11,12], the radially
symmetric solutions of the more general Hessian equations are discussed.

The purpose of this paper is to establish a similar existence result of positive radial solution of
BVP (1.1). Our results are related to the principle eigenvalue λp,1 of the radially symmetric p-Laplce
eigenvalue problem (EVP)

−∆p u = λK(|x|) |u|p−2u, x ∈ Ω ,

∂u
∂n = 0 , x ∈ ∂Ω,

u = u(|x|), lim|x|→∞ u(|x|) = 0.

(1.4)
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Different from EVP (1.3), EVP (1.4) is a nonlinear eigenvalue problem, and the spectral theory of linear
operators is not applicable to it. In Section 2 we will prove that EVP (1.4) has a minimum positive real
eigenvalue λp,1, see Lemma 2.3. For BVP (1.1), we conjecture that eigenvalue criteria is valid if f0, f 0,
f∞ and f∞ is replaced respectively by

fp 0 = lim inf
u→0+

f (u)
up−1 , fp

0 = lim sup
u→0+

f (u)
up−1 ,

fp ∞ = lim inf
u→∞

f (u)
up−1 , fp

∞ = lim sup
u→∞

f (u)
up−1 .

(1.5)

But now we can only prove a weaker version of it: In second inequality of (H1) and (H2), λp,1 needs
to be replaced by the larger number

B =

[ ∫ 1

0
Ψ

( ∫ 1

s
tp−1a(t) dt

)
ds

]−(p−1)

, (1.6)

where a ∈ C+(0, 1] is given by (2.4) and Ψ ∈ C(R) is given by (2.7). Our result is as follows:

Theorem 1.1. Suppose that Assumptions (A1) and (A2) hold. If the nonlinear function f satisfies one
of the the following conditions:

(H1)* fp
0 < λp,1, fp ∞ > B;

(H2)* fp
∞ < λp,1, fp 0 > B,

then BVP (1.1) has at least one classical positive radial solution.

As an example of the application of Theorem 1.1, we consider the following p-Laplace boundary
value problem 

−∆p u = K(|x|) |u|γ, x ∈ Ω ,

∂u
∂n = 0 , x ∈ ∂Ω,

lim|x|→∞ u(x) = 0.

(1.7)

Corresponding to BVP (1.1), f (u) = |u|γ. If γ > p− 1, by (1.5) fp
0 = 0, fp ∞ = +∞, and (H1) holds. If

0 < γ < p − 1, then fp
∞ = 0, fp 0 = +∞, and (H2) holds. Hence, by Theorem 1.1 we have

Corollary 1.1. Let K : [r0, ∞)→ R+ satisfy Assumption (A1), γ > 0 and γ , p − 1. Then BVP (1.7)
has a positive radial solution.

The proof of Theorem 1.1 is based on the fixed point index theory in cones, which will be given in
Section 3. Some preliminaries to discuss BVP (1.1) are presented in Section 2.

2. Preliminaries

For the radially symmetric solution u = u(|x|) of BVP (1.1), setting r = |x|, since

−∆p u = div(|∇u|p−2∇u) = −
(
|u′(r)|p−2u′(r)

)′
−

N − 1
r
|u′(r)|p−2u′(r),
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BVP (1.1) becomes the ordinary differential equation BVP in [r0, ∞) −
(
|u′(r)|p−2u′(r)

)′
− N−1

r |u
′(r)|p−2u′(r) = K(r) f (u(r)), r ∈ [r0, ∞),

u′(r0) = 0, u(∞) = 0,
(2.1)

where u(∞) = limr→∞ u(r).
Let q > 1 be the constant satisfying 1

p + 1
q = 1. To solve BVP (2.1), make the variable transformations

t =
(r0

r

)(q−1)(N−p)
, r = r0t−1/(q−1)(N−p), v(t) = u(r(t)), (2.2)

Then BVP (2.1) is converted to the ordinary differential equation BVP in (0, 1] −
(
|v′(t)|p−2v′(t)

)′
= a(t) f (v(t)), t ∈ (0, 1],

v(0) = 0, v′(1) = 0,
(2.3)

where

a(t) =
rq(N−1)(t)

(q − 1)p(N − p)p r0
q(N−p) K(r(t)), t ∈ (0, 1]. (2.4)

BVP (2.3) is a quasilinear ordinary differential equation boundary value problem with singularity at
t = 0. A solution v of BVP (2.3) means that v ∈ C1[0, 1] such that |v′|p−2v′ ∈ C1(0, 1] and it satisfies
the Eq (2.3). Clearly, if v is a solution of BVP (2.3), then u(r) = v(t(r)) is a solution of BVP (2.1)
and u(|x|) is a classical radial solution of BVP (1.1). We discuss BVP (2.3) to obtain positive radial
solutions of BVP (1.1).

Let I = [0, 1] and R+ = [0, +∞). Let C(I) denote the Banach space of all continuous function
v(t) on I with norm ‖v‖C = maxt∈I |v(t)|, C1(I) denote the Banach space of all continuous differentiable
function on I. Let C+(I) be the cone of all nonnegative functions in C(I).

To discuss BVP (2.3), we first consider the corresponding simple boundary value problem −
(
|v′(t)|p−2v′(t)

)′
= a(t) h(t) , t ∈ (0, 1],

v(0) = 0, v′(1) = 0,
(2.5)

where h ∈ C+(I) is a given function. Let

Φ(v) = |v|p−2v = |v|p−1sgn v, v ∈ R, (2.6)

then w = Φ(v) is a strictly monotone increasing continuous function on R and its inverse function

Φ−1(w) := Ψ(w) = |w|q−1sgn w, w ∈ R, (2.7)

is also a strictly monotone increasing continuous function.

Lemma 2.1. For every h ∈ C(I), BVP (2.5) has a unique solution v := S h ∈ C1(I). Moreover, the
solution operator S : C(I)→ C(I) is completely continuous and has the homogeneity

S (νh) = νq−1S h, h ∈ C(I), ν ≥ 0. (2.8)
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Proof. By (2.4) and Assumption (A1), the coefficient a(t) ∈ C+(0, 1] and satisfies∫ 1

0
a(t)dt =

1
[(q − 1)(N − p)]p−1r0

N−p

∫ ∞

r0

rN−1K(r) dr < ∞. (2.9)

Hence a ∈ L(I).

For every h ∈ C(I), we verify that

v(t) =

∫ t

0
Ψ
( ∫ 1

s
a(τ)h(τ)dτ

)
ds := S h(t), t ∈ I (2.10)

is a unique solution of BVP (2.5). Since the function G(s) :=
∫ 1

s
a(τ)h(τ)dτ ∈ C(I), from (2.10) it

follows that v ∈ C1(I) and

v′(t) = Ψ
( ∫ 1

t
a(τ)h(τ)dτ

)
, t ∈ I. (2.11)

Hence,

|v′(t)|p−2v′(t) = Φ(v′(t)) =

∫ 1

t
a(τ)h(τ)dτ, t ∈ I.

This means that (|v′(t)|p−2v′(t) ∈ C1(0, 1] and

(|v′(t)|p−2v′(t))′ = −a(t)h(t), t ∈ (0, 1],

that is, v is a solution of BVP (2.5).
Conversely, if v is a solution of BVP (2.5), by the definition of the solution of BVP (2.5), it is easy

to show that v can be expressed by (2.10). Hence, BVP (2.5) has a unique solution v = S h.
By (2.10) and the continuity of Ψ, the solution operator S : C(I) → C(I) is continuous. Let

D ⊂ C(I) be bounded. By (2.10) and (2.11) we can show that S (D) and its derivative set {v′ | v ∈ S (D)}
are bounded sets in C(I). By the Ascoli-Arzéla theorem, S (D) is a precompact subset of C(I). Thus,
S : C(I)→ C(I) is completely continuous.

By the uniqueness of solution of BVP (2.5), we easily verify that the solution operator S satisfies
(2.8). �

Lemma 2.2. If h ∈ C+(I), then the solution v = S h of LBVP (2.5) satisfies: ‖v‖c = v(1), v(t) ≥ t ‖v‖C
for every t ∈ I.

Proof. Let h ∈ C+(I) and v = S h. By (2.10) and (2.11), for every t ∈ I v(t) ≥ 0 and v′(t) ≥ 0. Hence,
v(t) is a nonnegative monotone increasing function and ‖v‖C = maxt∈I v(t) = v(1). From (2.11) and the
monotonicity of Ψ, we notice that v′(t) is a monotone decreasing function on I. For every t ∈ (0, 1),
by Lagrange’s mean value theorem, there exist ξ1 ∈ (0, t) and ξ2 ∈ (t, 1), such that

(1 − t)v(t) = (1 − t)(v(t) − v(0)) = v′(ξ1)t(1 − t) ≥ v′(t)t(1 − t),

tv(t) = tv(1) − t(v(1) − v(t)) = tv(1) − tv′(ξ2)(1 − t) ≥ tv(1) − v′(t)t(1 − t).

Hence
v(t) = tv(t) + (1 − t)v(t) ≥ tv(1) = t‖v‖C.

Obviously, when t = 0 or 1, this inequality also holds. The proof is completed. �

Consider the radially symmetric p-Laplace eigenvalue problem EVP (1.3). We have
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Lemma 2.3. EVP (1.4) has a minimum positive real eigenvalue λp,1, and λp,1 has a radially symmetric
positive eigenfunction.

Proof. For the radially symmetric eigenvalue problem EVP (1.4), writing r = |x| and making the
variable transformations of (2.2), it is converted to the one-dimensional weighted p-Laplace eigenvalue
problem (EVP)  −

(
|v′(t)|p−2v′(t)

)′
= λ a(t) |v(t)|p−2v(t), t ∈ (0, 1],

v(0) = 0, v′(1) = 0,
(2.12)

where v(t) = u(r(t)). Clearly, λ ∈ R is an eigenvalue of EVP (1.4) if and only if it is an eigenvalue
of EVP (2.12). By (2.4) and (2.9), a ∈ C+(0, 1] ∩ L(I) and

∫ 1

0
a(s)ds > 0. This guarantees that EVP

(2.12) has a minimum positive real eigenvalue λp,1, which given by

λp,1 = inf
{ ∫ 1

0
|w′(t)|pdt∫ 1

0
a(t)wp(t)dt

∣∣∣∣∣∣ w ∈ C1(I),w(0) = 0, w′(1) = 0,∫ 1

0
a(t)wp(t)dt , 0

}
. (2.13)

Moreover, λp,1 is simple and has a positive eigenfunction φ ∈ C+(I)∩C1(I). See [13, Theorem 5], [14,
Theorem 1.1] or [15, Theorem 1.2]. Hence, λp,1 is also the minimum positive real eigenvalue of EVP
(1.4), and φ((r0/|x|)(q−1)(N−p)) is corresponding positive eigenfunction. �

Now we consider BVP (2.3). Define a closed convex cone K of C(I) by

K =
{
v ∈ C(I) | v(t) ≥ t ‖v‖C, t ∈ I

}
. (2.14)

By Lemma 2.2, S (C+(I)) ⊂ K. Let f ∈ C(R+, R+), and define a mapping F : K → C+(I) by

F(v)(t) := f (v(t)), t ∈ I. (2.15)

Then F : K → C+(I) is continuous and it maps every bounded subset of K into a bounded subset of
C+(I). Define the composite mapping by

A = S ◦ F. (2.16)

Then A : K → K is completely continuous by the complete continuity of the operator S : C+(I) → K.
By the definitions of S and K, the positive solution of BVP (2.3) is equivalent to the nonzero fixed
point of A.

Let E be a Banach space and K ⊂ E be a closed convex cone in E. Assume D is a bounded open
subset of E with boundary ∂D, and K ∩ D , ∅ . Let A : K ∩ D → K be a completely continuous
mapping. If Av , v for every v ∈ K ∩ ∂D, then the fixed point index i (A, K ∩ D, K) is well defined.
One important fact is that if i (A, K ∩D, K) , 0, then A has a fixed point in K ∩D. In next section, we
will use the following two lemmas in [16, 17] to find the nonzero fixed point of the mapping A defined
by (2.16).

Lemma 2.4. Let D be a bounded open subset of E with 0 ∈ D, and A : K ∩ D → K a completely
continuous mapping. If µ Av , v for every v ∈ K ∩ ∂D and 0 < µ ≤ 1, then i (A, K ∩ D, K) = 1.

Lemma 2.5. Let D be a bounded open subset of E with 0 ∈ D, and A : K ∩ D → K a completely
continuous mapping. If ‖Av‖ ≥ ‖v‖ and Av , v for every v ∈ K ∩ ∂D, then i (A, K ∩ D, K) = 0.
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3. Proof of the main result

Proof of Theorem 1.1. We only consider the case that (H1)* holds, and the case that (H2)* holds
can be proved by a similar way.

Let K ⊂ C(I) be the closed convex cone defined by (2.14) and A : K → K be the completely
continuous mapping defined by (2.16). If v ∈ K is a nontrivial fixed point of A, then by the definitions
of S and A, v(t) is a positive solution of BVP (2.3) and u = v(r0

N−2/|x|N−2) is a classical positive radial
solution of BVP (1.1). Let 0 < R1 < R2 < +∞ and set

D1 = {v ∈ C(I) : ‖v‖C < R1}, D2 = {v ∈ C(I) : ‖v‖C < R2}. (3.1)

We prove that A has a fixed point in K ∩ (D2 \ D1) when R1 is small enough and R2 large enough.
Since fp

0 < λp,1, by the definition of fp
0, there exist ε ∈ (0, λp,1) and δ > 0, such that

f (u) ≤ (λp,1 − ε)up−1, 0 ≤ u ≤ δ. (3.2)

Choosing R1 ∈ (0, δ), we prove that A satisfies the condition of Lemma 2.4 in K ∩ ∂D1, namely

µ Av , v, ∀ v ∈ K ∩ ∂D1, 0 < µ ≤ 1. (3.3)

In fact, if (3.3) does not hold, there exist v0 ∈ K ∩ ∂D1 and 0 < µ0 ≤ 1 such that µ0 Av0 = v0 . By the
homogeneity of S , v0 = µ0S (F(v0)) = S (µ0

p−1F(v0)). By the definition of S , v0 is the unique solution
of BVP (2.5) for h = µ0

p−1F(v0) ∈ C+(I). Hence, v0 ∈ C1(I) satisfies the differential equation −
(
|v′0(t)|p−2v0

′(t)
)′

= µ0
p−1 a(t) f (v0(t)), t ∈ (0, 1],

v0(0) = 0, v0
′(1) = 0.

(3.4)

Since v0 ∈ K ∩ ∂D1, by the definitions of K and D1,

0 ≤ v0(t) ≤ ‖v0‖C = R1 < δ, t ∈ I.

Hence by (3.2),
f (v0(t)) ≤ (λp,1 − ε) v0

p−1(t), t ∈ I.

By this inequality and Eq (3.4), we have

−
(
|v′0(t)|p−2v0

′(t)
)′
≤ µ0

p−1(λp,1 − ε) a(t) v0
p−1(t), t ∈ (0, 1].

Multiplying this inequality by v0(t) and integrating on (0, 1], then using integration by parts for the left
side, we have ∫ 1

0
|v′0(t)|pdt ≤ µ0

p−1(λp,1 − ε)
∫ 1

0
a(t) v0

p(t)dt

≤ (λp,1 − ε)
∫ 1

0
a(t) v0

p(t)dt.

(3.5)
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Since v0 ∈ K ∩ ∂D, by the definition of K,∫ 1

0
a(t) v0

p(t)dt ≥ ‖v0‖C
p
∫ 1

0
tpa(t)dt = R1

p
∫ 1

0
tpa(t)dt > 0.

Hence, by (2.13) and (3.5) we obtain that

λp,1 ≤

∫ 1

0
|v′0(t)|pdt∫ 1

0
a(t) v0

p(t)dt
≤ λp,1 − ε,

which is a contradiction. This means that (3.3) holds, namely A satisfies the condition of Lemma 2.4
in K ∩ ∂D1. By Lemma 2.4, we have

i (A, K ∩ D1, K) = 1. (3.6)

On the other hand, by the definition (1.6) of B, we have

B <
[ ∫ 1

σ

Ψ

( ∫ 1

s
tp−1a(t) dt

)
ds

]−(p−1)

→ B (σ→ 0+), σ ∈ (0, 1). (3.7)

Since fp ∞ > B, by (3.7) there exists σ0 ∈ (0, 1), such that

B0 :=
[ ∫ 1

σ0

Ψ

( ∫ 1

s
tp−1a(t) dt

)
ds

]−(p−1)

< fp ∞. (3.8)

By this inequality and the definition of fp ∞, there exists H > 0 such that

f (u) > B0up−1, u > H. (3.9)

Choosing R2 > max{δ, H/σ0}, we show that

‖Av‖C ≥ ‖v‖C, v ∈ K ∩ ∂D2. (3.10)

For ∀ v ∈ K ∩ ∂D2 and t ∈ [σ0, 1], by the definitions of K and D2

v(t) ≥ t‖v‖C ≥ σ0R2 > H.

By this inequality and (3.9),

f (v(t)) > B0vp−1(t) ≥ B0‖v‖
p−1
C tp−1, t ∈ [σ0, 1]. (3.11)

Since Av = S (F(v)), by the expression (2.10) of the solution operator S and (3.11), noticing (p−1)(q−
1) = 1, we have

‖Av‖C ≥ Av(1) =

∫ 1

0
Ψ

( ∫ 1

s
a(t) f (v(t))dt

)
ds

≥

∫ 1

σ0

Ψ

( ∫ 1

s
a(t) f (v(t))dt

)
ds
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≥

∫ 1

σ0

Ψ

( ∫ 1

s
a(t)B0‖v‖

p−1
C tp−1dt

)
ds

= Bq−1
0 ‖v‖C

∫ 1

σ0

Ψ

( ∫ 1

s
tp−1a(t)dt

)
ds

= ‖v‖C.

Namely, (3.10) holds. Suppose A has no fixed point on ∂D2. Then by (3.10), A satisfies the condition
of Lemma 2.5 in K ∩ ∂D2. By Lemma 2.5, we have

i (A, K ∩ D2, K) = 0. (3.11)

By the additivity of fixed point index, (3.6) and (3.11), we have

i (A, K ∩ (D2 \ D1), K) = i (A, K ∩ D2, K) − i (A, K ∩ D1, K) = −1.

Hence A has a fixed point in K ∩ (D2 \ D1).

The proof of Theorem 1.1 is complete. �
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