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Abstract: Many models for the movement of particles and individuals are based on the diffusion
equation, which, in turn, can be derived from an uncorrelated random walk or a position-jump
process. In those models, individuals have a location but no well-defined velocity. An alternative,
and sometimes more accurate, model is based on a correlated random walk or a velocity-jump process,
where individuals have a well defined location and velocity. The latter approach leads to hyperbolic
equations for the density of individuals, rather than parabolic equations that result from the diffusion
process. Almost all previous work on correlated random walks considers a homogeneous landscape,
whereas diffusion models for uncorrelated walks have been extended to spatially varying environments.
In this work, we first derive the equations for a correlated random walk in a one-dimensional spatially
varying environment with either smooth variation or piecewise constant variation. Then we show
how to derive the so-called parabolic limit from the resulting hyperbolic equations. We develop
homogenization theory for the hyperbolic equations, and show that taking the parabolic limit and
homogenization are commuting actions. We illustrate our results with two examples from ecology: the
persistence and spread of a population in a patchy heterogeneous landscape.
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1. Introduction

Almost all natural landscapes exhibit spatial heterogeneity at some scale. A thorough mechanistic
understanding of ecological processes, such as population persistence and spatial spread, requires some
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method to deal with this heterogeneity. Homogenization is a powerful method to combine observations
and measurements on a small scale to population behavior on a global scale [3]. Since the resulting
multiscale analysis has been applied successfully to a variety of ecological problems [8, 14, 34, 38],
homogenization of spatial ecological models has gained growing interest in quantitative ecology.

Most of the above applications are formulated as reaction-diffusion equations. They are based
on a description of individual movement as an uncorrelated random walk. While quite successful
and intuitive, reaction-diffusion models have also been criticized for allowing infinite propagation
speeds [9]. The discussion of infinite propagation speeds in diffusion models relates to the fact
that diffusion models are often derived from random walks where the individual particle speed and
the turning rate are increased to infinity. It also manifests itself in the fundamental solution of the
heat equation, which is positive at each point in space after arbitraily short times, even if the initial
condition has compact support. Since the seminal paper by Holmes [25], modelling approaches
based on correlated random walks (CRW) have received more attention. Correlated random walks
are diffusive, but they do not allow for infinitely fast propagation of particles, in the sense that
compact initial conditions lead to compactly supported solutions that do not expand faster than the
maximum particle velocity. In one spatial dimension, they are often formulated as a system of two
hyperbolic partial differential equations, and many results on existence [24], invariant regions [21],
pattern formation [20, 29], chemotaxis [7, 22], epidemic spread [19], biological invasions [16, 39], and
species interactions [17, 28] are known [18]. In the so-called parabolic limit, the correlated random
walk approaches an uncorrelated random walk, and the associated hyperbolic equations approach the
corresponding parabolic equations. However, all of these CRW models as well as their connections to
the parabolic limits have only been studied in homogeneous landscapes, but see [11] for a relate model
in a different context, which we discuss at the end.

In this paper, we consider the formulation and analysis, including homogenization theory, of
CRW models in a one-dimensional periodically varying landscapes. We begin with smoothly varying
landscapes, but the focus of the work is on “patchy” landscapes, where conditions change abruptly
between different types of habitats [40]. At a boundary (or interface) between patches, the equations
for the population density must be augmented by transition conditions (also called interface conditions)
that describe individual movement behavior and habitat choices. We derive these conditions from
the underlying random-walk model, based on ideas originally employed for uncorrelated random
walks [30,36]. Since the partial differential equations for the CRW model are hyperbolic, the transition
conditions need to respect the direction of the characteristics. It turns out that the interface conditions
are, in our case, discontinuous jump-conditions.

With the interface conditions in place, we apply homogenization theory to the resulting CRW
models. We consider three cases. First, we homogenize a spatially inhomogeneous CRW model in
a smoothly varying landscape. We compare the result to the corresponding parabolic limit and we
show that the two operations of homogenizing and forming the parabolic limit commute. Next, we
homogenize the patchy CRW model and compare the resulting model with the homogenization of the
parabolic equations in patchy landscapes in [30, 42]. Again, we find that the parabolic limit makes the
exact connection between the hyperbolic and parabolic cases. Finally, we include population dynamics
such as birth and death. This allows for an analysis of classical ecological questions of species
persistence conditions and invasions speeds in patchy landscapes. In particular, we compute the critical
sizes of good and bad habitats such that the species can survive, we give an implicit characterization
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of the invasion speed. This implicit relation cannot be solved explicitly, but homogenization provides
an explicit, albeit approximate, formula. The wave speed for the homogenized reaction CRW-model
can easily be obtained using a result by Hadeler [16]. We compare the explicit and implicit speeds
numerically.

To keep track of the different cases considered here, we introduce the following notation. The
correlated random walk with constant coefficients will be denoted as homogeneous CRW (see Eq
(1.4)) The general model with possibly spatially dependent coefficients is simply called CRW, and it
is the main object of our study (see Eq (2.3)). The CRW on a patchy periodic environment with jump-
like transition conditions is called the patchy CRW (see Eq (3.1)), and if population dynamics are
included, we talk about the reaction CRW and the patchy reaction CRW (see Eq (4.1)), respectively.
We begin with some known results and methods for the homogeneous CRW and the homogeneous
reaction CRW.

1.1. Correlated random walks in homogeneous space

In the classical approach to the one-dimensional correlated random walk, particles can move to the
left or the right on the line. They do so with equal speed in both directions, so that there are exactly two
velocities. To separately track particles with the two velocities, one then writes u±(x, t) to denote the
densities of individuals who arrived at location x at time t by moving right (+) or left (−). During each
time step (τ), particles can move a fixed distance (δ) in their given direction or change direction. In
particular, right-moving particles (+) can only arrive at location x from location x − δ and left-moving
particles can only arrive at x from x + δ [43].

The master equation, as derived by Zauderer and many others [17, 43], is

u+(x, t + τ) = pu+(x − δ, t) + (1 − p)u−(x − δ, t), (1.1)
u−(x, t + τ) = pu−(x + δ, t) + (1 − p)u+(x + δ, t), (1.2)

where p = 1− λτ is the probability of persisting in the direction of movement and λ is the turning rate.
In the limit of δ, τ→ 0 with

lim
τ,δ→0

δ

τ
= γ, (1.3)

we obtain the hyperbolic system of equations

u+
t + γu+

x = λ(u− − u+),
u−t − γu−x = λ(u+ − u−),

(1.4)

where γ is the particle speed. Model (1.4) is known as the Goldstein-Kac model for correlated random
walk [15, 18, 27], or, in our notation, the homogeneous CRW.

From these equations, we introduce the transformation to the total particle density u = u+ + u− and
the particle flux v = γ(u+ − u−). Then we can formulate (1.4) as the equivalent hyperbolic system

ut + vx = 0, vt + γ2ux = −2λv. (1.5)

System (1.5) is also known as the Cattaneo system [23, 26]. If we divide the second equation of the
Cattaneo system by 2λ and consider the parabolic limit

λ, γ → ∞, 0 < lim
λ,γ→∞

γ2

2λ
= D < ∞, (1.6)
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we obtain Fick’s law for the particle flux
v = −Dux, (1.7)

and consequently the diffusion equation
ut = Duxx. (1.8)

The diffusion equation can also be obtained from a limiting process where particles (characterized by
their location only), during fixed time step, jump left or right by a fixed distance [41]. Accordingly,
the diffusion process is also known as a position-jump process while the CRW process is known as a
velocity-jump process [34].

1.2. Reaction CRW systems in homogeneous space

Next, we include reaction into the equations. When we apply the equations to ecological processes,
these reactions will model the population dynamics, i.e., births and deaths of individuals. We use
general reaction terms G± and assume that population dynamics and species movement are independent
stochastic processes on the same time scale. This assumption is standard, also for reaction-diffusion
models, and it allows us to add the relative contributions of random walk and population kinetics into
the model [17, 18, 33]. We obtain the equations

u+
t + γu+

x = λ(u− − u+) + G+(u+, u−),
u−t − γu−x = λ(u+ − u−) + G−(u+, u−).

(1.9)

We call model (1.9) the homogeneous reaction CRW. A generic form for G± is

G±(u+, u−) =
m(u)

2
u − g(u)u±, u = u+ + u−, (1.10)

where m(u) is the per capita growth rate and g(u) is the death rate. Unless the growth rate at low
density exceeds the death rate, the population will go extinct. Hence, we shall make the assumption
m(0) > g(0) from hereon. The factor 1/2 indicates that newborns move in either direction with equal
probability. It is useful to introduce the net kinetic term

f (u) := G+(u+, u−) + G−(u+, u−) = m(u)u − g(u)u.

Hadeler proved in [16] that, under certain conditions on the growth function f (u), there is a critical
invasion speed 0 < cH < γ, such that system (1.9) has constant-speed travelling wave solutions for all
speeds in the interval [cH, γ). The minimum wave speed cH can be calculated as

cH =
2γ
√

F′(0)
1 + F′(0)

, where F(u) =
f (u)

2λ + g(u)
. (1.11)

One set of conditions is that f satisfy f (0) = f (1) = 0 and f (u) > 0 on (0, 1), and that F be concave,
linearly bounded and have its maximum slope at zero. Hadeler’s proof is based on comparison with
the analysis of travelling fronts for a corresponding parabolic equation.

We can obtain the bound cH as the smallest speed for which there are monotone travelling profiles
in the linearized system. We linearize the above system at u± = 0 and write m0 = m(0) and g0 = g(0).
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We make the travelling-wave ansatz u±(t, x) = φ±(x − ct) with 0 < c < γ. Then the above hyperbolic
system turns into the ODE system

(γ − c)φ̇+ =

(m0

2
− g0 − λ

)
φ+ +

(m0

2
+ λ

)
φ−, (1.12)

−(γ + c)φ̇− =

(m0

2
+ λ

)
φ+ +

(m0

2
− g0 − λ

)
φ−.

The matrix of this linear system is given by

MH :=


A
γ−c

B
γ−c

−B
γ+c

−A
γ+c

 (1.13)

with A = m0
2 − g0 −λ and B = m0

2 +λ. For the travelling profiles to be biologically relevant, i.e. positive,
the eigenvalues of this matrix MH must be real. The eigenvalues are real if and only if

c ≥ cH =
γ

β

√
(β − α)(β + α) =

2γ
m0 + 2λ

√
(m0 − g0)(2λ + g0). (1.14)

In this notation, we have F′(0) =
m0−g0
2λ+g0

, so that the two expressions for cH in (1.11) and (1.14) agree.
For completeness, we note that the situation for parabolic reaction-diffusion equations,

corresponding to the uncorrelated random walk, is quite different. As is well known, the equation

ut = Duxx + f̃ (u)

has constant speed traveling waves for all speeds greater than the minimum speed c∗ = 2
√

D f̃ ′(0),
provided that f̃ is of Fisher-KPP type, i.e., f̃ (0) = f̃ (1) = 0, f̃ (u) > 0 for 0 < u < 1, and f̃ (u) ≤ f̃ ′(0)u.
In particular, there is no upper limit to the speed of traveling waves [12].

2. CRW in smoothly varying landscapes

We consider a spatially-dependent CRW where parameters vary smoothly (and periodically) in
space. We derive the CRW model from a master equation, consider the parabolic limit, and perform
the homogenization scaling. We show that homogenizing the parabolic limit leads to the same result
as taking the parabolic limit of the homogenized model.

2.1. Derivation of the spatially inhomogeneous CRW model

We generalize the derivation of the homogeneous CRW model in two aspects: we allow the turning
rate to depend on space and we allow a particle to not move during a time step. We introduce the new
parameter µ = µ(x) as the probability that the particle moves away from location x. If it moves away
from x, it can either persist in the direction that it had when it arrived at x or it can choose to switch
direction. Then the corresponding master equations are

u+(x, t + τ) = µ(x − δ)p(x − δ)u+(x − δ, t) + µ(x − δ)λ(x − δ)τu−(x − δ, t)
+(1 − µ(x))u+(x, t), (2.1)

AIMS Mathematics Volume 6, Issue 8, 8920–8948.



8925

u−(x, t + τ) = µ(x + δ)p(x + δ)u−(x + δ, t) + µ(x + δ)λ(x + δ)τu+(x + δ, t)
+(1 − µ(x))u−(x, t), (2.2)

where now the (conditional) persistence probability is p(x) = 1 − λ(x)τ, and the (conditional) turning
probability is λ(x)τ. We expand the terms at (x, t + τ) as

u±(x, t + τ) = u± + τu±t + O(τ2)

and the terms at (x + δ, t) as
u±(x + δ, t) = u± + δu±x + O(δ2).

For functions of a single variable (e.g. µ, p), we also write the derivative in index notation (i.e. µ′ = µx).
The first two terms on the right-hand side in (2.1) expand into

µ(x − δ)p(x − δ)u+(x − δ, t) = µpu+ − δ
[
µx pu+ + µpxu+ + µpu+

x
]
+ O(δ2)

and
µ(x − δ)λ(x − δ)τu−(x − δ, t) = τµλu− + O(δτ).

Substituting and sorting by powers of τ, δ, we obtain

τu+
t + O(τ2) = −µλτ(u+ − u−) − δ(µxu+ + µu+

x )p + O(δτ, δ2)

and a similar equation for u−. Since p = 1 − λτ, we have px = λxτ, so that we can collect the
corresponding terms of lower order in the O-term. Furthermore, in the limit that follows, we have
limτ→0 p = 1. Now we divide by τ and take the hyperbolic limit (1.3) to get

u+
t + γ(µ(x)u+)x = µ(x)λ(x)(u− − u+),

u−t − γ(µ(x)u−)x = µ(x)λ(x)(u+ − u−),
(2.3)

which is the basic CRW model of this paper.

Remark 1. The final form of the CRW model in (2.3) illustrates the importance of careful, bottom-
up model derivation. We chose to modulate speed on the random walk level by introducing the
function µ(x) that regulates the probability of moving. Instead, we could have started directly on
the differential equation level by simply replacing the advection term γu±x by (γ(x)u±)x to account for
spatially dependent velocities. Our formulation γ(µ(x)u±)x gives us slightly more control about the
effects of the particle speed γ and the motility parameter µ(x). In addition, we notice that the motility
µ(x) also appears in the turning rates as the product µ(x)λ(x).

2.2. Homogenization of the CRW

The notion of homogenization always relates to the appearance of different scales. Here we are
interested in a local spatial scale, which we call y, and a global spatial scale, which we call x. We
create these scales through a scaling parameter ε > 0 with y = x

ε
. Now we assume that the model

parameters λ and µ vary periodically on the small scale y. Without loss of generality, we may assume
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that the period is equal to one. We also allow the coefficients to vary independently on the global scale
x. Hence, we assume that

µ(x, y), λ(x, y), are 1-periodic in y.

Since y = x/ε, we can use the chain rule to replace the derivative

∂

∂x
→

1
ε

∂

∂y
+
∂

∂x
. (2.4)

Then (2.3) becomes a multiscale problem for u±(x, y, t):

u+
t + γ

[
1
ε
(µ(x, y)u+)y + (µ(x, y)u+)x

]
= µ(x, y)λ(x, y)(u− − u+),

u−t − γ
[

1
ε
(µ(x, y)u−)y + (µ(x, y)u−)x

]
= µ(x, y)λ(x, y)(u+ − u−).

(2.5)

We make the series ansatz
u±(x, y, t) =

∑
n

εnu±n (x, y, t),

where we assume that all functions u±n are also 1-periodic in y. We substitute this expansion into (2.5)
and collect orders of ε. The terms of order ε−1 are

(µ(x, y)u±0 )y = 0, (2.6)

which we integrate over y on an interval of length 1. Since all functions and coefficients are periodic,
we find that µu±0 must be independent of y. We define the two functions f ±(x, t) via

u±0 (x, y, t) =
f ±(x, t)
µ(x, y)

. (2.7)

The terms of order ε0 are
u±0,t ± γ

[
(µu±0 )x + (µu±1 )y

]
= µλ(u∓0 − u±0 ). (2.8)

We substitute µu±0 = f ±(x, t) from (2.8) and solve for the terms with u±1 . We obtain

γ(µu+
1 )y = λ( f − − f +) −

f +
t

µ
− γ f +

x , (2.9)

and similar for u−1 .
We integrate again with respect to y. Since f ± are independent of y, we get

γµu+
1 (x, y, t) − γµu+

1 (x, 0, t) = ( f − − f +)
∫ y

0
λ(x, s)ds − f +

t

∫ y

0

ds
µ(x, s)

− γ f +
x y.

Now we use the condition that u± and the coefficient functions are 1-periodic in y, i.e. γµu+
1 (x, 1, t) −

γµu+
1 (x, 0, t) = 0 and

( f − − f +)
∫ 1

0
λ(x, s)ds − f +

t

∫ 1

0

ds
µ(x, s)

− γ f +
x = 0. (2.10)
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A similar equation follows for f −t . We write the arithmetic and harmonic means with respect to the
second variables as

〈λ(x, ·)〉a =

∫ 1

0
λ(x, y)dy, and 〈µ(x, ·)〉h =

(∫ 1

0

1
µ(x, y)

dy
)−1

, (2.11)

respectively. Then (2.10) results in the following system of hyperbolic equations for f ±:

f +
t + γ〈µ(x, ·)〉h f +

x = 〈µ(x, ·)〉h〈λ(x, ·)〉a( f − − f +),

f −t − γ〈µ(x, ·)〉h f −x = 〈µ(x, ·)〉h〈λ(x, ·)〉a( f + − f −).

These equations are the homogenized analogues to (2.3). It should be noted that the transport term
in this hyperbolic model is not of conservation type. This is related to the fact that u±0 = f ±/µ is a
conserved quantity, while f ± is not.

Based on the expansion above, we introduce a more formal terminology for homogenization.

Terminology: Given two spatial scales x and y = x
ε

for ε � 1, we say that model B is a
homogenization of model A, if the leading-order term of a two-scale expansion of solutions
of model A satisfies model B.

In this sense we have shown:

Theorem 1. The homogenization of

u+
t + γ(µ(x)u+)x = µ(x)λ(x)(u− − u+),

u−t − γ(µ(x)u−)x = µ(x)λ(x)(u+ − u−),

with coefficients µ(x, y), λ(x, y) that are 1-periodic in y, is

f +
t + γ〈µ(x, ·)〉h f +

x = 〈µ(x, ·)〉h〈λ(x, ·)〉a( f − − f +),

f −t − γ〈µ(x, ·)〉h f −x = 〈µ(x, ·)〉h〈λ(x, ·)〉a( f + − f −).
(2.12)

The zero-order term, u±0 , in the expansion of u± can be obtained from the solution f ± in (2.12) via
the relation in (2.7).

2.3. The parabolic limit

We derive the parabolic limit of the homogenized equations (2.12). We use the variables f = f ++ f −

and g = f + − f −. Then we find

ft + γ〈µ(x, ·)〉hgx = 0, (2.13)
gt + γ〈µ(x, ·)〉h fx = −2〈µ(x, ·)〉h〈λ(x, ·)〉ag. (2.14)

We divide by 2〈µ(x, ·)〉h〈λ(x, ·)〉a and take a limit in which λ, γ → ∞. We consider a scaling factor
λ(x) = Λλ̂(x) and let Λ→ ∞. In the limit

lim
γ,Λ→∞

γ2

2Λ
= D̂ < ∞, and

D̂

λ̂(x)
= D(x), (2.15)
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we get

ft = 〈µ(x, ·)〉h

 D̂

〈̂λ(x, ·)〉a
fx


x

= 〈µ(x, ·)〉h(D(x) fx)x. (2.16)

In particular, if µ and λ vary only on the small scale y, then we find the limiting equation

ft =
〈µ〉hD̂

〈̂λ〉a
fxx. (2.17)

Instead of considering the parabolic limit of the homogenized model (2.12), we can also consider
the parabolic scaling of the original model (2.3). For this, we again define the total particle density
u = u+ + u− and the population flux v = γ(x)µ(x)(u+ − u−). Then we get the Cattaneo-type equations

ut + vx = 0, vt + γ2µ(x)(µ(x)u)x = −2µ(x)λ(x)v.

As above, we divide the second equation by 2µ(x)λ(x) and write

1
2µ(x)λ(x)

vt +
γ2

2λ(x)
(µ(x)u)x = −v.

In the limit (2.15), we obtain the diffusion equation

ut = [D(x)(µ(x)u)x]x. (2.18)

By the change of variable w(x, t) = µ(x)u(x, t), we find an equivalent formulation as

wt = µ(x)(D(x)wx)x. (2.19)

In this form, the equation is more amenable to some analysis. In particular, we can apply Othmer’s
method of homogenization for two scales x and y.

Lemma 1. (Othmer [34]) The homogenization of

Ut =
1

a(x)

(
a(x)d(x)Ux

)
x
,

where the coefficient functions are 1-periodic on the small scale, is

U0,t = d̃ U0,xx, d̃ =
1∫ 1

0
a(y)dy

∫ 1

0
dy

a(y)d(y)

.

In our case, we assume that coefficients µ and D in (2.19) for w are 1-periodic of the small-scale
variable y = x/ε. Then we can apply Othmer’s result with a = 1/µ and d = µD. We find

Lemma 2. The homogenization of
wt = µ(x)(D(x)wx)x,

where the coefficient functions are 1-periodic on the small scale, is

w0,t = D̃ w0,xx, D̃ =
1∫ 1

0
dy
µ(y)

∫ 1

0
dy

D(y)

= 〈µ〉h
D̂∫ 1

0
λ̂(y)dy

=
〈µ〉hD̂

〈̂λ〉a
. (2.20)
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Since (2.20) is identical to (2.17), the operation of homogenizing and forming a parabolic limit
commute for model (2.3), at least as long as the coefficient functions only depend on the small-scale
variable.

Remark 2. There are a number of different ways in which the equation for diffusion in homogeneous
space (1.8) can be extended to diffusion in heterogeneous space [5, 6, 35, 41]. Our parabolic limit
(2.18) contains several of these as special cases.

• If D is constant then (2.18) is of Fokker-Planck type, i.e., ut = (d(x)u)xx, with d(x) = Dµ(x), also
known as ecological diffusion [41].
• If D(x) is variable but µ is constant, then (2.18) is of Fickian type, i.e., ut = (d(x)ux)x, with

d(x) = µD(x).
• If D(x) = µ(x) then (2.18) is of Wereide type, i.e, ut = (

√
d(x)(

√
d(x)u)x)x, with d(x) = D(x)µ(x).

The Wereide model can also be derived from spatially dependent speeds γ(x) as done in [6].
• Finally, if we set d(x) = D(x)µ(x) and κ(x) = µ(x)/D(x), then (2.18) can be rewritten as

ut =


√

d(x)
κ(x)

( √
κ(x)d(x)u

)
x


x

,

which generalizes the Wereide model [6].

In either case, the effective diffusion coefficient is d(x) = µ(x)D(x).

3. Patchy landscapes and interfaces

In this section, we extend the fairly recent modeling approach of individual movement behaviour
near sharp interfaces from uncorrelated random walks to correlated random walks. The theory for the
uncorrelated walk and corresponding reaction-diffusion equation was developed by Ovaskainen and
Cornell [36] and continued by Maciel and Lutscher [30]. One motivation for this approach is that
continuous variation in landscape quality is difficult to parametrize and also to analyze (other than
fairly abstract results). In addition, landscape ecologists typically take the view that landscapes consist
of patches that are homogeneous within and different between. Hence, we have a piecewise constant
landscape quality with abrupt transitions that we call interfaces. There is already a reasonably large
body of empirical literature on individual behaviour and patch preference; see, e.g., references in [30].
Potts et al. [37] modelled decision making at an edge through a step selection function approach,
where the decision to cross into the next habitat or stay in the original habitat depends on a non-local
sensing of the environment. In their model, they could explain various forms of species abundances
near interfaces that were observed in nature. Here we use a simpler approach and consider a given,
fixed transition probability β.

We derive the corresponding formulas with only two patches and a single interface. Without loss
of generality, we set x = 0 to be the location of the interface. We call the region {x > 0} patch 1 and
the region {x < 0} patch 2; see Figure 1. Within patch i, individuals take steps of length δi during
time intervals τ. The turning rate in patch i is λiτ, the probability to remain in a given direction is
pi = 1 − λiτ, and the probability to move from location x is denoted by µi. The speed in the limit
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Figure 1. Sketch of the patchy one-dimensional domain.

becomes limτ,δi→0(δi)/(2τ) = γi. Then the equations for u± in patch i become

u+
t + γiµiu+

x = µiλi(u− − u+),

u−t − γiµiu−x = µiλi(u+ − u−).
(3.1)

The parameters and their meaning are summarized in Table 1. We need to prescribe the matching
conditions at x = 0. Since the equations are hyperbolic, we can only prescribe densities along the
incoming characteristics in terms of the outgoing characteristics, i.e., we need to find expressions
for u+(0+, t) and u−(0−, t) in terms of u+(0−, t) and u−(0+, t). At an interface, individual behaviour is
different from elsewhere since the individual can choose between two habitat types. We denote by β±

the probability that an individual that arrived at the interface by moving right (left) will persist in its
movement direction. The probability of moving from the interface is µ0.

When we write the master equations, we need to be careful since the spacing in the two patches is
different when δ1 , δ2. We continue to use u± to denote the densities. Then the probabilities that an
individual who arrived by moving right (left) in an interval of length δ1, centred at nδ1 are u±(nδ1, t)δ1 +

O(δ1) with n = 1, 2, 3, . . . . Similar notation holds for patch 2 with u(−nδ2, t)δ2. The interval around
x = 0 has length δ0 = (δ1 + δ2)/2. Hence, the probability that an individual is in that interval is
u±(0, t)δ0 + O(δ0).

The relevant master equations near zero are

u+(δ1, t + τ)δ1 = [u+(0, t)β+ + u−(0, t)(1 − β−)]µ0δ0 + (1 − µ1)u+(δ1, t)δ1,

u+(0, t + τ)δ0 = [u+(−δ2, t)p2 + u−(−δ2, t)λ2τ]µ2δ2 + (1 − µ0)u+(0, t)δ0

u−(−δ2, t + τ)δ2 = [u+(0, t)(1 − β+) + u−(0, t)β−]µ0δ0 + (1 − µ2)u−(−δ2, t)δ2,

u−(0, t + τ)δ0 = [u−(δ1, t)p1 + u+(δ1, t)λ1τ]µ1δ1 + (1 − µ0)u−(0, t)δ0.

In the second of these equations, we expand the left-hand side as usual:

u+(0, t + τ)δ0 = u+(0, t)δ0 + u+
t (0, t)τδ0 + O(τ). (3.2)

Then we cancel like terms and rearrange the resulting equation and find

µ0u+(0, t)δ0 = [u+(−δ2, t)p2 + u−(−δ2, t)λ2τ]µ2δ2 + O(τ, δ0). (3.3)

Similarly, the fourth equation gives us

µ0u−(0, t)δ0 = [u−(δ1, t)p1 + u+(δ1, t)λ1τ]µ1δ1 + O(τ, δ0). (3.4)
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Substituting these two expressions into the first of the master equations leads to

[u+(δ1, t) + u+
t (δ1, t)τ]δ1 = β+[u+(−δ2, t)p2 + u−(−δ2, t)λ2τ]µ2δ2

+(1 − β−)[u−(δ1, t)p1 + u+(δ1, t)λ1τ]µ1δ1

+(1 − µ1)u+(δ1, t)δ1.

We have eliminated the terms evaluated at zero. Now we can take the limit τ, δ1, δ2 → 0. In the
hyperbolic limit, the derivative term on the left side of the equation vanishes; hence, we omit it from
here on. We can cancel one term from both sides, then divide by τ and take the limit to get the condition

µ1γ1u+(0+, t) = β+µ2γ2u+(0−, t) + (1 − β−)µ1γ1u−(0+, t), (3.5)

which can also be written as

u+(0+, t) = β+µ2γ2

µ1γ1
u+(0−, t) + (1 − β−)u−(0+, t). (3.6)

By symmetry considerations, the corresponding expression in the other direction is

u−(0−, t) = β−
µ1γ1

µ2γ2
u−(0+, t) + (1 − β+)u+(0−, t). (3.7)

The transition conditions (3.6) and (3.7) are illustrated in Figure 1, where the red arrows are functions
of the blue arrows.

When the patch of type 1 is located to the left of the interface and the patch of type 2 on the right,
then β+ becomes the probability of a particle that moves to the left from patch 2 to patch 1 would
continue to patch 1, while β− is now the probability of continuing to the right, from a patch of type 1
to type 2. Hence, if x = L1 is an interface with a patch of type 1 located at {x < L1} and a patch of type
2 located at {x > L1}, we get the interface conditions:

u+(L+
1 , t) = β− µ1γ1

µ2γ2
u+(L−1 , t) + (1 − β+)u−(L+

1 , t),

u−(L−1 , t) = β+ µ2γ2
µ1γ1

u−(L+
1 , t) + (1 − β−)u+(L−1 , t).

(3.8)

As long as the equations describe only movement and no population dynamics, the total mass of
individuals should be preserved by the equations. We show that this is indeed the case with our interface
conditions. We choose the simplest set-up of a single interface at x = 0 as in the master equations, i.e.,
we have Eqs (3.1) with i = 1 for x > 0 and i = 2 for x < 0, and interface conditions (3.6), (3.7) at
x = 0. We assume that the densities u± approach zero as |x| → ±∞. We evaluate the change in the total
density

d
dt

∫ ∞

−∞

(u+ + u−)(x, t)dx =

∫ 0

−∞

γ2µ2(u−x − u+
x )(x, t)dx +

∫ ∞

0
γ1µ1(u−x − u+

x )(x, t)dx

= γ2µ2(u− − u+)(0−, t) − γ1µ1(u− − u+)(0+, t).

We rearrange (3.6) as

µ1γ1(u+(0+, t) − u−(0+, t)) = β+µ2γ2u+(0−, t) − β−µ1γ1u−(0+, t)
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and (3.7) as
µ2γ2(u−(0−, t) − u+(0−, t)) = β−µ1γ1u−(0+, t) − β+µ2γ2u+(0−, t).

The sum of the left-hand sides of the rearranged interface conditions is precisely the change in total
mass above. The sum of the right-hand sides is zero. Hence, the equations together with the interface
conditions preserve total mass.

Remark 3. The transition conditions as defined above allow organisms to get trapped in a given patch
or set of patches. For example, consider [0, L1] as a patch of type 1 and [L1, L1 + L2] as an adjacent
patch of type 2 (see Figure 1). The probability of not leaving patch 1 at x = 0 is 1 − β− and the
probability of not leaving patch 2 at x = L is 1 − β+. Hence, the probability of getting stuck in these
two patches is Ptrap = (1−β+)(1−β−). For small values of β±, this probability is significant. We will see
its importance when we study the speed of travelling wave solutions. For convenience, we also define
the probability of moving on, which is 1 − Ptrap = 1 − (1 − β+)(1 − β−) = β+β− − β+ − β−.

We observe that the interface conditions contain not only the movement preference at the interface
(β±) but also the movement behaviour in the adjacent patches (γiµi). This is analogous to the parabolic
case [30, 36]. In the next section, we derive the parabolic limit of the correlated random walk in a
patchy landscape.

3.1. The parabolic limit of the patchy system with interface

We take the parabolic limit of system (3.1) in each patch similar to (1.6) with

Di = lim
λi,γi→∞

γ2
i µi

2λi
(3.9)

and arrive at
ut = Diuxx, (3.10)

where u = u+ + u−. We need to find conditions at the interface x = 0 that relate u(0±, t) and ux(0±, t).
We use the relations as before

2u+ = u +
1
γi

v, 2u− = u −
1
γi

v. (3.11)

Substituting these two expressions into (3.6), we find

u(0+, t) +
1
γ1

v(0+, t) = β+µ2γ2

µ1γ1

(
u(0−, t) +

1
γ2

v(0−, t)
)

(3.12)

+(1 − β−)
(
u(0+, t) −

1
γ1

v(0+, t)
)
. (3.13)

In the parabolic limit, we have γi → ∞ so that the remaining terms are

u(0+, t) = β+µ2γ2

µ1γ1
u(0−, t) + (1 − β−)u(0+, t). (3.14)

This gives us the interface condition

u(0+, t) =
β+

β−
µ2γ2

µ1γ1
u(0−, t). (3.15)
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We note that while γi are independent, they need to approach infinity at the same rate in order for the
limit to make sense.

As in [30], there are a few special cases. If turning rates and movement probabilities are equal
between the two patches and only the step sizes differ, then λ1 = λ2, µ1 = µ2 and δ1 , δ2, which
implies γ1 , γ2. This leads to the interface condition for the parabolic limits as

u(0+, t) =
β+

β−

√
D2

D1
u(0−, t). (3.16)

On the other hand, if only the probabilities of moving differ between the patches, i.e., µ1 , µ2, but
γ1 = γ2, we find

u(0+, t) =
β+

β−
D2

D1
u(0−, t). (3.17)

Both of these cases have been derived and discussed previously in the parabolic setting in [30]. Finally,
if only the turning rates differ, then λ1 , λ2, but µ1 = µ2 and γ1 = γ2, we find

u(0+, t) =
β+

β−
u(0−, t). (3.18)

We showed earlier that the hyperbolic system preserves total mass, and the same is true in the
limiting parabolic system. Hence, we get the expected flux-matching conditions for the parabolic limit
as

D1ux(0+, t) = D2ux(0−, t). (3.19)

3.2. Homogenization in patchy landscapes

In this section, we consider the patchy CRW (3.1) in a periodic landscape of two alternating patch
types. We denote the length of patches of type i as Li (see Figure 1). At each interface, we have
matching conditions of the form in (3.6), (3.7) or (3.8), depending on whether patch type 1 is to
the right or the left of the interface. Under the assumption that the period is small, we derive the
homogenization limit of the equations. To keep track of the various parameters and their meaning, we
summarize the most important relations in Table 1.

We will use some convenient combinations of parameters. As µi denotes the motility (probability
to move), and γi is the particle speed when it moves, the product µiγi denotes the net speed of particles
in patch i = 1, 2. If we multiply the net speed γ1µ1 by the transition probability β−0 , we get the net
transition speed of particles moving from patch 1 into patch 2. This leads us to define two ratios of the
speeds involved:

k =
µ2γ2

µ1γ1
, κ =

β+k
β−

=
β+µ2γ2

β−µ1γ1
. (3.20)

The coefficient k is the ratio of the net moving speeds of patch 2 over patch 1, and κ denotes the ratio
of the transition speed from patch 1 to patch 2 over the net transition speed from patch 2 to patch 1.

Theorem 2. The homogenization of (3.1) with jump boundary conditions (3.6,3.7,3.8), and coefficients
that are L-periodic in y, L = L1 + L2, is given by

f +
t + γ̃ f +

x = λ̃( f − − f +),
f −t − γ̃ f −x = λ̃( f + − f −),

(3.21)
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Table 1. Table of parameters and symbols related to the patchy landscape.

Expression Meaning

γi speed in patch i ∈ {1, 2}
µi probability that a particle in patch i moves
λi turning rate in patch i

µiγi effective speed in patch i

k =
µ2γ2
µ1γ1

ratio of net particle speeds in patch 2 versus 1.

Di =
γ2

i µi

2λi
effective diffusion constant in patch i

β± probability that and individual that arrived at an interface
moving to the right (left) continues right (left)

1 − β± probability of turning at the patch interface
β−µ1γ1 net transition speed from patch 1 to patch 2
β+µ2γ2 net transition speed from patch 2 to patch 1

κ =
β+

β−
k =

β+µ2γ2
β−µ1γ1

ratio of net transition speeds over the patch boundaries.

h(y) =

 1 y ∈ patch 1
κ y ∈ patch 2

local scaling function

u±0 (x, y, t) =
f ±(x,t)
h(y) leading order term

with

u±0 (x, y, t) =
f ±(x, t)

h(y)
, h(y) =

{
1, y ∈ (y0, y1),
κ, y ∈ (y1, y2).

(3.22)

Here

γ̃ = 〈γµ〉wh =

〈
1
h

〉
a〈

1
γµh

〉
a

=
L1 + L2

κ

L1
γ1µ1

+ L2
γ2µ2κ

(3.23)

is the weighted harmonic mean of γµ with weights L1 and L2
κ
, and

λ̃ =

〈
λ
γh

〉
a〈

1
γµh

〉
a

= 〈γµ〉wh

〈
λ

γ

〉
wa
, (3.24)

where 〈·〉wa denotes the weighted arithmetic mean with the same weights.

Proof. We denote the interface locations by yi with i = 0,±1,±2, . . . . We have y1 − y0 = L1 and
y2 − y1 = L2 as the length of patches of type 1 and 2, respectively (see Figure 1). The landscape repeats
periodically from thereon. We treat the period L = L1 + L2 = ε as a small parameter.

We write the density functions u±(x, y, t) as functions of the large and small scale variables, x and
y = x/ε, and we denote the parameter functions γ = γ(y) as γi on patch type i = 1, 2, and similarly for
λi and µi. Considering x and y as independent variables gives us the equations

u+
t + (γµ(u+

x + ε−1u+
y )) = µλ(u− − u+),

u−t − (γµ(u−x + ε−1u−y )) = µλ(u+ − u−).
(3.25)
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Figure 2. Balancing the boundary transitions for a piecewise constant solution.

The interface conditions (3.6) and (3.7) can be written in matrix form. For example, at y0 we have[
u+(·, y+

0 , ·)
u−(·, y−0 , ·)

]
=

[
β+k (1 − β−)

(1 − β+) β−/k

] [
u+(·, y−0 , ·)
u−(·, y+

0 , ·)

]
=: A0

[
u+(·, y−0 , ·)
u−(·, y+

0 , ·)

]
,

where we use k from (3.20). Similarly, at y1, we have[
u+(·, y+

1 , ·)
u−(·, y−1 , ·)

]
=

[
β−/k (1 − β+)

(1 − β−) β+k

] [
u+(·, y−1 , ·)
u−(·, y+

1 , ·)

]
=: A1

[
u+(·, y−1 , ·)
u−(·, y+

1 , ·)

]
.

We expand the densities as
u±(x, y, t) =

∑
n

εnu±n (x, y, t), (3.26)

where u±n are L-periodic with respect to y. The interface conditions contain only densities and no
derivatives. Therefore, they hold for each term in the series expansion.

We substitute (3.26) into (3.25) and consider orders of ε. The equations of order ε−1 are simply

u±0,y = 0

in each patch. Hence, the functions u±0 are constant with respect to y in each patch (see Figure 2). We
calculate the size of the jumps across the interfaces. To simplify notation, we write u±0 (·, y, ·) = U±(y).
Then we use the fact that U± are constant on each patch, L-periodic, and satisfy the interface conditions
as illustrated in Figure 2. We calculate[

U+(y+
0 )

U−(y−0 )

]
= A0

[
U+(y−0 )
U−(y+

0 )

]
= A0

[
U+(y−2 )
U−(y+

0 )

]
= A0

[
U+(y+

1 )
U−(y−1 )

]
= A0A1

[
U+(y−1 )
U−(y+

1 )

]
= A0A1

[
U+(y+

0 )
U−(y−2 )

]
= A0A1

[
U+(y+

0 )
U−(y−0 )

]
.

In particular, the vector [U+(y+
0 ),U−(y−0 )]T is an eigenvector of the matrix A0A1 with eigenvalue 1. We

check that the matrix has indeed such an eigenvalue and we calculate the eigenvector. We find

A0A1 =


β+β− + (1 − β−)2 β+k(2 − β+ − β−)

β−(2−β+−β−)
k β+β− + (1 − β+)2

 .
It is straight forward to calculate det(I − A0A1) = 0, to see that this matrix does indeed have an
eigenvalue equal to unity. Furthermore, we calculate the right eigenvector as[

U+(y+
0 )

U−(y−0 )

]
= r

[
β+k
β−

]
, and

[
U+(y+

1 )
U−(y−1 )

]
= rA1

[
β+k
β−

]
= r

[
β−

β+k

]
, (3.27)
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for r ∈ R. Hence, the ratio of the densities across the interface(s) is the same for U+ and U−, and it is
given by U+(y+

1 )/U+(y+
0 ) = U−(y−0 )/U−(y−1 ) =

β−0
β+

0 k = 1
κ
, with κ from (3.20). Using h(y) from (3.22) we

can write the densities as
u±0 (x, y, t) =

f ±(x, t)
h(y)

, (3.28)

where f ± are independent of y.
Next, we consider the equations of order ε0. They are

u+
0,t + (γµ(u+

0,x + u+
1,y)) = µλ(u−0 − u+

0 ), (3.29)
u−0,t − (γµ(u−0,x + u−1,y)) = µλ(u+

0 − u−0 ). (3.30)

We solve for u±1,y and find

u+
1,y =

1
γµh

[
λµ( f − − f +) − f +

t − γµ f +
x
]
, (3.31)

u−1,y =
1
γµh

[
−λµ( f + − f −) + f −t − γµ f −x

]
. (3.32)

We integrate the left-hand side over n periods and calculate∫ y2n

y0

u+
1,ydy =

2n∑
j=0

(
u+

1 (y−j ) − u+
1 (y+

j−1)
)

= u+
1 (y−2n) −

2n−1∑
j=1

(
u+

1 (y+
j ) − u+

1 (y−j−1)
)
− u+

1 (y+
0 )

= n
(
[u+

1 (y0)] + [u+
1 (y1)]

)
,

where we used periodicity so that u+
1 (y−2n) = u+

1 (y−0 ) and the standard jump notation

[u(y)] = u(y+) − u(y−).

A similar expression holds for u−1 .
If u±1 are to remain bounded as y (or n) become large, we necessarily have

[u±1 (y0)] + [u±1 (y1)] = 0.

Hence, the integral on the right hand side of (3.31) and (3.32) must equal zero as well. The functions
f ± are independent of the small-scale variable y; only the parameter functions γ, µ, λ and the scaling
function h depend on y and are L-periodic in y. Integrating (3.31) over one period gives the condition

0 =

〈
λ

γh

〉
a

( f − − f +) −
〈

1
γµh

〉
a

f +
t −

〈
1
h

〉
a

f +
x . (3.33)

where the arithmetic means are given by〈
λ

γh

〉
a

=
1

L1 + L2

(
L1λ1

γ1
+

L2λ2

γ2κ

)
, (3.34)

and similarly for the other terms. The corresponding condition for f − can be derived from (3.32).
Dividing by the coefficient of f ±t , we find the homogenized equations (3.21). �
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4. Reaction random walk systems

In this section, we include birth and death dynamics into the patchy CRW, as done previously in the
spatially homogeneous case (1.9). The equations are

u+
t + γ(x)(µ(x)u)+

x = µ(x)λ(x)(u− − u+) + G+(u+, u−, x),

u−t − γ(x)(µ(x)u)−x = µ(x)λ(x)(u+ − u−) + G−(u+, u−, x),
(4.1)

where, for the sake of convenience, we wrote the parameters as piecewise constant functions, i.e.,
µ(x) = µi in patches of type i, and similarly for the other parameters. The form of the growth and death
terms G± was given in (1.10); we will use the same subscript notation for G±i below.

4.1. Homogenization including reactions

We assume that the reaction terms also vary only on the small scale, i.e., we write G±(u+, u−, y) in
(4.1), and we assume that G± are L-periodic in y.

Theorem 3. The homogenization of (4.1) with L-periodic coefficients is given by

f +
t + γ̃ f +

x = λ̃( f − − f +) + G̃+( f +, f −),

f −t − γ̃ f −x = λ̃( f + − f −) + G̃−( f +, f −),
(4.2)

where f ± is given by (3.28), γ̃ and λ̃ are as above in (3.23) and (3.24), and

G̃± =

L1
µ1γ1

G±1 ( f +, f −) + L2
µ2γ2κ

κG±2
(

f +

κ
, f −

κ

)
L1
µ1γ1

+ L2
µ2γ2κ

. (4.3)

Note that G̃+ from (1.10) is a weighted arithmetic mean of hG+ with weights Li
γiµihi

. If we use the
explicit form of G±i =

mi(u)
2 u − gi(u)u±, then we obtain the homogenization as

f +
t + γ̃ f +

x = λ̃( f − − f +) +
m̃( f )

2 ( f + + f −) − g̃( f ) f +,

f −t − γ̃ f −x = λ̃( f + − f −) +
m̃( f )

2 ( f + + f −) − g̃( f ) f −,
(4.4)

with f = f + + f − and

m̃( f ) =

L1
µ1γ1

m1( f ) + L2
µ2γ2κ

m2( f /κ)
L1
µ1γ1

+ L2
µ2γ2κ

, g̃( f ) =

L1
µ1γ1

g1( f ) + L2
µ2γ2κ

g2( f /κ)
L1
µ1γ1

+ L2
µ2γ2κ

. (4.5)

Proof. To start the analysis, we write the equations as a two-scale problem, using (2.4) as

u+
t + (γµ(u+

x + ε−1u+
y )) = µλ(u− − u+) + G+(u+, u−, y),

u−t − (γµ(u−x + ε−1u−y )) = µλ(u+ − u−) + G−(u+, u−, y).

To homogenize, we follow the same steps as in Section 3.2. The equations of order ε−1 are unchanged.
Hence, we arrive at the same result as in (3.28), namely u±0 (x, y, t) =

f ±(x,t)
h(y) , where f ± are independent

of y, and h(y) is given by (3.28).
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The equations of order ε0 are now given by

u+
0,t + (γµ(u+

0,x + u+
1,y)) = µλ(u−0 − u+

0 ) + G+(u+
0 , u

−
0 , y),

u−0,t − (γµ(u−0,x + u−1,y)) = µλ(u+
0 − u−0 ) + G−(u+

0 , u
−
0 , y).

Just as before, we solve for u±1,y and find

u+
1,y =

1
γµh

[
λµ( f − − f +) + hG+

(
f +

h
,

f −

h
, y

)
− f +

t − γµ f +
x

]
,

and similarly for u−1,y.
The next steps proceed as above. Integrating over n periods on the left-hand side produces zero.

Hence, integrating over the right-hand side must do the same. Then we have the analogue of (3.33),
which is

0 =

〈
λ

γh

〉
a

( f − − f +) +

〈
G+

γµ

〉
a
−

〈
1
γµh

〉
a

f +
t −

〈
1
h

〉
a

f +
x .

Solving for f +
t (and doing all the steps for the equation for f −t ) gives the homogenized system

f +
t + γ̃ f +

x = λ̃( f − − f +) + G̃+( f +, f −),
f −t − γ̃ f −x = λ̃( f + − f −) + G̃−( f +, f −),

where γ̃, and λ̃ are as above and G̃± as in (4.3). �

5. Species persistence and invasion

To apply our results to a real-world problem, we choose to study the following questions regarding
the persistence and spread of a population in a heterogeneous landscape:

1. What portion of a periodic landscape needs to consist of “good” patches such that the population
can persist globally?

2. Suppose that the population can persist globally, how fast will it spread globally when introduced
into a good patch?

For our analysis, we make the standard assumption that the population does not experience an Allee
effect. An Allee effect occurs when the maximum per capita growth rate is not at low but intermediate
population densities. If there is no Allee effect, then questions of persistence and extinction as well as
the calculation of the spread rate can typically be answered by studying the linearization of the model
at the trivial state. We will use this assumption. We use two methods to answer these questions: the
homogenization derived earlier and exact analytical expressions for the full periodic system.

The linearization of G±i =
mi(u)

2 u − gi(u)u± at the trivial steady state is given by mi(0)
2 u − gi(0)u±. For

simplicity, we drop the argument and write simply mi and gi for the birth and death rate parameters
at low density. If the growth rate exceeds the death rate in a given patch type, i.e., mi > gi, we speak
of a “good” patch; if the inequality is reversed, we speak of a “bad” patch. If both patch types in the
landscape are good then the population can persist in each type and hence also in the heterogeneous
landscape. We consider the more interesting case that only type-1-patches are good (m1 > g1) and
allow for local persistence. Type-2-patches are bad (m2 < g2) and would lead to local extinction in the
absence of movement (see Figure 3).
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Figure 3. Habitats of varying quality.

5.1. Calculation of the persistence conditions

First, we ask for the minimum fraction of type-1 patches that allows for global persistence. We
define persistence to mean that the zero steady state is unstable. We begin with the homogenization
approach and we linearize the homogenized equation (4.2) at zero:

f +
t + γ̃ f +

x = λ̃( f − − f +) + m̃
2 ( f + + f −) − g̃ f +,

f −t − γ̃ f −x = λ̃( f + − f −) + m̃
2 ( f + + f −) − g̃ f −.

(5.1)

where

m̃ =

L1
µ1γ1

m1 + L2
µ2γ2κ

m2

L1
µ1γ1

+ L2
µ2γ2κ

, g̃ =

L1
µ1γ1

g1 + L2
µ2γ2κ

g2

L1
µ1γ1

+ L2
µ2γ2κ

using the abbreviation
mi = mi(0), gi = gi(0), i = 1, 2.

Since we work on the entire real line and since the equation is homogeneous, we can consider spatially
homogeneous solutions. Then the flux is zero and the total density f = f + + f − satisfies

ft = (m̃ − g̃) f .

Hence our homogenized persistence condition becomes

m̃ > g̃
L1

µ1γ1
m1 +

L2

µ2γ2κ
m2 >

L1

µ1γ1
g1 +

L2

µ2γ2κ
g2

L1

µ1γ1
(m1 − g1) >

L − L1

µ2γ2κ
(g2 − m2) (5.2)

L1

L
>

µ1γ1(g2 − m2)
µ1γ1(g2 − m2) + µ2γ2κ(m1 − g1)

(5.3)

Inequality (5.2) allows an insightful biological interpretation. Since L1 has units of length and µ1γ1

units of velocity, the ratio L1
µ1γ1

is a time. It is the time that an individual needs to traverse a patch of
length L1. This is multiplied by the effective growth rate m1−g1. Hence the left-hand side L1

µ1γ1
(m1−g1)

denotes the population growth or decay while a particle is traversing patch 1. Similarly, L2
µ2γ2

(m2 − g2)
denotes the net growth during the time that a particle needs to traverse a patch of type 2. This factor
is multiplied by the scaling factor κ, which arises from the jump-boundary conditions. Then (5.2)
balances the net growth while in patch 1 with the net growth in patch 2, scaled by the interface factor
κ.
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We illustrate the persistence condition (5.3) by plotting the relation where the inequality becomes
an equality. We fix all values except m2 and L1. Then the ratio L1/L becomes a function of m2, which
we plot as a dashed black line in Figure 4.

To compare this result with the full periodic system (4.1), we linearize (4.1) at zero and get

u+
t + γiµiu+

x = µiλi(u− − u+) + mi
2 (u+ + u−) − giu+,

u−t − γiµiu−x = µiλi(u+ − u−) + mi
2 (u+ + u−) − giu−,

(5.4)

on patches i = 1, 2 of length L1,2, with mi = mi(0), gi = gi(0) as above. We have the linear interface
conditions from (3.6), i.e.

u+(0+, t) = β+ku+(0−, t) + (1 − β−)u−(0+, t), (5.5)

u−(0−, t) = (1 − β+)u+(0−, t) +
β−

k
u−(0+, t), (5.6)

with k from (3.20).
We make the ansatz

u±(x, t) = eνtφ±(x),

where φ± are L1 + L2 = L-periodic functions. Then the population can grow if ν > 0 and will decline
if ν < 0. The persistence boundary is given by ν = 0.

Substituting the ansatz into the above Eqs (5.4), we obtain the system

d
dx

[
φ+

φ−

]
= Mi

[
φ+

φ−

]
,

where matrices Mi are given by

Mi =
1
γiµi

[
Ai − ν Bi

−Bi −(Ai − ν)

]
with

 Ai = mi
2 − gi − µiλi,

Bi = mi
2 + µiλi.

We solve the interface conditions as follows (we suppress the t-dependence for notational
convenience):

u−(0+) =
k
β−

(
(β+ − 1)u+(0−) + u−(0−)

)
(5.7)

u+(0+) =

(
β+k +

k(1 − β−)(β+ − 1)
β−

)
u+(0−) +

k(1 − β−)
β−

u−(0−).

These conditions can be written in matrix form as[
u+(0+)
u−(0+)

]
= S 0

[
u+(0−)
u−(0−)

]
and similarly at x = L1 with some matrix S 1. The explicit expressions are

S 0 =

β+k +
k(1−β−)(β+−1)

β−
k(1−β−)
β−

k(β+−1)
β−

k
β−

 (5.8)
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and

S 1 =

β−k +
(1−β+)(β−−1)

β+k
1−β+

β+k
β−−1
β+k

1
β+k

 . (5.9)

With these expressions, we can solve the linear equations for φ±. We have[
φ+

φ−

]
(L+) = S 0

[
φ+

φ−

]
(L−) = S 0eM2(L−L1)

[
φ+

φ−

]
(L+

1 ) (5.10)

= S 0eM2(L−L1)S 1

[
φ+

φ−

]
(L−1 ) = S 0eM2(L−L1)S 1eM1(L1)

[
φ+

φ−

]
(0+). (5.11)

Periodicity requires φ±(L+) = φ±(0+), so that we obtain the eigenvalue problem[
φ+

φ−

]
(0+) = S 0eM2(L−L1)S 1eM1L1

[
φ+

φ−

]
(0+) (5.12)

Hence, we have proved the following result.

Lemma 3. The persistence boundary ν = 0 is given by the condition that the matrix in (5.12) have a
dominant eigenvalue equal to unity.

To find the threshold between persistence and extinction, we set ν = 0 and solve the resulting
eigenvalue problem numerically. We fix parameters except m2 and L1. Then we calculate L1

L as a
function of m2. Since we fix the period L = L1 + L2, we interpret L1/L as a fraction of good habitat
patches required for persistence. As expected, the minimum fraction of required good habitat decreases
as the birth rate m2 of the bad habitat increases, see Figure 4.

The homogeneous persistence condition approximates the exact condition as L becomes small (top
left plot). The top right plot in Figure 4 illustrates that the approximation is better when the speeds
and turning rates are high, i.e., when we are closer to the parabolic limit. The bottom plot shows that
the homogenization is better when individuals have a high probability of continuing movement across
patch boundaries (β± ≈ 1). When individuals frequently turn at a patch boundary, they might get stuck
within a patch or set of patches; see Remark 3. If they do, then the loss of individuals due to mortality
in bad patches is decreased, so that the population can persist on less good habitat.

5.2. Invasion speeds

To calculate invasion speeds, we rely on the linear conjecture that under certain conditions the
spreading speed of the nonlinear model is given by the spreading speed of the linear model, which,
in turn, is the minimal traveling wave speed of the linear model. The linearized homogenized model
(4.2) is of the form of a general reaction CRW system (1.9), as discussed in Section 1.2. According to
(1.14), the minimal wave speed of this equation is

c∗ =
2γ̃

m̃ + 2λ̃

√
(m̃ − g̃)(2λ̃ + g̃) . (5.13)

To calculate the dispersion relation of the linearized patchy reaction CRW system, we adapt the
techniques that Shigesada and others [40] developed for the parabolic case to the hyperbolic case. We
choose G± as above. We linearize the model at low density and obtain the equations

u+
t + γiµiu+

x = µiλi(u− − u+) + mi(u+ + u−)/2 − giu+, (5.14)
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Figure 4. Percentage of good habitat required for population persistence according to the
homogenized model (black dashes) and the exact condition in Lemma 3. Top left plot: As L
decreases, the fit gets better, as expected. Parameter values are L = 1 (black), L = 0.5 (blue)
and L = 0.1 (red), as well as γi = 5 and λi = 10. Top right plot: as γi and λi increase, while
keeping the ratio γ2/(2λ) constant, the fit gets better. Parameter values are λi = 100 (red),
λi = 10, (blue) and λ1 = 1 (black), as well as L = 0.5. Bottom plot: The fit is better for
β± ≈ 1 and gets worse as β± decrease. Parameter values are β± = 0.9 (red), β± = 0.5 (blue),
and β± = 0.2 (black) as well as γi = 5 and λi = 10 and L = 0.5. (The blue curves are identical
in the three plots.) The two patch types differ only in the growth and death rates. Common
parameters are µi = 1, β± = 0.5, m1 = 3 > 1 = m2, and g1 = 1 < 2 = g2.

u−t − γiµiu−x = µiλi(u+ − u−) + mi(u+ + u−)/2 − giu−, (5.15)

on patches i = 1, 2 of length Li. We have the interface conditions from (3.6), i.e.,

u+(0+, t) = β+ku+(0−, t) + (1 − β−)u−(0+, t), (5.16)
u−(0−, t) = (1 − β+)u+(0−, t) + (β−/k)u−(0+, t), (5.17)

with k =
µ2γ2
µ1γ1

.

We make the ansatz of a traveling periodic wave as

u±(x, t) = e−s(x−ct)φ±(x),

where φ± are L1 + L2-periodic functions. Here, c denotes the speed of the wave and s is steepness at the
leading edge. The dispersion relation is the relationship between s and c. We obtain it by substituting
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the ansatz into the model equations and deriving conditions, so that nonzero functions φi exist that
satisfy the equations.

We obtain the linear system
d
dx

[
φ+

φ−

]
= Ni

[
φ+

φ−

]
, (5.18)

where matrices Ni are given by

Ni =
1
γiµi

[
Ai − sc + sγiµi Bi

−Bi −(Ai − sc − sγiµi)

]
with

{
Ai = mi/2 − gi − µiλi,

Bi = mi/2 + µiλi.
(5.19)

We solve the interface conditions as follows:

u−(0+) =
k
β−

((β+ − 1)u+(0−) + u−(0−)), (5.20)

u+(0+) = (β+k + k(1 − β−)(β+ − 1)/β−)u+(0−) + k(1 − β−)/β−u−(0−).

These conditions can be written in matrix form as[
u+(0+)
u−(0+)

]
= S 0

[
u+(0−)
u−(0−)

]
,

and similarly at x = L1 with some matrix S 1, where S 0 and S 1 are given in (5.8) and (5.9), respectively.
We solve system (5.18), starting at φ±(0+), and find[

φ+(L−1 )
φ−(L−1 )

]
= eN1L1

[
φ+(0+)
φ−(0+)

]
.

The behaviour at the interface is described by matrix S 1, so that we have[
φ+(L+

1 )
φ−(L+

1 )

]
= S 1eN1L1

[
φ+(0+)
φ−(0+)

]
.

Solving the ODE in (5.18) again, this time from L1 to L = L1 + L2, we get[
φ+(L−)
φ−(L−)

]
= eN2L2S 0eN1L1

[
φ+(0+)
φ−(0+)

]
,

and finally, by applying the interface conditions at x = 0 and periodicity,[
φ+(0+)
φ−(0+)

]
=

[
φ+(L+)
φ−(L+)

]
= S 0eN2L2S 1eN1L1

[
φ+(0+)
φ−(0+)

]
. (5.21)

Hence, the initial point of the periodic function is an eigenvector to eigenvalue 1 of this product of four
matrices. For a nonzero solution, we require

V(c, s) := det(S 0eN2L2S 1eN1L1 − I) = 0.

This condition defines an implicit dispersion relation between wave speed c and steepness s. We then
take the minimum of c with respect to s to find the minimal traveling wave speed for the linearized
equation.
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Figure 5 shows the numerical results from minimizing c in V(c, s) = 0 (blue solid curve with stars)
as well as the speed from the homogenization procedure (black dashed curve). The asymptotic speed
increases as the fraction of good habitat patches increases. This is to be expected. When the fraction
of good patches is below the threshold that allows population persistence (see preceding section), then
the speed is zero. The population does not spread but goes extinct.

The left plot in Figure 5 shows that the agreement between the homogenization and the exact
solution is very good when β± ≈ 1. The left plot illustrates that the difference between the two increases
as β± decrease. This discrepancy is related to the probability that an individual gets trapped in a (set
of) patch(es); see Remark 3. Earlier we computed this probability to be Ptrap = (1 − β+)(1 − β−), which
is significant when β± are small. We can account for this effect by multiplying the homogenized wave
speed by the probability of moving on: 1 − Ptrap (red curve). This correction produces a very nice fit to
values of β± that are much smaller than 1 (e.g., the left plot for β± = 0.6), but not for arbitrarily small
values of β± (plots not shown).
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Figure 5. The speeds from homogenization (dashed) and exact dispersion relation
(solid/stars) agree very well when β+ = β− = 1 (left plot). When β± < 1, the approximation
becomes increasingly worse, but the rescaling with the trapping probability (solid) gives a
reasonable approximation for large enough values of β±, e.g., β± = 0.6 (right plot). All other
parameters are as in Figure 4 (top left plot) and L = 0.5.

6. Discussion

Most natural landscapes exhibit some level of heterogeneity at almost any scale [13]. Natural
processes and human activities often create additional fragmentation of habitats into patches of
different quality. Ecological theory has long recognized the importance of the extent and the
distribution of patches of different quality for the persistence of biological species in such landscapes
[10]. A recent modeling approach follows the landscape-ecology point of view, models landscapes as
mosaics of patches of different quality and prescribes a reaction-diffusion equation for the density of
reproducing and randomly moving individuals on each patch, combined with matching conditions for
population density and flux across patch boundaries [1, 2, 30–32, 37, 42]. While reaction-diffusion
equations are a frequently used and highly successful modeling approach for spatial ecology [4],
they suffer from some of the same criticism that all diffusion models do, such as infinite propagation
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speeds [9]. One alternative model formulation, based on correlated random walks, leads to systems of
hyperbolic equations for individuals with a well-defined velocity [35]. The application of such models
to ecology started with the seminal paper by Holmes [25] and has gained considerable momentum with
the work by Hadeler, Hillen and coworkers; see, e.g., [17, 18, 21].

Our first contribution here is to derive, from basic principles, models for correlated random walks
in heterogeneous landscapes, but for smooth spatial variation and for patchy landscapes as described
above. We are aware of only one other attempt to model a correlated random walk with spatially
dependent parameters in a physical context [11]. Their model differs from ours in that their function
corresponding to our µ(x) does not appear in the turning rates. Their focus is on the effect of spatially
varying and unequal turning rates.

Our second contribution is to relate the heterogeneous CRW equations to heterogeneous reaction-
diffusion equations (by a parabolic scaling), as well as a homogeneous CRW (by homogenization).
Then we show that the two processes commute, i.e., the homogenization of the parabolic limit is
the same as the parabolic limit of the homogenization of a CRW model. In comparison to the
homogenization of patchy reaction-diffusion models [42], the process for the hyperbolic system is
simpler and more difficult at the same time. It is simpler in that only the zeroth and first term in the
ε-expansion need to be considered. It is more difficult since one has a system of equations rather than
a scalar model. Dealing with the interface matching conditions for the system led to some interesting
questions about eigenvectors of matrices.

Our third contribution is the explicit calculation of persistence conditions and minimal speeds
of periodic traveling waves for the heterogeneous CRW equations. The equations determining the
minimal wave speed are only available implicitly, but this is to be expected since the corresponding
parabolic theory also has this property [30, 40]. The comparison between the exact solution and
the homogenized solution revealed that the accuracy of the homogenization approximation to the
heterogeneous problem depends strongly on the parameters β±. These parameters measure the
probabilities that individuals continue moving in their given direction when they encounter an interface
between two patches. We identified the product (1 − β+)(1 − β−) as the probability of getting trapped,
which, in effect, reduces the invasion speed by this factor. The range of movement of individuals will be
limited, and with it the assumption that movement happens on a larger scale than landscape properties
change. More mathematical challenges result from our model, for example, the proof of existence of
solutions, the existence of periodic traveling waves, and the applicability of linear conjecture, on which
we relied in our work.

Our modelling approach is based on a stochastic random walk description for an individual
organism, which leads to deterministic hyperbolic and parabolic models on the population level.
In some sense, this individual stochasticity vanishes in the population aggregate. Another form of
stochasticity that does not vanish on the population level is a temporal change of environmental
conditions in which individuals move and reproduce, for example through climatic effects. We did not
include such external forcing here, which is reflected in the fact that all model parameters are constant
in time. With temporally varying model parameters, one could include average seasonal variation
(periodic) or random variation into the model. Other changes in environmental conditions that could
influence individual movement and population dynamics include the appearance of infectious diseases
or interactions with competing or predating species. Such effect could be captured by writing systems
of equations for additional populations.
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