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Abstract: In this paper, a class of absolute value equations (AVE) Ax− B|Cx| = d with A, B,C ∈ Rn×n

is considered, which is a generalized form of the published works by Wu [1], Wu and Shen [2] and
Mezzadri [3]. Some conditions to guarantee the unique solution of the above AVE are gained. The
corresponding results of the above published works are generalized.
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1. Introduction

At present, the absolute value equation (AVE)

Ax − |x| = d (1.1)

and its general form
Ax − B|x| = d (1.2)

play an important role in the field of optimization (such as the complementarity problem, linear
programming and convex quadratic programming), where A, B ∈ Rn×n. Hereby, the AVE (1.1) or (1.2)
brought about widespread attention in the past several years.

Roughly speaking, the research of the AVE (1.1) or (1.2) is twofold: one, to design multifarious
numerical methods for obtaining its numerical solution, see [4–13]; and, two, to present some
conditions for the existence of solvability, bounds for the solutions, various equivalent reformulations,
and so on, see [2, 3, 14–20].

In [1], for A, B ∈ Rn×n, Wu found a type of new generalized absolute value equations (NGAVE)
below

Ax − |Bx| = d, (1.3)
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which is still from the linear complementarity problem. For the unique solution of the NGAVE (1.3),
some necessary and sufficient conditions were presented in [1]. Obviously, the NGAVE (1.3) is quite
other than the AVE (1.2). Whereas, if matrix B = I in (1.2) and (1.3), where I stands for the identity
matrix, then both reduce to the AVE (1.1).

Inspired by this flurry of activities, we further generalize the concept of absolute value equation and
become interested in undertaking a further study of the following absolute value equation

Ax − B|Cx| = d, (1.4)

where A, B,C ∈ Rn×n. Clearly, the AVE (1.4) is a generalized form of the above three types of absolute
value equations.

Similarly to the above three types of absolute value equations, the analysis of the AVE (1.4) is
interesting and challenging, as a consequence of the nonlinear and nondifferentiable term B|Cx| in
(1.4). To our knowledge, nobody has studied the AVE (1.4) as yet. This implies that so far it is vacant
for some conditions to guarantee the unique solution of the AVE (1.4). Therefore, the aim of this paper
is to fill in this gap in the literature. Namely, some conditions to guarantee the unique solution of the
AVE (1.4) can be gained.

2. Main results

In this section, some conditions to guarantee the unique solution of the AVE (1.4) are presented.
To achieve this goal, the following lemmas can be found in [1–3]. In the whole text, σ1, σn and ρ,
respectively, denote the largest singular value, the smallest singular value and the spectral radius of the
matrix.

Lemma 2.1. [1] The following statements are equal:

(1) the AVE (1.3) has a unique solution for any d ∈ Rn ;

(2) det(F1(A + B) + F2(A − B)) , 0, where F1, F2 ∈ R
n×n are two arbitrary nonnegative diagonal

matrices with diag(F1 + F2) > 0;

(3) {A + B, A − B} has the rowW-property;

(4) det(A + B) , 0 and {I, (A − B)(A + B)−1} has the rowW-property;

(5) det(A + B) , 0 and (A − B)(A + B)−1 is a P-matrix;

(6) det(A + (I − 2D)B) , 0 for any diagonal matrix D = diag(di) with di ∈ [0, 1].

Lemma 2.2. [1] Let det(A) , 0 in (1.3). When

ρ((I − 2D)BA−1) < 1 (2.1)

for any diagonal matrix D = diag(di) with di ∈ [0, 1], or

σ1(BA−1) < 1, (2.2)

or
ρ(|BA−1|) < 1, (2.3)

the AVE (1.3) has a unique solution for any d ∈ Rn.
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Lemma 2.3. [2, 3] The following statements are equal:

(1) the AVE (1.2) has a unique solution for any d ∈ Rn;

(2) det((A − B)F1 + (A + B)F2) , 0, where F1, F2 ∈ R
n×n are two arbitrary nonnegative diagonal

matrices with diag(F1 + F2) > 0;

(3) {A − B, A + B} has the columnW-property;

(4) det(A − B) , 0 and {I, (A − B)−1(A + B)} has the columnW-property;

(5) det(A − B) , 0 and (A − B)−1(A + B) is a P-matrix;

(6) det(A + B(I − 2D)) , 0 for any diagonal matrix D = diag(di) with di ∈ [0, 1].

Lemma 2.4. [2, 3] Let det(A) , 0 in (1.2). When

ρ(A−1B(I − 2D)) < 1 (2.4)

for any diagonal matrix D = diag(di) with di ∈ [0, 1], or

σ1(A−1B) < 1, (2.5)

or
ρ(|A−1B|) < 1, (2.6)

the AVE (1.2) has a unique solution for any d ∈ Rn.

Based on the above lemmas, naturally, we need to consider two cases for the AVE (1.4): (1) matrix
B is nonsingular; (2) matrix C is nonsingular.

Case I. When det(B) , 0, the AVE (1.4) can be equivalently expressed as the following AVE

B−1Ax − |Cx| = B−1d. (2.7)

Based on Lemmas 2.1 and 2.2, for the AVE (1.4), we can obtain the following results, see Theorems
2.1 and 2.2.

Theorem 2.1. If det(B) , 0, then the following statements are equal:

(1) the AVE (1.4) has a unique solution for any d ∈ Rn;

(2) det(F1(B−1A+C)+F2(B−1A−C)) , 0, where F1, F2 ∈ R
n×n are two arbitrary nonnegative diagonal

matrices with diag(F1 + F2) > 0;

(3) {B−1A + C, B−1A −C} has the rowW-property;

(4) det(B−1A + C) , 0 and {I, (B−1A −C)(B−1A + C)−1} has the rowW-property;

(5) det(B−1A + C) , 0 and (B−1A −C)(B−1A + C)−1 is a P-matrix;

(6) det(A + B(I − 2D)C) , 0 for any diagonal matrix D = diag(di) with di ∈ [0, 1].
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Theorem 2.2. Let det(A) , 0 and det(B) , 0 in (1.4). When

ρ((I − 2D)CA−1B) < 1 (2.8)

for any diagonal matrix D = diag(di) with di ∈ [0, 1], or

σ1(CA−1B) < 1, (2.9)

or
ρ(|CA−1B|) < 1, (2.10)

the AVE (1.4) has a unique solution for any d ∈ Rn.

Clearly, Theorems 2.1 and 2.2 are generalization forms of the results in Lemmas 2.1 and 2.2,
respectively.

Case II. When det(C) , 0, the AVE (1.4) can be equivalently expressed as the following AVE

AC−1y − B|y| = d,with y = Cx. (2.11)

Based on Lemmas 2.3 and 2.4, for the AVE (1.4), we can obtain the following results, see Theorems
2.3 and 2.4.

Theorem 2.3. If det(C) , 0, then the following statements are equal:

(1) the AVE (1.4) has a unique solution for any d ∈ Rn;

(2) det((AC−1+B)F1+(AC−1−B)F2) , 0, where F1, F2 ∈ R
n×n are two arbitrary nonnegative diagonal

matrices with diag(F1 + F2) > 0;

(3) {AC−1 − B, AC−1 + B} has the columnW-property;

(4) det(AC−1 − B) , 0 and {I, (AC−1 − B)−1(AC−1 + B)} has the columnW-property;

(5) det(AC−1 − B) , 0 and (AC−1 − B)−1(AC−1 + B) is a P-matrix;

(6) det(A + B(I − 2D)C) , 0 for any diagonal matrix D = diag(di) with di ∈ [0, 1].

Theorem 2.4. Let det(A) , 0 and det(C) , 0 in (1.4). When

ρ((I − 2D)CA−1B) < 1 (2.12)

for any diagonal matrix D = diag(di) with di ∈ [0, 1], or

σ1(CA−1B) < 1, (2.13)

or
ρ(|CA−1B|) < 1, (2.14)

the AVE (1.4) has a unique solution for any d ∈ Rn.

Of course, Theorems 2.3 and 2.4 are also generalization forms of the results in Lemmas 2.3 and 2.4,
respectively.

In addition, based on Theorem 2.2 and Theorem 2.4, clearly, Corollary 2.1 can be otained.
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Corollary 2.1. Let det(A) , 0 in (1.4), and at least one of matrices B and C in (1.4) be nonsingular.
When

ρ((I − 2D)CA−1B) < 1 (2.15)

for any diagonal matrix D = diag(di) with di ∈ [0, 1], or

σ1(CA−1B) < 1, (2.16)

or
ρ(|CA−1B|) < 1, (2.17)

the AVE (1.4) has a unique solution for any d ∈ Rn.

By investigating the condition of Corollary 2.1, to guarantee a unique solution for the AVE (1.4),
Corollary 2.1 not only requires the nonsingular matrix A, but also at least one of matrices B and C in
(1.4) is nonsingular. On this occasion, we can use the conditions (2.15), (2.16) or (2.17) to judge the
unique solution of the AVE (1.4).

Next, we will further relax the condition of Corollary 2.1. To this end, here, sign(x) denotes the
vector, which consists of 1, 0,−1 dependent on whether x > 0, x = 0 and x < 0. Here, we set y = Cx.
By making use of |y| = Ey with E = diag(sign(y)), the AVE (1.4) is equal to{ Ax − BEy = d,

Cx − y = 0,

which is a two-by-two block linear equation below[
A −BE
C −I

] [
x
y

]
=

[
d
0

]
. (2.18)

That is to say, we just need to establish some conditions to guarantee the unique solution of the two-
by-two block linear Eq (2.18).

To establish the condition of the two-by-two block linear Eq (2.18), we consider the following
general form of (2.18), i.e., [

A −BĒ
C −I

] [
x
y

]
=

[
d
0

]
, (2.19)

where Ē = diag(ēi) with any vector of components ēi ∈ [−1, 1]. Clearly, the two-by-two block linear
Eq (2.18) is a special case of the two-by-two block linear Eq (2.19). Once we give the sufficient
condition for the unique solution of the two-by-two block linear Eq (2.19), naturally, the sufficient
condition of the unique solution of the two-by-two block linear Eq (2.18) is obtained as well.

By the simple computation, we have[
A −BĒ
C −I

]
=

[
A 0
C −I

] [
I −A−1BĒ
0 I −CA−1BĒ

]
. (2.20)

Based on Eq (2.20), clearly, if matrix I −CA−1BĒ is nonsingular, then matrix[
A −BĒ
C −I

]
is also nonsingular. So, we know that the two-by-two block linear Eq (2.19) has a unique solution.
Whereupon, we have the following result for the unique solution of the AVE (1.4).
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Theorem 2.5. Let det(A) , 0 in (1.4). When

ρ(CA−1BĒ) < 1 (2.21)

for any diagonal matrix Ē = diag(ēi) with ēi ∈ [−1, 1], or

σ1(CA−1B) < 1, (2.22)

or
ρ(|CA−1B|) < 1, (2.23)

the AVE (1.4) has a unique solution for any d ∈ Rn.

Since
σ1(CA−1B) ≤ σ1(C)σ1(A−1)σ1(B),

then Corollary 2.2 can be obtained.

Corollary 2.2. Let det(A) , 0 in (1.4). If

σ1(C)σ1(B) < σn(A), (2.24)

the AVE (1.4) has a unique solution for any d ∈ Rn.

In addition, when the set of all the eigenvalues of matrix I − CA−1BĒ does not contain 1, matrix
I −CA−1BĒ is nonsingular as well. Further, we have Theorem 2.6.

Theorem 2.6. Let det(A) , 0 in (1.4). If the set of all the eigenvalues of matrix I − CA−1BĒ does
not contain 1 for any diagonal matrix Ē = diag(ēi) with ēi ∈ [−1, 1], then the AVE (1.4) has a unique
solution for any d ∈ Rn.

Finally, we give a sufficient condition for the non-existence of solution of the AVE (1.4), which is
an extension of a non-existence result in Proposition 9 in [17].

Theorem 2.7. Let B and C be nonsingular in (1.4), 0 , B−1d ≥ 0, and

‖B−1AC−1‖2 < 1.

Then the AVE (1.4) has no solution.

Proof. We prove by contradiction. Here, we assume that a nonzero solution x exists. Since matrices
B and C are nonsingular in (1.4), we set y = Cx, then the AVE (1.4) is equal to

B−1AC−1y − |y| = B−1d.

Further, we have
|y| = B−1AC−1y − B−1d ≤ B−1AC−1y.

So,
‖y‖2 ≤ ‖B−1AC−1y‖2 ≤ ‖B−1AC−1‖2‖y‖2 < ‖y‖2.

This is a contradiction result. This implies that the result in Theorem 2.7 holds. 2

Based on Theorem 2.7, we have Corollary 2.3.
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Corollary 2.3. Let B and C be nonsingular in (1.4), 0 , B−1d ≥ 0, and

σ1(A) < σn(B)σn(C).

Then the AVE (1.4) has no solution.

Clearly, Corollary 2.3 is a generalization of form of Proposition 9 in [17]. When B = C = I,
Corollary 2.3 becomes Proposition 9 in [17].

When C = I or B = I, naturally, we can get some sufficient conditions for the non-existence of
solution of the AVE (1.2) or (1.3) by Theorem 2.7 and Corollary 2.3. Here is omitted.

3. Conclusions

In this paper, for A, B,C ∈ Rn×n, we have gained some conditions to guarantee the unique solution
of the absolute value equation (AVE) Ax − B|Cx| = d. The previous published works in [1–3] are
generalized.
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