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1. Introduction

Fractional differential equations have used in many engineering and scientific disciplines, such as
physics, chemistry, aerodynamics, electrodynamics of complex media, polymer rheology, and other
fields [1–3]. Many authors obtained solutions for fractional differential equations boundary value
problems (BVP) by a fixed point theorem [4–8]. Many established mathmatics methods were applied
to the existence solutions of BVP. For example, the numerical method [9–11], the Mawhin continuation
method [12–14], the upper and lower solution method [15–17], the critical point theory [18–20].

In the past, impulsive differential and partial differential equations have become more and more
crucial in mathematical models of real phenomena, especially in the fields of control, biological and
medical [21–23].

In 2016, Bai and Dong [4] studied the existence of solutions for a class of hybrid BVP for fractional
impulsive differential equation:

CDq
0+u(t) = f (t, u(t)), 1 < q < 2, t ∈ J \ {t1, t2, · · · , tp},

∆u |t=tk= Ik(u(tk)),∆u′ |t=tk= Jk(u(tk)), k = 1, 2, · · · , p,

u(0) + u′(1) = 0, u′(0) + u(1) = 0,
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where CDq
0+ is the Caputo fractional derivative of order q ∈ (1, 2), J = [0, 1], f : [0, 1] × R → R is a

given function, tk satisfy 0 = t0 < t1 < t2 < · · · < tp < tp+1 = 1, the right and left limits of u(t) at t = t+
k

are represented by u(t+
k ) and u(t−k ).

In 2017, Mahmudov et al. [5] using the same way to investigate the existence and uniqueness of
solutions for the following mixed impulsive BVP:

CDq
0+u(t) = f (t, u(t)), 1 < q < 2, J = [0, 1], t ∈ J \ {t1, t2, · · · , tp},

∆u |t=tk= Ik(u(tk)),∆u′ |t=tk= Jk(u(tk)), k = 1, 2, · · · , p,

u(0) + µ1u′(1) = σ1, u′(0) + µ2u(1) = σ2,

where CDq
0+ is the Caputo fractional derivative of order q ∈ (1, 2).

Motivated by the above works, in this paper, we will apply Arzela-Ascoli theorem, Krasnoselskii’s
fixed point theorem and contraction mapping principle to study the existence of solution for a class
of hybrid boundary value problem under impulse conditions. Precisely, we consider the existence and
uniqueness of solutions for an impulsive mixed BVP of fractional differential equation:

CDα
0+u(t) = f (t, u(t)), 1 < α ≤ 2, t ∈ J′,

∆u(tk) = Ik(u(tk)),∆CDβ
0+u(tk) = Jk(u(tk)), 0 < β ≤ 1,

u(0) + κ1
CDβ

0+u(1) = θ1,
CDβ

0+u(0) + κ2u(1) = θ2,

(1.1)

where CDα
0+ and CDβ

0+ are Caputo fractional derivatives of order α (1 < α ≤ 2) and β (0 < β ≤ 1)
respectively; f : J × R→ R, Ik, Jk : R→ R are continuous functions; J = [0, 1], J′ = J \ {t1, t2, · · · , tp}

and tk satisfy 0 = t0 < t1 < t2 < · · · < tp < tp+1 = 1,∆u(tk) = u(t+
k ) − u(t−k ),∆CDβ

0+u(tk) = CDβ
0+u(t+

k ) −
CDβ

0+u(t−k ). Here, respectively, the left and the right limits of u(t) at t = tk (k = 1, 2, · · · , p) are
represented by u(t−k ) and u(t+

k ); κ1, κ2, θ1, θ2 are constants and κ1, κ2 are different from zero.
When β = 1, the results of (1.1) will be degenerate to Lemma 6 in [5], and κ1 = κ2 = 1, the results

degenerate to Lemma 2.4 in [4]. Therefore, this conclusion further expands the research results of [4]
and [5].

The structure of this article is as follows. In Sect 2, The definitions and theorems related to
Caputo’s fractional integral and derivative are given. In Sect 3, the existence and uniqueness of
solutions to mixed impulsive boundary value problems are proved by using Arzela-Ascoli theorem
and Krasnoselskii’s fixed point theorem. In Sect 4, some examples are provided to illustrate the main
research results.

2. Preliminaries

In this section, we mainly introduce related definitions, theorems, lemmas and necessary symbol
descriptions.

Let PC(J) =
{
u : [0, 1]→ R

∣∣∣u ∈ C(J′), u(t+
k ), u(t−k ) exist, and u(t−k ) = u(tk), 1 ≤ k ≤ p

}
. Thus, PC(J)

is a Banach space with the norm ‖u‖PC = sup
0≤t≤1
|u(t)|.

Definition 2.1. ( [5]) The fractional integral of order α of a function f : [0,+∞)→ R is defined as

Iα0+ f (t) =

∫ t

0

(t − s)α−1

Γ(α)
f (s)ds, t > 0, α > 0, (2.1)
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provided that the right hand side of the integral is point-wise defined on (0,∞).

Definition 2.2. ( [5]) The Caputo fractional-order derivative of order α > 0 for a function
f : [0,+∞)→ R is defined by

CDα
0+ f (t) =

∫ t

0

(t − s)n−α−1

Γ(n − α)
f (n)(s)ds, t > 0, n = [α] + 1, (2.2)

where [α] denotes the integer part of real number α, and Γ(·) is the gamma function.

Lemma 2.3. ( [3]) For α > 0, the general solution of the fractional differential equation CDαu(t) = 0
is given by

u(t) = k0 + k1t + k2t2 + · · · + kn−1tn−1, ki ∈ R, (2.3)

and

Iα0+(Dα
0+u)(t) = u(t) + k0 + k1t + k2t2 + · · · + kn−1tn−1, (2.4)

where n = −[−α], [α] denotes the integer part of the real number α.

Now, we state two known results due to Krasnoselskii and Arzela-Ascoli which are used to prove
the existence and uniqueness of solutions of (1.1), respectively.

Lemma 2.4. (Krasnoselskiis fixed point Theorem [24]) Assume C is a closed, convex and non-empty
subset of a Banach space H, and the operators A and B be such that: Ax + By ∈ C, whenever x, y ∈ C;
A is compact and continuous; and B is a contraction mapping. Therefore, there exists z ∈ C such that
z = Az + Bz.

Lemma 2.5. (Arzela-Ascoli Theorem [3]) The set G ⊂ PC([0, 1],Rn) is relatively compact set if and
only if G is bounded, therefore, ‖x‖ ≤ M for each x ∈ G and some M > 0; the G is quasi-equicontinuous
in [0, 1], in other words, for any ε > 0 there exists γ > 0 such that if x ∈ G, k ∈ N, χ1, χ2 ∈ (tk−1, tk]
and |χ1 − χ2| < γ, we have |x(χ1) − x(χ2)| < ε.

Lemma 2.6. Let α ∈ (1, 2], β ∈ (0, 1], and g : J → R be continuous. A functional u is a solution of the
following impulsive hybrid BVP:


CDα

0+u(t) = g(t), 1 < α ≤ 2, t ∈ J′,

∆u(tk) = Ik(u(tk)),∆CDβ
0+u(tk) = Jk(u(tk)), 0 < β ≤ 1,

u(0) + κ1
CDβ

0+u(1) = θ1,
CDβ

0+u(0) + κ2u(1) = θ2,

(2.5)
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if u is a unique solution of the following impulsive fractional integral equation:

(P∗) u(t) =



∫ t

0
(t−s)α−1

Γ(α) g(s)ds + ν1(t)θ1

+ν2(t)θ2 − κ2ν1(t)
∫ 1

0
(1−s)α−1

Γ(α) g(s)ds

−κ1ν1(t)
∫ 1

0
(1−s)α−β−1

Γ(α−β) g(s)ds, t ∈ [0, t1);∫ t

0
(t−s)α−1

Γ(α) g(s)ds + ν1(t)θ1 + ν2(t)θ2

−κ2ν1(t)
∫ 1

0
(1−s)α−1

Γ(α) g(s)ds

−κ1ν1(t)
∫ 1

0
(1−s)α−β−1

Γ(α−β) g(s)ds

−Γ(2 − β)ν1(t)
p∑

j=1
tβj J j(u(t j)) + ν1(t)

p∑
j=1

I j(u(t j))

+Γ(2 − β)ν2(t)
p∑

j=1
tβ−1

j J j(u(t j))

+Γ(2 − β)
p∑

j=k+1
tβ−1

j (t j − t)J j(u(t j))

−
p∑

j=k+1
I j(u(t j)), t ∈ [tk, tk+1], k = 1, 2, · · · , p − 1;∫ t

0
(t−s)α−1

Γ(α) g(s)ds + ν1(t)θ1 + ν2(t)θ2

−κ2ν1(t)
∫ 1

0
(1−s)α−1

Γ(α) g(s)ds

−κ1ν1(t)
∫ 1

0
(1−s)α−β−1

Γ(α−β) g(s)ds + ν1(t)
p∑

j=1
I j(u(t j))

−Γ(2 − β)ν1(t)
p∑

j=1
tβj J j(u(t j))

+Γ(2 − β)ν2(t)
p∑

j=1
tβ−1

j J j(u(t j)), t ∈ (tp, tp+1],

where κ2 , 1 + 1
κ1

and

ν1(t) =
Γ(2 − β)(1 + κ2 − κ2t)
Γ(2 − β)(κ2 + 1) − κ1κ2

, ν2(t) =
Γ(2 − β)t − κ1

Γ(2 − β)(κ2 + 1) − κ1κ2
.

Proof. With the Lemma 2.3, a general solution u of the equationCDα
0+u(t) = g(t) on each interval

(tk, tk+1](k = 0, 1, 2, · · · , p) is given by

u(t) = Iα0+g(t) + dk + wkt =

∫ t

0

(t − s)α−1

Γ(α)
g(s)ds + dk + wkt, t ∈ [0, t1), (2.6)

for some dk,wk ∈ R, where t0 = 0 and tp+1 = 1.
If 0 < β < 1, we get

CDβ
0+u(t) =

∫ t

0

(t − s)α−β−1

Γ(α − β)
g(s)ds +

t1−β

Γ(2 − β)
wk, t ∈ (tk, tk+1], (2.7)

if β = 1, we obtain

CDβ
0+u(t) = u′(t) =

∫ t

0

(t − s)α−2

Γ(α − 1)
g(s)ds + wk, t ∈ (tk, tk+1], (2.8)
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where CDβ
0+dk = 0(0 < β ≤ 1),C Dβ

0+t = t1−β
Γ(2−β) (0 < β < 1). When β = 1, (2.7) and (2.8) are equivalent,

thus, 0 < β ≤ 1, get

CDβ
0+u(t) =

∫ t

0

(t − s)α−β−1

Γ(α − β)
g(s)ds +

t1−β

Γ(2 − β)
wk, t ∈ (tk, tk+1]. (2.9)

By the (2.6) and (2.9), we obtain u(0) = d0,
CDβ

0+u(0) = w0, and

u(1) =

∫ 1

0

(1 − s)α−1

Γ(α)
g(s)ds + dp + wp,

CDβ
0+u(1) =

∫ 1

0

(1 − s)α−β−1

Γ(α − β)
g(s)ds +

wp

Γ(2 − β)
.

Using the boundary conditions in (2.5) to get

d0 + κ1

[ ∫ 1

0

(1 − s)α−β−1

Γ(α − β)
g(s)ds +

wp

Γ(2 − β)

]
= θ1, (2.10)

and

w0 + κ2

[ ∫ 1

0

(1 − s)α−1

Γ(α)
g(s)ds + dp + wp

]
= θ2. (2.11)

Next, using the condition of ∆CDβ
0+u(tk) = CDβ

0+u(t+
k ) − CDβ

0+u(t−k ) = Jk(u(tk)), we get

t1−β
k

Γ(2 − β)
wk =

t1−β
k

Γ(2 − β)
wk−1 + Jk(u(tk)),

wk = wk−1 + Γ(2 − β)tβ−1
k Jk(u(tk)),

wk+1 = wk + Γ(2 − β)tβ−1
k+1 Jk+1(u(tk)),

wk+2 = wk+1 + Γ(2 − β)tβ−1
k+2 Jk+2(u(tk)),

wp = wk−1 + Γ(2 − β)tβ−1
p Jp(u(tp)),

wp = wk−1 + Γ(2 − β)
p∑

j=k

tβ−1
j J j(u(t j)),

wk−1 = wp − Γ(2 − β)
p∑

j=k

tβ−1
j J j(u(t j)),

wk = wp − Γ(2 − β)
p∑

j=k+1

tβ−1
j J j(u(t j)). (2.12)

In the same way, using the condition of ∆u |t=tk= Ik(u(tk)) = u(t+
k ) − u(t−k ), we obtain

dk + wktk = dk−1 + wk−1tk + Ik(u(tk)),

which by (2.12) implies that

dk +
(
wk−1 + Γ(2 − β)tβ−1

k Jk(u(tk))
)
tk = dk−1 + wk−1tk + Ik(u(tk)),
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dk + wk−1tk + Γ(2 − β)tβ−1
k Jk(u(tk))tk = dk−1 + wk−1tk + Ik(u(tk)),

dk + Γ(2 − β)tβk Jk(u(tk)) = dk−1 + Ik(u(tk)),

dk = dk−1 − Γ(2 − β)tβk Jk(u(tk)) + Ik(u(tk)),

dk = dp + Γ(2 − β)
p∑

j=k+1

tβj J j(u(t j)) −
p∑

j=k+1

I j(u(t j)). (2.13)

By combining (2.10), (2.11), (2.12) and (2.13), we have

dp + Γ(2 − β)
p∑

j=1

tβj J j(u(t j)) −
p∑

j=1

I j(u(t j))

+ κ1
wp

Γ(2 − β)
+ κ1

∫ 1

0

(1 − s)α−β−1

Γ(α − β)
g(s)ds = θ1,

wp − Γ(2 − β)
p∑

j=1

tβ−1
j J j(u(t j)) + κ2wp + κ2dp

+ κ2

∫ 1

0

(1 − s)α−1

Γ(α)
g(s)ds = θ2.

Then

dp =

(
Γ(2 − β)(κ2 + 1)

Γ(2 − β)(κ2 + 1) − κ1κ2

)
θ1 −

(
κ1

Γ(2 − β)(κ2 + 1) − κ1κ2

)
θ2

+

(
κ1κ2

Γ(2 − β)(κ2 + 1) − κ1κ2

) ∫ 1

0

(1 − s)α−1

Γ(α)
g(s)ds

−

(
Γ(2 − β)(κ1κ2 + κ1)

Γ(2 − β)(κ2 + 1) − κ1κ2

) ∫ 1

0

(1 − s)α−β−1

Γ(α − β)
g(s)ds

+

(
Γ(2 − β)(κ2 + 1)

Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

I j(u(t j))

−

( (
Γ(2 − β)

)2(κ2 + 1)
Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

tβj J j(u(t j))

−

(
Γ(2 − β)κ1

Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

tβ−1
j J j(u(t j)), (2.14)

and

wp = −

(
Γ(2 − β)(κ2)

Γ(2 − β)(κ2 + 1) − κ1κ2

)
θ1 +

(
Γ(2 − β)

Γ(2 − β)(κ2 + 1) − κ1κ2

)
θ2

−

(
κ2Γ(2 − β)

Γ(2 − β)(κ2 + 1) − κ1κ2

) ∫ 1

0

(1 − s)α−1

Γ(α)
g(s)ds

+

(
Γ(2 − β)(κ1κ2)

Γ(2 − β)(κ2 + 1) − κ1κ2

) ∫ 1

0

(1 − s)α−β−1

Γ(α − β)
g(s)ds
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−

(
Γ(2 − β)κ2

Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

I j(u(t j))

+

( (
Γ(2 − β)

)2
κ2

Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

tβj J j(u(t j))

+

( (
Γ(2 − β)

)2

Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

tβ−1
j J j(u(t j)). (2.15)

Combining (2.12), (2.13), (2.14) and (2.15), we obtain

dk =dp + Γ(2 − β)
p∑

j=k+1

tβj J j(u(t j)) −
p∑

j=k+1

I j(u(t j))

=

(
Γ(2 − β)(κ2 + 1)

Γ(2 − β)(κ2 + 1) − κ1κ2

)
θ1 −

(
κ1

Γ(2 − β)(κ2 + 1) − κ1κ2

)
θ2

+

(
κ1κ2

Γ(2 − β)(κ2 + 1) − κ1κ2

) ∫ 1

0

(1 − s)α−1

Γ(α)
g(s)ds

−

(
Γ(2 − β)(κ1κ2 + κ1)

Γ(2 − β)(κ2 + 1) − κ1κ2

) ∫ 1

0

(1 − s)α−β−1

Γ(α − β)
g(s)ds

+

(
Γ(2 − β)(κ2 + 1)

Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

I j(u(t j))

−

( (
Γ(2 − β)

)2(κ2 + 1)
Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

tβj J j(u(t j))

−

(
Γ(2 − β)κ1

Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

tβ−1
j J j(u(t j))

+ Γ(2 − β)
p∑

j=k+1

tβj J j(u(t j)) −
p∑

j=k+1

I j(u(t j)), (2.16)

and

wk =wp − Γ(2 − β)
p∑

j=k+1

tβ−1
j J j(u(t j))

= −

(
Γ(2 − β)(κ2)

Γ(2 − β)(κ2 + 1) − κ1κ2

)
θ1 +

(
Γ(2 − β)

Γ(2 − β)(κ2 + 1) − κ1κ2

)
θ2

−

(
κ2Γ(2 − β)

Γ(2 − β)(κ2 + 1) − κ1κ2

) ∫ 1

0

(1 − s)α−1

Γ(α)
g(s)ds

+

(
Γ(2 − β)(κ1κ2)

Γ(2 − β)(κ2 + 1) − κ1κ2

) ∫ 1

0

(1 − s)α−β−1

Γ(α − β)
g(s)ds

−

(
Γ(2 − β)κ2

Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

I j(u(t j))
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+

( (
Γ(2 − β)

)2
κ2

Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

tβj J j(u(t j))

+

( (
Γ(2 − β)

)2

Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

tβ−1
j J j(u(t j))

− Γ(2 − β)
p∑

j=k+1

tβ−1
j J j(u(t j)), (2.17)

for k = 0, 1, · · · , p − 1. By using (2.16) and (2.17), we get

dk + wkt =

(
Γ(2 − β)(1 + κ2 − κ2t)
Γ(2 − β)(κ2 + 1) − κ1κ2

)
θ1 +

(
Γ(2 − β)t − κ1

Γ(2 − β)(κ2 + 1) − κ1κ2

)
θ2

+

(
−κ2

(
Γ(2 − β)t − κ1

)
Γ(2 − β)(κ2 + 1) − κ1κ2

) ∫ 1

0

(1 − s)α−1

Γ(α)
g(s)ds

+

(
−κ1Γ(2 − β)(1 + κ2 − κ2t)
Γ(2 − β)(κ2 + 1) − κ1κ2

) ∫ 1

0

(1 − s)α−β−1

Γ(α − β)
g(s)ds

+

(
Γ(2 − β)(1 + κ2 − κ2t)
Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

I j(u(t j))

+

((
Γ(2 − β)

)2(κ2t − κ2 − 1)
Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

tβj J j(u(t j))

+

(
Γ(2 − β)

(
Γ(2 − β)t − κ1

)
Γ(2 − β)(κ2 + 1) − κ1κ2

) p∑
j=1

tβ−1
j J j(u(t j))

+ Γ(2 − β)
p∑

j=k+1

tβ−1
j (t j − t)J j(u(t j)) −

p∑
j=k+1

I j(u(t j)).

Therefore, by the (2.6), we get

u(t) =

∫ t

0

(t − s)α−1

Γ(α)
g(s)ds + ν1(t)θ1 + ν2(t)θ2

− κ2ν2(t)
∫ 1

0

(1 − s)α−1

Γ(α)
g(s)ds

− κ1ν1(t)
∫ 1

0

(1 − s)α−β−1

Γ(α − β)
g(s)ds + ν1(t)

p∑
j=1

I j(u(t j))

− Γ(2 − β)ν1(t)
p∑

j=1

tβj J j(u(t j)) + Γ(2 − β)ν2(t)
p∑

j=1

tβ−1
j J j(u(t j))

+ Γ(2 − β)
p∑

j=k+1

tβ−1
j (t j − t)J j(u(t j)) −

p∑
j=k+1

I j(u(t j)),

where
ν1(t) =

Γ(2 − β)(1 + κ2 − κ2t)
Γ(2 − β)(κ2 + 1) − κ1κ2

, ν2(t) =
Γ(2 − β)t − κ1

Γ(2 − β)(κ2 + 1) − κ1κ2
.
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Thus, we obtain (P∗) for solution of (2.5). Conversely, assume that u is a solution of the impulsive
fractional integral equation (2.5), then by a direct computation, it follows that the solution given by
(P∗) satisfies (2.5). This completes the proof. �

3. Existence and uniqueness results

In this section, we state and prove the existence and uniqueness results of the fractional boundary
value of (1.1) by using the fixed point theorem. We use the following notations throughout this paper:

ν1(t) =
Γ(2 − β)(1 + κ2 − κ2t)
Γ(2 − β)(κ2 + 1) − κ1κ2

≤ ν1 :=
Γ(2 − β)(1 + 2|κ2|)

|Γ(2 − β)(κ2 + 1) − κ1κ2|
,

ν2(t) =
Γ(2 − β)t − κ1

Γ(2 − β)(κ2 + 1) − κ1κ2
≤ ν2 :=

Γ(2 − β) + |κ1|

|Γ(2 − β)(κ2 + 1) − κ1κ2|
.

In this paper, we following conditions of (H1) and (H2), and then we state and prove our first result.
(H1) The function f : J × R→ R is continuous.
(H2) There exist positive constants M1,M2,M3, L1, L2 such that

| f (t, u) − f (t, v)| ≤ M1|u − v|, t ∈ [0, 1], u, v ∈ R,

|Ik(u) − Ik(v)| ≤ M2|u − v|, |Jk(u) − Jk(v)| ≤ M3|u − v|,

|Ik(u)| ≤ L1, |Jk(u)| ≤ L2.

Also it is clear that

| f (t, u)| ≤ | f (t, u) − f (t, 0)| + | f (t, 0)|
≤ M1|u| + L,

where sup
t∈[0,1]

| f (t, 0)| = L.

Theorem 3.1. Assume (H1) and (H2) holds. If

M1

( 1
Γ(α + 1)

+
|κ2|ν2

Γ(α + 1)
+

|κ1|ν1

Γ(α − β + 1)

)
+ Γ(2 − β)p

(
ν1 + ν2 + 2

)
M3 + p

(
ν1 + 1

)
M2 < 1,

(3.1)

then BVP of (1.1) has a unique solution on [0,1].

Proof. By using (3.1), r can be chosen as follows:

r >
{
1 −

M1

Γ(α + 1)
(1 + ν2|κ2|) −

M1

Γ(α − β + 1)
ν1|κ1|

}−1( L
Γ(α + 1)

+ ν1|θ1| + ν2|θ2| + ν1|κ2|
L

Γ(α + 1)
+ ν2|κ1|

L
Γ(α − β + 1)

+ Γ(2 − β)p(ν1 + ν2 + 2)L2 + p(ν1 + 1)L1

)
.
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Define an operator z : PC ([0, 1],R)→ PC ([0, 1],R) to transform (1.1) into the fixed point problem

(zu)(t) =

∫ t

0

(t − s)α−1

Γ(α)
f (s, u(s))ds + ν1(t)θ1 + ν2(t)θ2

− κ2ν2(t)
∫ 1

0

(1 − s)α−1

Γ(α)
f (s, u(s))ds

− κ1ν1(t)
∫ 1

0

(1 − s)α−β−1

Γ(α − β)
f (s, u(s))ds + ν1(t)

p∑
j=1

I j(u(t j))

− Γ(2 − β)ν1(t)
p∑

j=1

tβj J j(u(t j)) + Γ(2 − β)ν2(t)
p∑

j=1

tβ−1
j J j(u(t j))

+ Γ(2 − β)
p∑

j=k+1

tβ−1
j (t j − t)J j(u(t j)) −

p∑
j=k+1

I j(u(t j)),

where tk < t < tk+1, k = 0, · · · , p. Then∣∣∣zu(t)
∣∣∣ ≤∫ t

0

(t − s)α−1

Γ(α)

∣∣∣ f (s, u(s))
∣∣∣ds +

∣∣∣ν1(t)
∣∣∣|θ1| +

∣∣∣ν2(t)
∣∣∣|θ2|

+ |κ2|
∣∣∣ν2(t)

∣∣∣ ∫ 1

0

(1 − s)α−1

Γ(α)

∣∣∣ f (s, u(s))
∣∣∣ds

+ |κ1|
∣∣∣ν1(t)

∣∣∣ ∫ 1

0

(1 − s)α−β−1

Γ(α − β)

∣∣∣ f (s, u(s))
∣∣∣ds +

∣∣∣ν1(t)
∣∣∣ p∑

j=1

∣∣∣I j(u(t j))
∣∣∣

+ Γ(2 − β)
∣∣∣ν1(t)

∣∣∣ p∑
j=1

∣∣∣J j(u(t j))
∣∣∣ + Γ(2 − β)

∣∣∣ν2(t)
∣∣∣ p∑

j=1

∣∣∣J j(u(t j))
∣∣∣

+ 2Γ(2 − β)
p∑

j=k+1

∣∣∣J j(u(t j))
∣∣∣ +

p∑
j=k+1

∣∣∣I j(u(t j))
∣∣∣,

and then

|zu|(t) ≤
∫ t

0

(t − s)α−1

Γ(α)

∣∣∣ f (s, u(s)) − f (s, 0)
∣∣∣ds

+

∫ t

0

(t − s)α−1

Γ(α)

∣∣∣ f (s, 0)
∣∣∣ds +

∣∣∣ν1(t)
∣∣∣|θ1| +

∣∣∣ν2(t)
∣∣∣|θ2|

+ |κ2|
∣∣∣ν2(t)

∣∣∣[ ∫ 1

0

(1 − s)α−1

Γ(α)

∣∣∣ f (s, u(s)) − f (s, 0)
∣∣∣ds

+

∫ 1

0

(1 − s)α−1

Γ(α)

∣∣∣ f (s, 0)
∣∣∣ds

]
+ |κ1|

∣∣∣ν1(t)
∣∣∣[ ∫ 1

0

(1 − s)α−β−1

Γ(α − β)

∣∣∣ f (s, u(s)) − f (s, 0)
∣∣∣ds

+

∫ 1

0

(1 − s)α−1

Γ(α − β)

∣∣∣ f (s, 0)
∣∣∣ds

]
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+
∣∣∣ν1(t)

∣∣∣ p∑
j=1

∣∣∣I j(u(t j))
∣∣∣ + Γ(2 − β)

∣∣∣ν1(t)
∣∣∣ p∑

j=1

∣∣∣J j(u(t j))
∣∣∣

+ Γ(2 − β)
∣∣∣ν2(t)

∣∣∣ p∑
j=1

∣∣∣J j(u(t j))
∣∣∣

+ 2Γ(2 − β)
p∑

j=k+1

∣∣∣J j(u(t j))
∣∣∣ +

p∑
j=k+1

∣∣∣I j(u(t j))
∣∣∣.

Using the upper bound Ik(u) ≤ L1, we have

p∑
j=1

∣∣∣I j(u(t j))
∣∣∣ =

∣∣∣I1(u(t1))
∣∣∣ +

∣∣∣I2(u(t2))
∣∣∣ + · · · +

∣∣∣Ip−1(u(tp−1))
∣∣∣ +

∣∣∣Ip(u(tp))
∣∣∣

≤

p︷                        ︸︸                        ︷
L1 + L1 + · · · + L1 + L1 = pL1,

and
p∑

j=1

∣∣∣J j(u(t j))
∣∣∣ =

∣∣∣J1(u(t1))
∣∣∣ +

∣∣∣J2(u(t2))
∣∣∣ + · · · +

∣∣∣Jp−1(u(tp−1))
∣∣∣ +

∣∣∣Jp(u(tp))
∣∣∣

≤

p︷                        ︸︸                        ︷
L2 + L2 + · · · + L2 + L2 = pL2.

By the same way, we get

p∑
j=k+1

∣∣∣I j(u(t j))
∣∣∣ =

∣∣∣Ik+1(u(tk+1))
∣∣∣ +

∣∣∣Ik+2(u(tk+2))
∣∣∣ + · · · +

∣∣∣Ip−k−1(u(tp−k−1))
∣∣∣

+
∣∣∣Ip−k(u(tp−k))

∣∣∣
≤

p−k︷                        ︸︸                        ︷
L1 + L1 + · · · + L1 + L1 = (p − k)L1 ≤ pL1,

and
p∑

j=k+1

∣∣∣J j(u(t j))
∣∣∣ =

∣∣∣Jk+1(u(tk+1))
∣∣∣ +

∣∣∣Jk+2(u(tk+2))
∣∣∣ + · · · +

∣∣∣Jp−k−1(u(tp−k−1))
∣∣∣

+
∣∣∣Jp−k(u(tp−k))

∣∣∣
≤

p−k︷                        ︸︸                        ︷
L2 + L2 + · · · + L2 + L2 = (p − k)L2 ≤ pL2.

Thus
|zu|(t) ≤

M1r
Γ(α + 1)

+
L

Γ(α + 1)
+ ν1|θ1| + ν2|θ2|

+ ν2|κ2|

[ M1r
Γ(α + 1)

+
L

Γ(α + 1)

]
+ ν1|κ1|

[ M1r
Γ(α − β + 1)

+
L

Γ(α − β + 1)

]
+ Γ(2 − β)p(ν1 + ν2 + 2)L2 + p(ν1 + 1)L1 < r.
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Therefore, for all t ∈ [0, 1], the fixed point of the operator z is the solution of our BVP (1.1). Next, the
fixed point theorem is used and then it is shown that z is a contraction mapping and we have

|(zu)(t) − (zv)(t)|

≤

∫ t

0

(t − s)α−1

Γ(α)

∣∣∣ f (s, u(s)) − f (s, v(s))
∣∣∣ds

+ |κ2|
∣∣∣ν2(t)

∣∣∣ ∫ 1

0

(1 − s)α−1

Γ(α)

∣∣∣ f (s, u(s)) − f (s, v(s))
∣∣∣ds

+ |κ1|
∣∣∣ν1(t)

∣∣∣ ∫ 1

0

(1 − s)α−β−1

Γ(α − β)

∣∣∣ f (s, u(s)) − f (s, v(s))
∣∣∣ds

+
∣∣∣ν1(t)

∣∣∣ p∑
j=1

∣∣∣I j(u(t j)) − I j(v(t j))
∣∣∣

+ Γ(2 − β)
∣∣∣ν1(t)

∣∣∣ p∑
j=1

∣∣∣J j(u(t j)) − J j(v(t j))
∣∣∣

+ Γ(2 − β)
∣∣∣ν2(t)

∣∣∣ p∑
j=1

∣∣∣J j(u(t j)) − J j(v(t j))
∣∣∣

+ 2Γ(2 − β)
p∑

j=k+1

∣∣∣J j(u(t j)) − J j(v(t j))|

+

p∑
j=k+1

∣∣∣I j(u(t j)) − I j(v(t j))
∣∣∣,

Thus

|(zu)(t) − (zv)(t)| ≤
[
M1

( 1
Γ(α + 1)

+
|κ2|

∣∣∣ν2(t)
∣∣∣

Γ(α + 1)
+
|κ1|

∣∣∣ν1(t)
∣∣∣

Γ(α − β + 1)

)
+ Γ(2 − β)p

(∣∣∣ν1(t)
∣∣∣ +

∣∣∣ν2(t)
∣∣∣ + 2

)
M3

+ p
(∣∣∣ν1(t)

∣∣∣ + 1
)
M2

]
‖u − v‖,

z is contraction mapping. By condition (3.1), we have

|zu − zv| ≤
[
M1

( 1
Γ(α + 1)

+
|κ2|ν2

Γ(α + 1)
+

|κ1|ν1

Γ(α − β + 1)

)
+ Γ(2 − β)p

(
ν1 + ν2 + 2

)
M3 + p

(
ν1 + 1

)
M2

]
‖u − v‖

Therefore, z is a contraction mapping. The conclusion follows the principle of contraction mapping,
that is the unique solution of impulsive mixed BVP can be obtained by using the fixed point theorem.

�

Theorem 3.2. Assume that | f (t, u)| ≤ ζ(t) for all (t, u) ∈ J × R where ζ ∈ L
1
µ (J × R), µ ∈ (0, α − 1) and

the (H2) holds. If
Γ(2 − β)p(ν1 + ν2 + 2)M3 + p(ν1 + 1)M2 < 1. (3.2)
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Then problem (1.1) has at least one solution on J.

Proof. Let

r ≥‖ζ‖
L

1
µ (J)

( (1 + |κ2|ν2)
Γ(α)(α−µ1−µ )1−µ

+
|κ1|ν1

Γ(α − β)(α−β−µ1−µ )1−µ

)
+ Γ(2 − β)p(ν1 + ν2 + 2)L2 + p(ν1 + 1)L1,

and denote S r = {u ∈ PC(J,R)
∣∣∣∣‖u‖PC ≤ r}.

Define the operators B and N on S r as

(Bu)(t) =

∫ t

0

(t − s)α−1

Γ(α)
f (s, u(s))ds − κ2ν2(t)

∫ 1

0

(1 − s)α−1

Γ(α)
f (s, u(s))ds

− κ1ν1(t)
∫ 1

0

(1 − s)α−β−1

Γ(α − β)
f (s, u(s))ds,

(Nu)(t) =ν1(t)
p∑

j=1

I j(u(t j)) − Γ(2 − β)ν1(t)
p∑

j=1

tβj J j(u(t j))

+ Γ(2 − β)ν2(t)
p∑

j=1

tβ−1
j J j(u(t j))

+ Γ(2 − β)
p∑

j=k+1

tβ−1
j (t j − t)J j(u(t j)) −

p∑
j=k+1

I j(u(t j)).

For any u, v ∈ S r(t ∈ J), using the condition that | f (t, u) ≤ ζ(t)| and the Hölder inequality, we get

∫ t

0

∣∣∣∣∣ (t − s)α−1

Γ(α)
f (s, u(s))

∣∣∣∣∣ds ≤

( ∫ t

0
(t − s)

α−1
1−µ ds

)1−µ( ∫ t

0
(ζ(s))

1
µ ds

)µ
Γ(α)

≤

‖ζ‖
L

1
µ (J)

Γ(α)(α−µ1−µ )1−µ
,

∫ 1

0

∣∣∣∣∣ (1 − s)α−1

Γ(α)
f (s, u(s))

∣∣∣∣∣ds ≤

( ∫ 1

0
(1 − s)

α−1
1−µ ds

)1−µ( ∫ 1

0
(ζ(s))

1
µ ds

)µ
Γ(α)

≤

‖ζ‖
L

1
µ (J)

Γ(α)(α−µ1−µ )1−µ
,

and ∫ 1

0

∣∣∣∣∣ (1 − s)α−β−1

Γ(α − β)
f (t, u(s))

∣∣∣∣∣ds ≤

( ∫ 1

0
(1 − s)

α−β−1
1−µ ds

)1−µ( ∫ 1

0
(ζ(s))

1
µ ds

)µ
Γ(α − β)

≤

‖ζ‖
L

1
µ (J)

Γ(α − β)(α−β−µ1−µ )1−µ
.
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Thus

‖(Bu) + (Nv)‖ ≤
(1 + |κ2|ν2)‖ζ‖

L
1
µ (J)

Γ(α)(α−µ1−µ )1−µ
+

(
|κ1|ν1

)
‖ζ‖

L
1
µ (J)

Γ(α − β)(α−β−µ1−µ )1−µ

+ Γ(2 − β)p(ν1 + ν2 + 2)L2 + p(ν1 + 1)L1

=‖ζ‖
L

1
µ (J)

( (1 + |κ2|ν2)
Γ(α)(α−µ1−µ )1−µ

+
|κ1|ν1

Γ(α − β)(α−β−µ1−µ )1−µ

)
+ Γ(2 − β)p(ν1 + ν2 + 2)L2 + p(ν1 + 1)L1.

Therefore, Bu+Nv ∈ S r. By the (3.2), it is obvious that N is a contraction mapping. And the continuity
of f implies that the operator B is continuous. Thus, B is uniformly bounded on S r where

(Bu)‖ ≤‖ζ‖
L

1
µ (J)

( (1 + |κ2|ν2)
Γ(α)(α−µ1−µ )1−µ

+
|κ1|ν1

Γ(α − β)(α−β−µ1−µ )1−µ

)
≤ r.

Next the quasi-equicontinuity of the operator B is proved. Let Ω = J × S r, fsup = sup
(t,u)∈Ω

| f (t, u)|. For any

tk < χ2 < χ1 ≤ tk+1, we have

‖(Bu)(χ2) − (Bu)(χ1)‖

=

∣∣∣∣∣ ∫ χ2

0

(χ2 − s)α−1

Γ(α)
f (s, u(s))ds −

∫ 1

0

κ2ν2(χ2)(1 − s)α−1

Γ(α)
f (s, u(s))ds

−

∫ 1

0

κ1ν1(χ2)(1 − s)α−β−1

Γ(α − β)
f (s, u(s))ds −

∫ χ1

0

(χ1 − s)α−1

Γ(α)
f (s, u(s))ds

+

∫ 1

0

κ2ν2(χ1)(1 − s)α−1

Γ(α)
f (s, u(s))ds

+

∫ 1

0

κ1ν1(χ1)(1 − s)α−β−1

Γ(α − β)
f (s, u(s))ds

∣∣∣∣∣
≤

fsup

Γ(α)

∣∣∣∣∣ ∫ χ2

0
(χ2 − s)α−1 − (χ1 − s)α−1ds +

∫ χ1

χ2

(χ1 − s)α−1ds
∣∣∣∣∣

+

∣∣∣∣∣κ2ν2(χ2 − χ1) fsup

Γ(α)

∫ 1

0
(1 − s)α−1ds

∣∣∣∣∣
+

∣∣∣∣∣κ1ν1(χ1 − χ2) fsup

Γ(α − β)

∫ 1

0
(1 − s)α−β−1ds

∣∣∣∣∣
≤ fsup

[ (χ2 − χ1)α + χα1 − χ
α
2

Γ(α + 1)
+ |κ2|

(χα1 − χ
α
2 )

Γ(α + 1)
+ |κ1|

(χα2 − χ
α
1 )

Γ(α − β + 1)

]
,

which tends to zero as χ1 → χ2. This proves that B is quasi-equicontinuous on the (tk, tk+1]. So that B
is compact by Lemma 2.5, and B is relatively compact on S r.

Thus all the assumptions of Lemma 2.4 are satisfied and problem (1.1) has at least one solution on
J. �

4. Examples

In this section, two examples are given to verify the feasibility of the results.
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Example 4.1. Let us consider the hybrid fractional BVP:
CD

3
2
0+u(t) =

sin3u(t)
(t+20)2(1+u(t)) , t ∈ [0, 1], t , 1

4 ,

∆u(1
4 ) =

|u( 1
4 |)

100+|u( 1
4 )|
,∆CD

1
2
0+u( 1

4 ) =
|u( 1

4 |)
100+|u( 1

4 )|
, t = 1

4 ,

u(0) + CD
1
2
0+u(1) = 0, CD

1
2
0+u(0) + u(1) = 0,

(4.1)

where Ik(u(t)) = Jk(u(t)) =
|u( 1

4 |)
100+|u( 1

4 )|
, and α = 3

2 , β = 1
2 , p = 1, f (t, u(t)) =

sin3u(t)
(t+20)2(1+u(t)) . Let θ1 = θ2 =

0,M1 = M2 = M3 = L1 = L2 = 1
100 .

By the f (t, u(t)) =
sin3u(t)

(t+20)2(1+u(t)) , (H1) is obviously established. Next, consider the (H2), we obtain∣∣∣∣∣ f (t, u) − f (t, v)
∣∣∣∣∣ =

∣∣∣∣∣ sin3u(t)
(t + 20)2(1 + u(t))

−
sin3v(t)

(t + 12)2(1 + v(t))

∣∣∣∣∣
≤

1
400

∣∣∣∣∣ sin3u(t)
(1 + u(t))

−
sin3v(t)

(1 + v(t))

∣∣∣∣∣
≤

1
400

(∣∣∣∣sin3u(t) − sin3v(t)
∣∣∣∣ +

∣∣∣∣u(t) − v(t)
∣∣∣∣)

≤
1

400

(
3
∣∣∣∣u(t) − v(t)

∣∣∣∣ +
∣∣∣∣u(t) − v(t)

∣∣∣∣)
=

1
100
|u − v|.

Therefore, the
∣∣∣ f (t, u) − f (t, v)

∣∣∣ is established. By the same way, we have |Ik(u) − Ik(v)| ≤ M2|u −
v|, |Jk(u) − Jk(v)| ≤ M3|u − v|, |Ik(u)| ≤ L1 and |Jk(u)| ≤ L2 are established. Thus, (H2) is completed.
Last, consider the condition of (3.1). Because the θ1 = θ2 = 0,M1 = M2 = M3 = 1

100 , we have

ν1 :=
2Γ(2 − β)

1 − Γ(2 − β)
≈ 15.5747, ν2 :=

1 + Γ(2 − β)
1 − Γ(2 − β)

≈ 16.5747,

ν3 := 2Γ(2 − β) ≈ 1.7724.

Thus
M1

Γ(α + 1)
+ ν1

( 1
Γ(α − β + 1)

+
1

Γ(α + 1)

)
M1

+ ν1 pM2 + Γ(2 − β)ν1 pM3 + 2pM2

+ 2ν3 pM3 + ν1θ1 + ν2θ2 ≈ 0.6292 < 1.

Therefore, all assumptions in the Theorem 3.1 are satisfied. Hence, the fractional impulsive hybrid
BVP of (4.1) has a unique solution on [0, 1].

Example 4.2. We consider the hybrid fractional BVP of following:
CD

3
2
0+u(t) =

sint |u(t)|
(t+10)2(1+|u(t)|) , t ∈ [0, 1], t , 1

3 ,

∆u( 1
3 ) =

|u( 1
3 |)

100+|u( 1
3 )|
,∆CD

1
2
0+u(1

5 ) =
|u( 1

3 |)
100+|u( 1

3 )|
, t = 1

3

u(0) + CD
1
2
0+u(1) = 0, CD

1
2
0+u(0) + u(1) = 0,

(4.2)
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where Ik(u(t)) = Jk(u(t)) =
|u( 1

3 |)
100+|u( 1

3 )|
, and p = 1, α = 3

2 , β = 1
2 , f (t, u(t)) =

sint |u(t)|
(t+10)2(1+|u(t)|) . The

ν1 :=
2Γ(2 − β)

1 − Γ(2 − β)
≈ 15.5747, ν2 :=

1 + Γ(2 − β)
1 − Γ(2 − β)

≈ 16.5747,

and

f (t, u) =
sint |u|

(t + 10)2(1 + |u|)
, (t, u) ∈ [0, 1] × [0,+∞).

Clearly, we obtain

| f (t, u)| ≤
sint |u|

(t + 10)2 , ζ(t) =
sint

(t + 10)2 ∈ L3([0, 1],R),

and

| f (t, u) − f (t, v)| =
∣∣∣∣∣ sint |u|
(t + 10)2 −

sint |v|
(t + 10)2

∣∣∣∣∣
=

∣∣∣∣∣ sint
(t + 10)2

(
|u| − |v|

)∣∣∣∣∣
≤

sint
(t + 10)2 |u − v|.

Let M2 = M3 = 1
100 , we get

Γ(2 − β)p(ν1 + ν2 + 2)M3 + p(ν1 + 1)M2 ≈ 0.4683 < 1.

Thus, all assumptions in the Theorem 3.2 are satisfied. Hence, the fractional impulsive mixed BVP
of (4.2) has a least one solution on [0, 1].
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