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1. Introduction

Fractional differential equations have used in many engineering and scientific disciplines, such as
physics, chemistry, aerodynamics, electrodynamics of complex media, polymer rheology, and other
fields [1-3]. Many authors obtained solutions for fractional differential equations boundary value
problems (BVP) by a fixed point theorem [4-8]. Many established mathmatics methods were applied
to the existence solutions of BVP. For example, the numerical method [9-11], the Mawhin continuation
method [12—-14], the upper and lower solution method [15-17], the critical point theory [18-20].

In the past, impulsive differential and partial differential equations have become more and more
crucial in mathematical models of real phenomena, especially in the fields of control, biological and
medical [21-23].

In 2016, Bai and Dong [4] studied the existence of solutions for a class of hybrid BVP for fractional
impulsive differential equation:

CDg+u(t) = f(ta u(t))7 1 < q < 2at € J \ {t19t23 e 7tp}’
AM |l=tk: Ik(u(tk))’ Aul |l=lk: Jk(u(tk))’ k = 172, e 7p’
u0)+u'(1) =0,u'(0) + u(1) =0,
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where CDg+ is the Caputo fractional derivative of order g € (1,2), J = [0,1], f : [0,1] X R = Risa
given function, #; satisfy 0 = 1) <ty <1, <--- <1, <t,, = 1, the right and left limits of u(¢) at t = #;
are represented by u(z;") and u(#,).

In 2017, Mahmudov et al. [5] using the same way to investigate the existence and uniqueness of
solutions for the following mixed impulsive BVP:

CDg+u(t) = f(t’ M(t)), 1< q < 2"] = [Oa 1],l € J\ {t17t23 e ’tp}’
Au |t:lk: Ik(”(h())’ Au, |t:tk: Jk(l/l(tk)), k = 19 25 e 9p9
w(0) + ' (1) = 01,1 (0) + pou(l) = 0,

where CDg+ is the Caputo fractional derivative of order g € (1, 2).

Motivated by the above works, in this paper, we will apply Arzela-Ascoli theorem, Krasnoselskii’s
fixed point theorem and contraction mapping principle to study the existence of solution for a class
of hybrid boundary value problem under impulse conditions. Precisely, we consider the existence and
uniqueness of solutions for an impulsive mixed BVP of fractional differential equation:

CD;)ﬁu(t) = f(t, u(?)), l<a<2,tel,
Aut) = T(w(), ADp,u(t) = J(ut), 0<p<1, (1.1)
w(0) + k1D, u(1) = 6y, DY, u(0) + ku(1) = 65,

where CD& and CDf; are Caputo fractional derivatives of order @ (1 < @ < 2)and (0 < g < 1)
respectively; f: J X R — R, Ii, Jy : R — R are continuous functions; J = [0, 1], J" = J\ {t;, 12, -+ , 1)}
and f satisfy 0 = tg < ) <ty < -+ < 1, <ty = L, Auty) = u(t})) — u(ty), A°D, u(ty) = Db, u(t}) -
Cng(t,;). Here, respectively, the left and the right limits of u(¢) at t = # (k = 1,2,---,p) are
represented by u(t;) and u(t); ki, k2, 6, 6 are constants and «, k, are different from zero.

When S = 1, the results of (1.1) will be degenerate to Lemma 6 in [5], and k; = k, = 1, the results
degenerate to Lemma 2.4 in [4]. Therefore, this conclusion further expands the research results of [4]
and [5].

The structure of this article is as follows. In Sect 2, The definitions and theorems related to
Caputo’s fractional integral and derivative are given. In Sect 3, the existence and uniqueness of
solutions to mixed impulsive boundary value problems are proved by using Arzela-Ascoli theorem
and Krasnoselskii’s fixed point theorem. In Sect 4, some examples are provided to illustrate the main
research results.

2. Preliminaries

In this section, we mainly introduce related definitions, theorems, lemmas and necessary symbol
descriptions.
Let PC(J) ={u:[0,1] — R|u € C(J"), u(t)), u(t;) exist, and u(t;) = u(ty), 1 < k < p}. Thus, PC(J)

is a Banach space with the norm ||u||pc = sup |u(?)|.
0<z<1

Definition 2.1. ( [5]) The fractional integral of order « of a function f : [0, +00) — R is defined as

! _ el
Iy . f(t) = i %f(s)ds, t>0,a>0, 2.1
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provided that the right hand side of the integral is point-wise defined on (0, o).

Definition 2.2. ( [5]) The Caputo fractional-order derivative of order a > 0 for a function
f :10,4+00) = R is defined by

! ([ _ S)n—(t—l

(n) —
 To—a [ (s)ds, t>0,n=[a]+1, (2.2)

DI f(t) =

where [a] denotes the integer part of real number a, and I'(+) is the gamma function.

Lemma 2.3. ( [3]) For a > 0, the general solution of the fractional differential equation ©D%u(t) = 0

is given by
u(t) = ko + kit + kot® + -+ + k"' ki €R, (2.3)
and
IS (DL u)(t) = u(t) + ko + kit + kot* + -+ + k271, (2.4)
where n = —[—a], [a] denotes the integer part of the real number .

Now, we state two known results due to Krasnoselskii and Arzela-Ascoli which are used to prove
the existence and uniqueness of solutions of (1.1), respectively.

Lemma 2.4. (Krasnoselskiis fixed point Theorem [24]) Assume C is a closed, convex and non-empty
subset of a Banach space H, and the operators A and B be such that: Ax + By € C, whenever x,y € C;
A is compact and continuous; and B is a contraction mapping. Therefore, there exists z € C such that
z=Az+ Bz

Lemma 2.5. (Arzela-Ascoli Theorem [3]) The set G ¢ PC([0, 1], R") is relatively compact set if and
only if G is bounded, therefore, ||x|| < M for each x € G and some M > 0; the G is quasi-equicontinuous
in [0, 1], in other words, for any € > 0 there exists vy > 0 such that if x € G,k € N, x1,x2 € (ty_1, %]
and |y — x2| <7, we have |x(x1) — x(x2)| < &.

Lemma 2.6. Let o € (1,2], $€(0,1], and g : J — R be continuous. A functional u is a solution of the
following impulsive hybrid BVP:

CD;;u(t) = g(1), l<a<2,tel,
Au(t) = L(u(t), A°Df.ut) = Jew(n)), 0<B<1, (2.5)
w(0) + k1D, u(1) = 6y, D, u(0) + ku(1) = 65,
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if u is a unique solution of the following impulsive fractional integral equation:

f’ (1=5)""
0 T(a)

1 (I_S)a—l

—kav1 (1) fo o 8(s)ds
() | SFis(s)ds

L g1

+TQ2 = Byva(0) 2 57 5(u(t)
J:

(P*) u(t) =

p
= 2 Liu(ty), 1€ [ty tral,
Jj=k+1

ff (r—5)*!
0 I'(a)
1 (1 —S)H7 1

—K2Vq (t) L I(e)

g(s)ds

-T2 - i) zl T (u(t))

P op-1
+TQ2=Bwa() 247 ut),
=

where k, # 1 + Kl—l and

I'2—-p6)1+ Kk, —kat)

g(S)dS +vi(H)6, + Vz(l)gz

Lo g1
HT2-p) ¥ ANGEDVT)
Jj=k+

g(s)ds + vi(1)0; + v2(1)6,

fot ¢ _r?n)_ g(s)ds + vi(1)6,
1200 — ki (0) [ S5 g(s)ds

—B-1
—kivi(f) fo Crgg(s)ds, 1€0,n);

-T2 - Bni(0) zl (1)) + () ﬁl I(ut,))
J= J=

k:1$2""’p_1;

—kmi(0) i S g(s)ds + v (1) z I(u(1)))
re (tp»tp+l]»

Ire-pr-«

O T per 0T

Proof. With the Lemma 2.3, a general solution u of the equationCD“ u(t) =

(txs trr1](k = 0,1,2,-- -, p) is given by

a—1
w(t) = 1.g(t) + dy + wyt = f ¢ F(S))

for some di, wy € R, where tp = O and ¢, = 1.
IfO<pB<1, weget

s Bl 1-8
CD€+M(I)=L%8(S)CZS+ t

if 8 =1, we obtain

! _ a2
Dty = ') = [ sg(snds

AIMS Mathematics

g(s)ds + dy, + wyt,

re-p"*

L2 -PB)(ky+ 1) —kika

g(?) on each interval

€ [0,1)), (2.6)
1€ (tg, i 2.7)
t € (fy, by, (2.8)
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where “Df.dy = 00 < 8 < 1).,C D}t = Fg; "*ﬁ)(o <B < 1). When B = 1, (2.7) and (2.8) are equivalent,

thus, 0 < g < 1, get

( )a —B-1 tl—B
Lu(f) = f @ g(s)ds + F(2—,B)Wk’ t € (tr, tes1 ]

By the (2.6) and (2.9), we obtain u(0) = dj, CD’é+u(0) = wy, and

1 _ el
1):f %g(s)ds+dp+wp,

(1-s)y#! )“-ﬁ1 W)
Lu(l) = f (s)ds+r(2 B

Using the boundary conditions in (2.5) to get

a—F-1
d0+/<1f(r( 5) g(s)ds+r(2wfﬁ)]:91,

and

a—1
wo + Kz f a- I )) g(s)ds +d, + wp] = 0,.

Next, using the condition of A Dg+ u(ty) = D§+ u(ty) — CDﬁ+ u(ty) = Ji(ut)), we get
n’ n’
ro _ﬁ)Wk = re _ﬁ)wk—l + Ji(u(t)),
wie = wier + T2 =B T(u(n),
Wit = wi + T2 = Bty T (@),
Wiz = Wit + T2 = B, T (u(®y)),
w, =wi_ +1(2 —ﬁ)tﬁ L (uty),

p
w, =wi1 + 12 -p) Z tf_l-]j(”(tj))’
=k

p

wier =w, =T =B) > 7)),
=k
. 1
we=w, =T =) > 7 Tu)).
Jj=k+1
In the same way, using the condition of Au |-, = Ii(u(ty)) = u(t]) — u(t;), we obtain

di + Wity = di—1 + Wit + L (u(ty)),

which by (2.12) implies that

di + (Wit + TR = B T ut))te = diy + wicati + L(u(n)),

AIMS Mathematics Volume 6, Issue 8,

(2.9)

(2.10)

(2.11)

(2.12)

8895-8911.



8900

di + wieiti + (2 —ﬁ)lf_l-]k(u(fk))fk = di1 + wisily + L(u(®y)),
di + T2 = B J(u(t) = diy + L(u(ty)),
di = diy = T2 = Bt Ji(u(t)) + Te(u(t),
)4 p
di=dy +TQ=p) > O = > u()). (2.13)
Jj=k+1 j=k+1

By combining (2.10), (2.11), (2.12) and (2.13), we have

p p
d,+T(2 - ﬁ)Zz"J (u(t))) - Zl )

Aoyt
H2ﬁ> Jﬁrx—m sy =0

w, -T2 - ) Z 27 0() + kaw, + Kod,

J=1

1 1 — )}
+K2j(; ( F(fz)) g(s)ds = 6,.

Then

( TC-Bk+1)
dy _(r(z —B)(Kk>» + 1) — kiKk2 )9
( K1K2
I'2-pB)ky + 1) —kiky

K1 )9
Im Bk + 1) —k1k2)

a-1
0 N% sds
1(1_S)a—ﬂ 1

[(a-p)
1;(u(z)))

%/_\

(2 - B)(kika + k1)
I'2-p)ky + 1) = kK2

)
d )
( I'2-p)x + 1) )
( )
s ).

g(s)ds

M“%

+

I'QC-pB)ky +1)—kik;y

.
Il
—_

B (T2 - Pk + 1)
['2 =Pk + 1) — kK2

Mw

T (u(ty)

~.
Il
—_

2 - Pk
I'2 =Pk + 1) —kikr

ljj(u(r ), (2.14)

Mw

.
1l
—_

and

['(2 - pB)(k2) I'2-p)
- (r(z "B+ ) -k )91 " (r(z B+ D) -k )92
_ ( KI'(2-p) f (1 -9t o(s)ds
I'2 =Pk + 1) —kik2 ['(a)
N ( (2 - B)(kik2) ) ) e
I'Q-p)k+1)-kika/ Jy T(a—p)

Wp:

g(s)ds
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( I'(2 - B)ka )
['2 =)k + 1) = k1K

Mﬁ

L(u(t;))

1

J

T2 -B) 'k
" (r(z "B + 1) — KIKZ)

Mm

0 (u(ty)

1

J

re-p)
* (F(2 ﬁ)(Kz +1)— K1K2)

M"u

471 (1)), (2.15)

.
Il
—

Combining (2.12), (2.13), (2.14) and (2.15), we obtain

dy =d, +T(2 - p) Z 0 (u()) - Z I(u(1)))

Jj=k+1 Jj=k+1
:( I'2-pB)ka+ 1) )9
['2-p)k2 + 1) — k1k2
+ ( K1K2
I'2-p)k2+ 1) — kK2
(T2 =P kikz + k1)
I'2-p)k+ 1) — kK2

)
( )
( I'2 -k +1) )
( )
( )

K] )9
r‘(z B+ 1) =ik, )2

1 — §)* 1
0 ! r<S)> gy
1 (1 _ s)a/—ﬂ—l

I -p)
1(u(t;))

%/\

g(s)ds

M“h

+

I'2-pP)ky + 1) — kK2

.
Il
—

(_TC=-p)ka+1)
2 -p)k2+ 1) —kika

M"u

0 (u(t))

1

J

) 2 - px
2 =Pk + 1) —kik2

Mu

7N (1))

Il
—_

J

+T(2-p) Z 20 (1)) Z I(u(1))), (2.16)
Jj=k+1

Jj=k+1
and

P
we=w, ~TQ=p) > #7Iu(t))

Jj=k+1

I'2 - B)(k) ) ( r'2-p ) p
-

\T2 =B + 1) — ik, T2 -k + 1) —kikz) -

[

- Q2 - p)
(
-

)al

T2 -B)kz + 1) — kiks @) S0

[

['(2 - B)(kik2) —5)* P!
1
5

+

d
T2 - Pk + 1) — kikz Ta—p S

I'2-PB)x
T2 =B+ 1) —rar, ) 211040
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T2-p)' .
+ (r(z —B)kr + 1) — Klkz); t’fJJ(u(t ))

re-p)y P
+ (1"(2 —B)kr + 1) — KIKZ);l’f Jj(u(t;))

P
~T@=B) . 270 u)), (2.17)

Jj=k+1
fork=0,1,---,p—1. By using (2.16) and (2.17), we get
I'2—-pB)1 + ky — Kkat) )9 N ( I'2-pe—-« )9
TR =Bk + 1) —kika) ' \TQ =By + 1) — k162 )
+( —k, (02 = Byt — Kl) f (1 - )
T2 - B)(ky + 1) — kik2 ()

di + wit :(

——g(s)ds

-kiI'2-8)1+« — Kzl)) (1 §)2 A1
I'2-p)ky + 1) = kiky o Ila-pB)

(

( TR = )1 + K = Kat) )Z Ii(u(t))
J=

(

(

+ g(s)ds

+

I'2-pB)ky + 1) = kK2

(T2 - B)) (Kt — Ky — 1)
I'C-pB)k2+1)—kik2

IrQ-pIre-pe-«)
I'2 =Bk + 1) = kik2

+

~— ~——
DM
<
&~
~
<
~
N
v
~

+

+I2-p) Z 7Nt - ) — Z I(u(1))).

J=k+1 j=k+1
Therefore, by the (2.6), we get
Lt — 5)]
I'a)

1 - a—1
— kava(t) f ( r(s)) g(s)ds

( )(1—ﬂ 1 14
— k(1) f o=y 8Wds + i) D 1ty
j=1

g(s)ds + vi(1)0; + vo(1)6,

p
-T2 =B Z 20,ut) + T@ = Bwa(t) Y 47 u(r)

j=1 j=1
+TQ2-B) Z 7N = DT u,) - Z Iu(t,)),
Jj=k+1 Jj=k+1
where
pofe-plio-ny o TC-Pi-x
ETe Bt D-kk PV T TPkt D) -k
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Thus, we obtain (P*) for solution of (2.5). Conversely, assume that u is a solution of the impulsive
fractional integral equation (2.5), then by a direct computation, it follows that the solution given by

(P*) satisfies (2.5). This completes the proof.

3. Existence and uniqueness results

O

In this section, we state and prove the existence and uniqueness results of the fractional boundary
value of (1.1) by using the fixed point theorem. We use the following notations throughout this paper:

= LC-PU+k—rn) . T@- A1+ 2k
T B+t Dxka T T2 =Bk + D) = kil
)= —TC=Pr-k . TQ-p) kil

TC-Be+ -k 2 TC-B)ke + D)= xikal

In this paper, we following conditions of (H;) and (H,), and then we state and prove our first result.

(H;) The function f : J X R — R is continuous.
(H,) There exist positive constants My, M,, M5, Ly, L, such that

|f(t9 l/l) _f(t9 V)' < Ml'l/l - Vlat € [09 1]9 u,ve Ra

[l (u) — (V)| < Malu — v, |Jk(u) = Jr(W)| < Mslu — v,
[ (w)] < Ly, [Jx(u)| < L.
Also it is clear that

|f(t, )| < |f@ u) — f(£,0)] + [f(z,0)
< Milul + L,

where sup [f(z,0)| = L.
t€[0,1]

Theorem 3.1. Assume (H,) and (H;) holds. If

( L ! C T 3114 )
\Ta+1) T+ T@-8+1)
+I'(2 —ﬁ)p(Vl + vy + 2)M3 + p(Vl + l)Mz <1,

then BVP of (1.1) has a unique solution on [0,1].

Proof. By using (3.1), r can be chosen as follows:

M, M, (L
; >{1 _ m(1 +mlkal) — r(a_—lelkll} (F(a +1)

L
+v1161] + v2|6,| + V1|K2|r— + VoK1l

L
(a+1) I'a-B+1)
+ T2 -B)pvi +va+2)L, + p(v) + l)Ll).

3.1

AIMS Mathematics Volume 6, Issue 8, 8895-8911.
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Define an operator F : PC ([0, 1],R) — PC ([0, 1], R) to transform (1.1) into the fixed point problem

! _ o1
(Fu)(®) = f ) (s, u(s)ds +vi(D6 + v2()6>
o Ia)

1 1-— a—-1
— kava(t) f ( r(s)) £(s,u(s))ds

(S )(’-ﬁ1 Y
— k(1) f Fls,u(s)ds +vi(0) Y 1(u(t))
j=1

p
-T2 -pwi®) Z AT () + T2 = Byva(d) D 47 (1)
j=1

+T2-p) Z AGEDYCONE Z I(u(t)),

Jj=k+1 Jj=k+1

where t;, <t < t;41,k=0,---, p. Then

t _ el
Futr) < fo (tr(‘z) s, ulsD|ds + o] + a6

1 1 = )t
“lela0] [ EE s utslds

+ Ikl (o) f (r(—ﬁ)lf(s u(s))lds+|v1<r>|2|1 (u(1)))|

Jj=1

+ T2 =B () Z [ iute)] + T@ =Pl Z |7t )|

J=1 J=1

P )4
+2°@=p) Y |+ D ).

Jj=k+1 j=k+1
and then
Ful) < [ S22 s, un - s, O)lds
o @

o [ s i
o T "7 S

1 1— a—-1
+|K2||V2(f)|[ fo ( r(fj) £ (s, u(5)) = f(s,0)]ds

1 (1 _ S)oz—l
I'(a)

1 1= a—p-1
+ |K1||vl<r)| f %Iﬂs, u(s)) — f(s,0)|ds
(1 _ S)a 1

|£ (s, 0)|ds]

s 0)fds|

AIMS Mathematics Volume 6, Issue 8, 8895-8911.
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)4 P
+ @] D 1|+ T@ = pln@] > 7))

J=1 J=1

p
+TQ = BPad] D )|

J=1
P P
+20(2 - B) Z |Gt )] + Z |1(u(1))).
Jj=k+1 Jj=k+1
Using the upper bound ;(u) < L;, we have

p
D)) = |1 @) + [B@))] + -+ 1o ty))] + |1 @,))]
j=1

p
SL1+L1+"'+L1+L1:pL1,

and

p
D) = [ )| + [Fa@)| + -+ i wlty)] + |, e,)
j=1
p

SL2+L2+"'+L2+L2:pL2.

By the same way, we get

p

> )| =t @) + [t + -+« + [T @ty i)

Jj=k+1

+ [Tk (utyo))
p—k

SL1+L1+"'+L1+L1 :(p—k)Ll Sle,

and »
D )] =i wte))] + [Jeaa))] + - + [y @tyi0)|
j=k+1
)]
p—k
<L+Ly+--+L,+L,=(p-kL, < pL,.
Thus
Fuly s= Vil + 216
“T@+1) T+1) TN
er L
+ V2|K2|[ + ]
Ie+1) T(a+1)
er L
+vi |K1|[ + ]
Ie-p+1) Ta@-B+1)

+TQR-Ppvi+va+2)Lr + p(vi+ 1L, <.
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Therefore, for all ¢ € [0, 1], the fixed point of the operator F is the solution of our BVP (1.1). Next, the
fixed point theorem is used and then it is shown that F is a contraction mapping and we have

|Fu)(®) = (Fv)(®)

(1= )"
< fo T)If(s,u(s))—f(s,v(s))lds

+ lkal|v2(0)| f d-97 r( ) f(s u(s)) — £(s,v(s))|ds
+ [k l|v1 (0| f Sl it If(s u(s)) — £(s,v(s))|ds

+ 1) Z |1u(t))) - Ij(v(t,-)>|
j=1
P
+TQ=Pn®] ) 17, = J,0)
j=1

p
+T@ =B 0] Y | i(ute) = T (2|

J=1

p
+20Q=P) D i) = T, )

Jj=k+1

)4
£ ) - L),

Jj=k+1

Thus

(Fu)(t) — FV)(©)] < M( 1 +|’<2||V2(f)| |Kl||V1(t)|)

\Te+D) T+ T@-g+1)
+TQ2 = Bp( @) + va6)] + 2)M5

+ p(i o]+ 1)M2]||M —ll,

F is contraction mapping. By condition (3.1), we have

1 |&21v2 &1V )

Fu=Fvi< [Ml(r(a 1) T+l T@-g+1)

+TQ2-Bp(vi +v2+2)Ms + p(v; + I)Mz]llu il

Therefore, F is a contraction mapping. The conclusion follows the principle of contraction mapping,
that is the unique solution of impulsive mixed BVP can be obtained by using the fixed point theorem.
m]

Theorem 3.2. Assume that |f(t,u)| < {(¢) for all (t,u) € J X R where { € Li (JXR),uec0,a—-1)and
the (H») holds. If
F(2 —,B)p(vl + vy + 2)M3 + P(Vl + 1)M2 < 1. (32)
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Then problem (1.1) has at least one solution on J.

Proof. Let

( (I + |x2]v2) |k1]v1 )
HO\T@(E ™ Ta - (L)
+T'Q2-B)p(vi +vo +2)L, + p(vi + 1)Ly,

r2|IZll .

and denote §, = {u € PC(J, R)|lulpc < 7.
Define the operators B and N on §, as

! _ el _ a-1
(Bu)(1) = f =™ ps,uls)ds — xava®) f a S) (s, u(s))ds
0

I'(a)
(1 _ s)a—ﬁ 1

= kvi() . F(af——ﬂ)f(s’ u(s))ds,

P 14
(Nu)(®) =v(0) ) 1u(t) =T Q2 = Bywa(t) Y 7(u(t))

J=1 J=1

p
+TQ=Bmat) Y 47T (u()

j=1

+TQ2- ﬁ)Zzﬂ (1] — )J (u(t))) - le(u(tj)).

Jj=k+1 J=k+1

For any u,v € S ,(t € J), using the condition that |f(z,u) < {(¢)| and the Holder inequality, we get

( [~ s)?”—ﬁds)l_”( fo’(g(s))ids)ﬂ

fot ‘ F(S): lf( us)|ds < I'(@)
Il
~ D))+
me s)" ! (fa- s)‘f?‘lds)l (flepias)
fo e f(s,u(s))|ds < @)
125,
~ D))+
and B o ,
(1— 5)* 5! (fol(l - S)%ﬂlds) (f;({(s))ﬁds)

r

) [t u(s))|ds <

o -p I -p)

11l

L/’ )

< .
(o - B)(SEE)! -+
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Thus
(I + |22l 1 (kDI

L ) 4 L# )
T(@) () I'(a - B)( ?’5 Kyl-p
+ F(2 —ﬁ)p(vl + vy + 2)L2 + p(Vl + I)Ll
12l ( (1 + |x2]2) + lk1lv )
—Noll 5 a—py1- Bt~
K@) Ta - p)(EE)
+ F(2 —ﬁ)p(vl + vy + 2)L2 + p(Vl + 1)L1
Therefore, Bu+Nv € §S,. By the (3.2), it is obvious that N is a contraction mapping. And the continuity
of f implies that the operator B is continuous. Thus, B is uniformly bounded on S, where
(1 + |kalv2) N lk1lv1 ) <

L“<’>(I“< D T(a - A

[(Bu) + (NV)|| <

(Bl <[|Z]] 4

Next the quasi-equicontinuity of the operator B is proved. Let Q = J XS, fup = sup |f(z, u)|. For any
(tu)eQ

e < X2 < x1 < tiy1, We have

I(Bu)(x2) = (Bu)(x Dl

2 (s — )" " kava(xo)(1 = 5)°!
‘ @) ——f(s,u(s))ds — ‘[0 @) f(s,u(s))ds
kivi(2)(1 — 5)7#! Xy — 5)*!
- L ) f(s,u(s))ds — ) Wf(s, u(s))ds
1 _ el
+ fo KZVZ(X?EL) ) f(s,u(s))ds
: kiviQ)(1 — 5)* 1
+ [) Ma-p) f(s,u(s))ds
fsu X2 Y1
<2 f (2= )" = (1 — )" 'ds + f (1 — )" 'ds
F(a) 0 X2

_ i 1
n KZVZ(XZ )(l)fSUP f (1 _ S)(Z—lds

I'(@)
N K1V1(X1 XZ)fSupf (1- S)(l_lg ldS
I'la
2= x)" + X7 — x5 0y —x3) 3 —x7)
<] farh R Tarn PWFe g/

which tends to zero as y1 — x». This proves that B is quasi-equicontinuous on the (#, #;,1]. So that B
is compact by Lemma 2.5, and B is relatively compact on S ,.

Thus all the assumptions of Lemma 2.4 are satisfied and problem (1.1) has at least one solution on
J. O
4. Examples

In this section, two examples are given to verify the feasibility of the results.
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Example 4.1. Let us consider the hybrid fractional BVP:

3
cn2 sin®u(r) 1
DO+M(I) m,t S [0 1] t+ 4’

1y luGGD AC 3 (%) _1
Aulz) = 100+u()]” A"Dq. ( )= 100+|u(%)|’t e
1

u(0) + €D, u(1) = 0,°DZ,u(0) + u(1) =

4.1)

where 1,(u(1)) = Ju(u(0) = il and @ = 3, f= 4, p = 1, ft.u(0) = ;0 Let 6 = 6, =

100+u( )| (t+20)2(1+u(1))
0,M1:M2:M3:L1:L2:ﬁ.
By the f(#, u(t)) = ME;‘;% (H,) 1s obviously established. Next, consider the (H;), we obtain
.. 3 . 3
sin”u(t) sin”v(t)
tu) — f(t,v)| = -
'f ) = SV = 12020 + )~ @+ 120201 + (D)
1 | sin’u()  sin’v()
T 40001 +u(r)) (1 +v(0)
400(‘s1n u(t) — sin v(t)' ‘u(t) - v(t)‘)
< 0( o) = v + Jute) - v(l)')
= Lo
~ 100" "

Therefore, the | f(t,u) — f(t, v)| is established. By the same way, we have |[;(u) — I,(v)| < M,lu —
v, [Jk(m) = Ji(v)| £ Mslu —v|, |I(u)] < L; and |Ji(u)] < L, are established. Thus, (H,) is completed.

Last, consider the condition of (3.1). Because the 6, = 6, = 0, M| = M, = M5 = 11@, we have
2I'2 - B) 1+T2-)
= ——— ~ 15.5747, = ——— ~ 16.5747,
R T Yy 2 TTT2-B)

vy =22 - pB) = 1.7724.

Thus
M,

1 1
+ Vl( + )M1
IN'a+1) INa-pB+1) T(a+1)
+vipMy + T2 = B)yvipM; + 2pM,
+ 2v3pM;3 + v10) + v,60, = 0.6292 < 1.

Therefore, all assumptions in the Theorem 3.1 are satisfied. Hence, the fractional impulsive hybrid
BVP of (4.1) has a unique solution on [0, 1].

Example 4.2. We consider the hybrid fractional BVP of following:
3 S1 U
°DZu(t) = Mt €[0,1],¢ # 1,
Au( ) = 1oo+| ( K

ACDLu(ly= b1 4.2)
u(0) + D2, u(1) = 0,°D2,u(0) + u(1) = 0

100-+u( 1)’ 3
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where [,(u(1) = Ju(u() = il and p = 1, @ = 3, B = L, f(t.u(h) = om0l The

100+u( 1))’ (t+107(1+u() *
2I'2 - P) 1+T2-p)
= ——"" = 15.5747, = ————" = 16.5747,
ISR -p) 2T TIT2-B)
and )
t
oy = —W Gy € 10,17 % [0, +00).

(t+102(1 + |u])’

Clearly, we obtain
sinf |u|

lf(t,w)| < T+ 107 {(n = G+ 10y € L’([0,1],R),
and influl  sin|
sint |u sint |v
lf(t,u) — f(2,v)] = (1107 Gr 107
sint
= ‘m(lul - )
sint =]
~ (t+ 10)? ’
Let M, = M3 = 15, we get

[@2=pp0i +v2+2)M; + p(vi + )M, ~ 0.4683 < 1.

Thus, all assumptions in the Theorem 3.2 are satisfied. Hence, the fractional impulsive mixed BVP
of (4.2) has a least one solution on [0, 1].
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