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1. Introduction

The q-calculus or quantum calculus is an old subject that was initially developed by Jackson [1, 2],
and has been confirmed to have numerous applications in a variety of subjects such as quantum
mechanics, hypergeometric series, particle physics, complex analysis and so on [3, 4]. As well as
known, the nonlinear difference equation can more accurately describe some phenomena in the natural
world. In recent decades, the nonlinear q-difference equations boundary value problems have been
widely used in various research fields [5, 6]. However, for the existence of positive solutions to
boundary value problems of q-difference equation with p-Laplacian operator, few works were done.
Especially, there are few works on q-difference equations boundary value problems with p-Laplacian
on infinite intervals.
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The existence and multiplicity of positive solutions to differential equations with or without the p-
Laplacian operator subject to Dirichlet, Sturm-Liouville or nonlinear boundary value conditions have
been investigated extensively, see [7–13] and the references therein. In [14], Lian et al. investigated
the existence of positive solutions for the boundary value problem with p-Laplacian operator{

(ϕp(x′(t)))′ + φ(t) f (t, x(t), x′(t)) = 0, 0 < t < +∞,

αx(0) − βx′(0) = 0, x′(∞) = 0,

by using the Avery-Peterson fixed point theorem in a cone.
In [15], Guo et al. established the existence of three positive solutions for m-point BVPs on infinite

intervals 
(ϕp(x′(t)))′ + φ(t) f (t, x(t), x′(t)) = 0, 0 < t < +∞,

x(0) =

m−2∑
i=1

αix′(ηi), lim
t→+∞

x′(t) = 0,

by applying the Avery-Peterson fixed point theorem in a cone.
Motivated by the above works, we study the following nonlinear q-difference equation with the

integral boundary value problem (IBVP) on infinite intervals
(Dq(ϕp(Dqx(t))) + φ(t) f (t, x(t), Dqx(t)) = 0, 0 < t < +∞,

x(0) =

∫ +∞

0
g(s)Dqx(s)dqs, lim

t→+∞
Dqx(t) = 0,

(1.1)

where ϕp(s) = |s|p−2s, p > 1, φ : R+ → R+ and f (t, u, v) : R3
+ → R+ are continuous functions,

R+ = [0,+∞), g ∈ L1
q[0,+∞) is nonnegative, L1

q[0,+∞) is the set of functions which are q-integrable.
In this article, we use the following conditions:
(H1) φ ∈ C(R+,R+), φ . 0 on any interval of form (t0,+∞) and

∫ ∞
0
φ(s)dqs < +∞,∫ ∞

0
ϕ−1(

∫ ∞
τ
φ(s)dqs)dqτ < +∞;

(H2) f (t, (1 + t)u, v) ∈ C(R3
+,R+), f (t, 0, 0) . 0 on any subinterval of (0,+∞) and when u, v are

bounded, f (t, (1 + t)u, v) is bounded on [0,+∞).

2. Preliminary results

In this section, we present some definitions, theorems and lemmas, which will be needed in the
proof of the main results.
Definition 2.1 [16] The q-derivative of the function f is defined as

Dq f (x) =
f (x) − f (qx)

(1 − q)x
, x , 0,

and

(Dq f )(0) = lim
x→0

(Dq f )(x).
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Note that lim
q→1−

Dq f (x) = f ′(x).

Definition 2.2 [16] Suppose 0 < a < b. The q-integral is defined as∫ b

0
f (x)dqx = (1 − q) b

∞∑
j=0

q j f (q jb),

and ∫ b

a
f (x)dqx =

∫ b

0
f (x)dqx −

∫ a

0
f (x)dqx.

Definition 2.3 [16] The improper q-integral of f (x) on [0,+∞) is defined to be∫ ∞

0
f (x)dqx =

+∞∑
j=−∞

∫ q j

q j+1
f (x)dqx,

if 0 < q < 1, or ∫ ∞

0
f (x)dqx =

+∞∑
j=−∞

∫ q j+1

q j
f (x)dqx,

if q > 1, where
∫ q j

q j+1
f (x)dqx = (1 − q)q j f (q j).

Theorem 2.4 [16] (Fundamental theorem of q-calculus) If F(x) is an antiderivative of f (x) and F(x) is
continuous at x = 0, we have ∫ b

a
f (x)dqx = F(b) − F(a),

where 0 ≤ a < b ≤ ∞.
Definition 2.5 [17] Let E be a real Banach space. A nonempty closed convex set P ⊂ E is called a
cone if it satisfies the following two conditions:

(i) x ∈ P and λ ≥ 0 imply λx ∈ P;
(ii)x ∈ P and −x ∈ P imply λx = 0.

Definition 2.6 [17] Given a cone P in a real Banach space E. A continuous map ψ is called a concave
(resp. convex) functional on P if for all x, y ∈ P and 0 < λ < 1, it holds ψ(λx + (1 − λ)y) ≥
λψ(x) + (1 − λ)ψ(y), (resp. ψ(λx + (1 − λ)y) ≤ λψ(x) + (1 − λ)ψ(y)).

Let α, γ, θ, ψ be nonnegative continuous maps on P with α concave, γ, θ convex. Then for positive
numbers a, b, c, d, we define the following subsets of P:

P(γd) = {x ∈ P : γ(x) < d};
P(αb, γ

d) = {x ∈ P(γd) : b ≤ α(x)};
P(αb, θ

c, γd) = {x ∈ P(γd) : b ≤ α(x), θ(x) ≤ c};
R(ψa, γ

d) = {x ∈ P(γd) : a ≤ ψ(x)}.

AIMS Mathematics Volume 6, Issue 8, 8404–8414.



8407

It is obvious that P(γd), P(αb, γ
d), P(αb, θ

c, γd) are convex and R(ψa, γ
d) is closed.

Theorem 2.7 [17] (Avery-Peterson fixed point theorem) Let P be a cone of a real Banach space E. Let
γ, θ be non-negative convex functional on P satisfying

ψ(λx) ≤ λψ(x), ∀0 < λ < 1, α(x) ≤ ψ(x), ‖x‖ ≤ Mγ(x),∀x ∈ P(γd)
with M, d some positive numbers. Suppose that T : P(γd)→ P(γd) is completely continuous and there
exist positive numbers a, b, c with a < b such that

(1) {x ∈ P(αb, θ
c, γd) : α(x) ≥ b} , Ø and α(T x) > b for x ∈ P(αb, θ

c, γd);
(2) α(T x) > b for x ∈ P(αb, γ

d) with θ(T x) > c;
(3) 0 , R(ψa, γ

d) and ψ(x) < a for x ∈ R(ψa, γ
d) with ψ(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P(γd) such that
γ(xi) ≤ d, i = 1, 2, 3; ψ(x1) < a; ψ(x2) > a with α(x2) < b; α(x3) > b.

Consider the space

X = {x ∈ C1
q[0,+∞] : sup

0≤t<+∞

|x(t)|
1 + t

< +∞, lim
t→+∞

Dqx(t) = 0}

with the norm ‖x‖ = max{‖x‖1, ‖Dqx‖∞}, where

‖x‖1 = sup
0≤t<+∞

|x(t)|
1 + t

, ‖Dqx‖∞ = sup
0≤t<+∞

|Dqx(t)|.

Obviously, we can obtain that (X, ‖ · ‖) is a Banach space. Let P ⊂ X by

P = {x ∈ X : x(t) ≥ 0, t ∈ [0,+∞), x(0) =

∫ +∞

0
g(s)Dqx(s)dqs, x is concave on [0,+∞)}.

Remark 2.8 If x satisfies (1.1), then (Dq(ϕp(Dqx(t))) = −φ(t) f (t, x(t), Dqx(t)) ≤ 0 on [0,+∞), which
implies that x is concave on [0,+∞). Moreover, if lim

t→+∞
Dqx(t) = 0, then Dqx(t) ≥ 0, t ∈ [0,+∞) and so

x is monotone increasing on [0,+∞).
Let k > 1 be a constant. For x ∈ P, define the nonnegative continuous functionals:

α(x) =
k

k + 1
min
1
k≤t<k

x(t), γ(x) = sup
0≤t<+∞

Dqx(t),

ψ(x) = θ(x) = sup
0≤t<∞

|x(t)|
1 + t

, A =

∫ +∞

0
g(s)dqs,

and set

C = ϕ−1
p

( ∫ +∞

0
φ(s)dqs

)
, C1(t) =

∫ t

0
ϕ−1

p

( ∫ +∞

τ

φ(s)dqs
)
dqτ.

Since the Arzela-Ascoli theorem does not apply in the space X, we need a modified compactness
criterion to prove T is compact. In the following, we present an explicit one.
Definition 2.9 For l > 0, let V = {x ∈ X : ‖x‖ < l}, and V1 := { x(t)

1+t , x ∈ V}
⋃
{Dqx(t), x ∈ V}, which

is called equiconvergent at infinity if for all ε > 0, there exists T = T (ε) > 0 such that for all x ∈ V1,
|

x(t1)
1+t1
−

x(t2)
1+t2
| < ε, |Dqx(t1) − Dqx(t2)| < ε, ∀t1, t2 ≥ T .

Lemma 2.10 If { x(t)
1+t , x ∈ V} and {Dqx(t), x ∈ V} are both equicontinuous on any compact interval of
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[0,+∞) and equiconvergent at infinity. Then V is relatively compact on X.
Proof. Its proof is similar to the proof of Lemma 2.2 in literature [18].
Lemma 2.11 Let g ∈ L1

q[0,+∞) and g is nonnegative, if v(t) is nonnegative and continuous on [0,+∞)
and lim

t→+∞
v(t) exists. Then there exists at least one η, 0 ≤ η < +∞ such that∫ +∞

0
g(s)v(s)dqs = v(η)

∫ +∞

0
g(s)dqs.

Proof. It is obvious that the function v(t) exists and has maxima and minima which are nonnegative
and noted by M∗,m∗ on [0,+∞), then for all t ∈ [0,+∞), we have m∗ ≤ v(t) ≤ M∗, so

m∗
∫ +∞

0
g(s)dqs ≤

∫ +∞

0
g(s)v(s)dqs ≤ M∗

∫ +∞

0
g(s)v(s)dqs.

If
∫ +∞

0
g(s)dqs = 0, the result is clear; if

∫ +∞

0
g(s)dqs > 0, there is

m∗ ≤

∫ +∞

0
g(s)v(s)dqs∫ +∞

0
g(s)dqs

≤ M∗.

Therefore, there exists at least one η, 0 ≤ η < +∞ such that∫ +∞

0
g(s)v(s)dqs = v(η)

∫ +∞

0
g(s)dqs.

Lemma 2.12 Let y ∈ C[R+,R+], and
∫ +∞

0
g(t)dqt < ∞, then q-difference IBVP


(Dq(ϕp(Dqx(t))) + y(t) = 0, 0 < t < +∞,

x(0) =

∫ +∞

0
g(s)Dqx(s)dqs, lim

t→+∞
Dqx(t) = 0,

(2.1)

has a unique solution

x(t) =

∫ +∞

0
g(s)ϕ−1

p

( ∫ +∞

s
y(τ)dqτ

)
dqs +

∫ t

0
ϕ−1

p

( ∫ +∞

s
y(τ)dqτ

)
dqs.

Proof. We integrate the equantion from t to +∞, and get

Dqx(t) = ϕ−1
p

( ∫ +∞

t
y(s)dqs

)
. (2.2)

Integrating (2.2) from 0 to t, and

x(0) =

∫ +∞

0
g(s)Dqx(s)dqs,

we can get

x(t) =

∫ +∞

0
g(s)ϕ−1

p

( ∫ +∞

s
y(τ)dqτ

)
dqs +

∫ t

0
ϕ−1

p

( ∫ +∞

s
y(τ)dqτ

)
dqs.
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Define the operator T : P→ C1[0,+∞) by

T x(t) =

∫ +∞

0
g(s)ϕ−1

p

( ∫ +∞

s
φ(τ) f (τ, x(τ),Dqx(τ))dqτ

)
dqs

+

∫ t

0
ϕ−1

p

( ∫ +∞

s
φ(τ) f (τ, x(τ),Dqx(τ))dqτ

)
dqs.

Lemma 2.13 For x ∈ P, ‖x‖1 ≤ M‖x‖∞, where M = max{
∫ +∞

0
g(s)dqs, 1}.

Proof. Since x ∈ P,

x(t)
1 + t

=

∫ t

0
Dqx(s)dqs +

∫ +∞

0
g(s)Dqx(s)dqs

1 + t

≤

t +

∫ +∞

0
g(s)dqs

1 + t
‖Dqx‖∞ ≤ M‖Dqx‖∞.

Lemma 2.14 For x ∈ P, α(x) ≥ θ(x)
k+1 .

Proof. Obviously, x is increasing on [0,+∞). Moreover, since Dqx(+∞) = 0, the function x(t)
1+t achieves

its maximum at σ ∈ [0,+∞), then θ(x) =
x(σ)
1+σ

. Furthermore, x is concave, so

α(x) =
k

k + 1
x
(1
k

)
=

k
k + 1

x
(k − 1 + kσ

k + kσ
·

1
k − 1 + kσ

+
σ

k + kσ

)
≥

1
k + 1

·
x(σ)

1 + σ
=

1
k + 1

θ(x).

Lemma 2.15 Let (H1) − (H2) hold. Then, T : P→ P is completely continuous.
Proof. It is easy to verify that T : P → P is well defined. Now, we prove that T is continuous and
compact respectively.

(i) T is continuous.
Let xn → x as n → +∞ in P, then there exists r0 such that supn∈N\{0} ‖xn‖ < r0. Set Br0 =

sup{ f (t, (1 + t)u, v), (t, u, v) ∈ [0,+∞) × [0, r0]2}. Then we have∫ +∞

0
φ(s)| f (s, xn,Dqxn) − f (s, x,Dqx)|dqs ≤ 2Br0

∫ +∞

0
φ(s)dqs.

Therefore, by the Lebesgue dominated convergence theorem, we get

|ϕp((DqT xn)(t)) − ϕp((DqT x)(t))| =
∣∣∣∣∣ ∫ +∞

t
φ(s)( f (s, xn,Dqxn) − f (s, x,Dqx))dqs

∣∣∣∣∣
≤

∣∣∣∣∣ ∫ +∞

0
φ(s)( f (s, xn,Dqxn) − f (s, x,Dqx))dqs

∣∣∣∣∣→ 0, n→ +∞.

Furthermore, ‖T xn − T x‖ ≤ M‖DqT xn − DqT x‖∞ → 0, as n→ +∞. Hence, T is continuous.
(ii) T is compact.
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T is compact provided that it maps bounded sets into relatively compact sets. Let Ω be any bounded
subset of P. Then there exists r > 0 such that ‖x‖ ≤ r for all x ∈ Ω. Obviously,

‖DqT x‖∞ ≤ ϕ−1
p

( ∫ +∞

0
φ(s) f (s, x(s),Dqx(s))dqs

)
≤ Cϕ−1

p (Br)

for all x ∈ Ω. Hence, ‖TΩ‖ ≤ MCϕ−1
p (Br). So TΩ is bounded. Moreover, for any L ∈ [0,+∞), and

t1, t2 ∈ [0, L],∣∣∣∣∣ (T x)(t1)
1 + t1

−
(T x)(t2)
1 + t2

∣∣∣∣∣ ≤ ∫ +∞

0
g(s)ϕ−1

p

( ∫ +∞

s
φ(τ) f (τ, x(τ),Dqx(τ))dqτ

)
dqs

∣∣∣∣∣ 1
1 + t1

−
1

1 + t2

∣∣∣∣∣
+

∫ t2

0
ϕ−1

p

( ∫ +∞

s
φ(τ) f (τ, x(τ),Dqx(τ))dqτ

)
dqs

∣∣∣∣∣ 1
1 + t1

−
1

1 + t2

∣∣∣∣∣
+

1
1 + t1

∣∣∣∣∣ ∫ t2

t1
ϕ−1

p

( ∫ +∞

s
φ(τ) f (τ, x(τ),Dqx(τ))dqτ

)
dqs

∣∣∣∣∣
≤ ϕ−1

p (Br)(AC + C1(L))
∣∣∣∣∣ 1
1 + t1

−
1

1 + t2

∣∣∣∣∣ + |C1(t1) −C2(t2)| → 0, (t1 → t2),

and

|ϕp((DqT x)(t1)) − ϕp((DqT x)(t2))| =
∣∣∣∣∣ ∫ t2

t1
φ(s) f (s, x(s),Dqx(s))dqs

∣∣∣∣∣
≤ Br

∣∣∣∣∣ ∫ t2

t1
φ(s)dqs

∣∣∣∣∣→ 0, (t1 → t2)

for all x ∈ Ω. So TΩ is equicontinuous on any compact interval of [0,+∞). Finally, for any x ∈ Ω,

lim
t→+∞

∣∣∣∣∣ (T x)(t)
1 + t

∣∣∣∣∣ = lim
t→+∞

1
1 + t

∫ t

0
ϕ−1

p

( ∫ +∞

s
φ(τ) f (τ, x(τ),Dqx(τ))dqτ

)
dqs

≤ Mϕ−1
p (Br) lim

t→+∞
ϕ−1

p

( ∫ +∞

t
φ(s)dqs

)
= 0,

and

lim
t→+∞

|DqT x)(t)| = lim
t→+∞

ϕ−1
p

( ∫ +∞

t
φ(s) f (s, x(s),Dqx(s))dqs

)
≤ ϕ−1

p (Br) lim
t→+∞

ϕ−1
p

( ∫ +∞

t
φ(s)dqs

)
= 0.

So TΩ is equiconvergent at infinity. By using Lemma 2.10, we obtain that TΩ is relatively compact,
that is, T is a compact operator. Hence, T : P→ P is completely continuous. The proof is complete.

3. Main results

For the main result of this paper, we further assume that
(H3) f (t, (1 + t)u, v) ≤ ϕp(d/C), for (t, u, v) ∈ [0,+∞) × [0,Md] × [0, d];
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(H4) f (t, (1 + t)u, v) > ϕp(b/N), for (t, u, v) ∈ [1
k , k] × [ b

k ,
(k+1)2

km b] × [0, d];
(H5) f (t, (1 + t)u, v) < ϕp(a/MC), for (t, u, v) ∈ [0,+∞) × [0, a] × [0, d],

where m = min{A, 1}, N = 1
(k+1)2

∫ k
1
k

(g(s) + 1)ϕ−1
p (

∫ k

s
φ(τ)dqτ)dqs.

Theorem 3.1 Let A > 0. Suppose (H1) − (H5) hold. Suppose further that there exist numbers a, b, d
such that 0 < ka < bMmkd/(k + 1)2. Then (1.1) has at least three positive solutions x1, x2, x3 such that

sup
0≤t<∞

Dqxi(t) ≤ d, i = 1, 2, 3;

sup
0≤t<∞

|x1(t)|
1 + t

< a, sup
0≤t<∞

|x2(t)|
1 + t

<
(k + 1)2b

km
, min

1
k≤t<k

x2(t) <
(k + 1)b

k
;

sup
0≤t<∞

|x3(t)|
1 + t

< Md, min
1
k≤t<k

x3(t) >
(k + 1)b

k
.

Proof. Let X, P, α, γ, θ, ψ and T be defined as before respectively. It is easy to prove that the fixed
points of T coincide with the solution of BVP (1.1). So it is enough to show that T has three positive

fixed points. In fact, for any x ∈ P(γd), sup
0≤t<∞

Dqx(t) ≤ d and so sup
0≤t<∞

x(t)
1 + t

< Md. Condition (H3)

implies that f (t, x(t),Dqx(t)) ≤ ϕp(d/C) for all t ∈ [0,+∞).
Therefore,

γ(T x) = sup
0≤t<∞

(DqT x)(t) = (DqT x)(0) = ϕ−1
p

( ∫ +∞

s
φ(s) f (s, x(s),Dqx(s))dqs

)
≤

d
c
ϕ−1

p

( ∫ +∞

s
φ(s)dqs

)
= d.

Hence, T : P(γd) → P(γd) is completely continuous. Obviously, α, γ, θ, ψ satisfy the assumptions in
Theorem 2.7. Next, we show that conditions (1) − (3) in Theorem 2.7 hold.

Firstly, choose the function x(t) = (1 − 1
k+1e−

kt
A )

(k+1)2b
km , 0 ≤ t < +∞. It can be checked that x ∈

P(αb, θ
c, γd) with α(x) > b, where c =

(k+1)2b
km , thus {x ∈ P(αb, θ

c, γd)|α(x) > b} , ∅. For any x ∈
P(αb, θ

c, γd), we obtain

b
k
≤

1
k + 1

min
1
k≤t<k

x(t) <
x(t)

1 + t
≤

(k + 1)2b
km

, t ∈ [
1
k
, k],

and 0 ≤ Dqx(t) ≤ d, t ∈ [0,+∞). In view of assumption (H4) together with Lemma 2.14, we obtain

α(T x) ≥
1

k + 1
θ(T x) =

1
k + 1

sup
0≤t<∞

(T x)(t)
1 + t

=
1

k + 1
sup

0≤t<∞

1
1 + t

[ ∫ +∞

0
g(s)ϕ−1

p

( ∫ +∞

s
φ(τ) f (τ, x(τ),Dqx(τ))dqτ

)
dqs

+

∫ t

0
ϕ−1

p

( ∫ +∞

s
φ(τ) f (τ, x(τ),Dqx(τ))dqτ

)
dqs

]
≥

1
(k + 1)2

[ ∫ k

1
k

g(s)ϕ−1
p

( ∫ k

s
φ(τ) f (τ, x(τ),Dqx(τ))dqτ

)
dqs

+

∫ k

1
k

ϕ−1
p

( ∫ k

s
φ(τ) f (τ, x(τ),Dqx(τ))dqτ

)
dqs

]
AIMS Mathematics Volume 6, Issue 8, 8404–8414.
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>
b
N

1
(k + 1)2

∫ k

1
k

(g(s) + 1)ϕ−1
p

( ∫ k

s
φ(τ)dqτ

)
dqs = b.

Hence, α(T x) > b for x ∈ P(αb, θ
c, γd).

Next, we will verify that the condition (2) of Theorem 2.7 is satisfied. Let x ∈ P(αb, γ
d) with

θ(T x) > c, it follows from Lemma 2.14 that

α(T x) ≥
1

k + 1
θ(T x) >

1
k + 1

c =
1

k + 1
(k + 1)2b

km
=

(k + 1)b
km

> b,

Thus, α(T x) > b for all x ∈ P(αb, γ
d) with θ(T x) > c. Finally, we show that condition (3) of Theorem

2.7 is satisfied. It is clear that 0 ∈ R(ψa, γ
d). Suppose that x ∈ R(ψa, γ

d) with ψ(x) = a, then by
condition (H5) and Lemma 2.13, we obtain

ψ(T x) ≤ Mγ(T x) = MDq(T x)(0)

= Mϕ−1
p

( ∫ +∞

0
φ(s) f (s, x(s),Dqx(s))dqs

)
≤ M

a
MC

ϕ−1
p

( ∫ +∞

0
φ(s)dqs

)
= a.

Therefore, T has at least three fixed points x1, x2, x3 ∈ P(γd) such that ψ(x1) < a, ψ(x2) > a with
α(x2) < b, α(x3) > b . In addition, condition (H2) guarantees that those fixed points are positive. So
(1.1) has at least three positive solutions x1, x2, x3 and the proof is completed.

4. Example

Consider the q-difference equation IBVP
Dq(|Dqx|Dqx) + e−t

q f (t, x(t), Dqx(t)) = 0, 0 < t < +∞,

x(0) =

∫ +∞

0
e−2s

q Dqx(s)dqs, lim
t→+∞

Dqx(t) = 0,
(4.1)

where ex
q =

∑∞
j=0

x j

[ j]! , and

f (t, u, v) =

{ | sin t|
100 + 104( u

1+t )
10 + 1

100 ( v
400 ), u ≤ 1,

| sin t|
100 + 104( 1

1+t )
10 + 1

100 ( v
400 ), u ≥ 1.

Set φ(t) = e−t
q and it is easy to verify that (H1) and (H2) hold. Choose k = 3, a = 1

3 , b = 2, d = 400. By
simple calculations, we can obtain M = 1, m = 1

2 , C = 1,

N =
1

16

∫ 3

1
3

(e−2s
q + 1)

√
e−s

q − e−3dqs ≥
1

16

∫ 3

1
3

√
e−s

q − e−3dqs > −
1
8

(e−
3
2

q − e−
1
6

q ).

So the nonlinear term f satisfies
(1) f (t, (1+ t)u, v) ≤ 0.01+104 +0.01 < 1.6×105 = ϕ3(d/C), for (t, u, v) ∈ [0,+∞)× [0, 400]× [0, 400];

AIMS Mathematics Volume 6, Issue 8, 8404–8414.
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(2) f (t, (1 + t)u, v) ≥ 104 > 256

(e
− 3

2
q −e

− 1
6

q )2
= ϕ3(b/N), for (t, u, v) ∈ [ 1

3 , 3] × [ 2
3 ,

64
3 ] × [0, 400];

(3) f (t, (1+ t)u, v) ≤ 0.01+104× ( 1
4 )10 +0.01 < 1

9 = ϕ3(a/MC), for (t, u, v) ∈ [0,+∞)× [0, 1
3 ]× [0, 400].

Therefore, the conditions in Theorem 3.1 are all satisfied. So (4.1) has at least three positive solutions
x1, x2, x3 such that

sup
0≤t<∞

Dqxi(t) ≤ 400, i = 1, 2, 3;

sup
0≤t<∞

|x1(t)|
1 + t

<
1
3
,

1
3
< sup

0≤t<∞

|x2(t)|
1 + t

<
64
3

, min
1
k≤t<k

x2(t) <
8
3

;

sup
0≤t<∞

|x3(t)|
1 + t

< 400, min
1
k≤t<k

x3(t) >
8
3

.

5. Conclusions

This research obtains the existence results of triple positive solutions for a class of q-difference
equations boundary value problems with integral boundary conditions with p-Laplacian on infinite
intervals by applying the Avery-Peterson fixed point theorem in a cone, which enrich the theories for
q-difference equations on infinite intervals, and provide the theoretical guarantee for the application
of q-difference equations in every field, such as aerodynamics, electrodynamics of complex medium,
capacitor theory, electrical circuits, control theory, and so on. In the future, we will use bifurcation
theory, critical point theory, variational method, and other methods to continue our works in this area.
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